Advertisement

Non-viral Vector for Muscle-Mediated Gene Therapy

  • Serge BraunEmail author
Chapter

Abstract

Non-viral gene delivery to skeletal muscle was one of the first applications of gene therapy that went into the clinic, mainly because skeletal muscle is an easily accessible tissue for local gene transfer and non-viral vectors have a relatively safe and low immunogenic track record. However, plasmid DNA, naked or complexed to the various chemistries, turn out to be moderately efficient in humans when injected locally and very inefficient (and very toxic in some cases) when injected systemically. A number of clinical applications have been initiated however, based on transgenes that were adapted to good local impact and/or to a wide physiological outcome (i.e., strong humoral and cellular immune responses following the introduction of DNA vaccines). Neuromuscular diseases seem more challenging for non-viral vectors. Nevertheless, the local production of therapeutic proteins that may act distantly from the injected site and/or the hydrodynamic perfusion of safe plasmids remains a viable basis for the non-viral gene therapy of muscle disorders, cachexia, as well as peripheral neuropathies.

Keywords

Naked Complexes Muscle Vaccines Hydrodynamic delivery 

Notes

Disclosure

Author declares having no potential competing financial interests.

References

  1. 1.
    Wolff JA, Budker V (2005) The mechanism of naked DNA uptake and expression. Adv Genet 54:3–20.  https://doi.org/10.1016/S0065-2660(05)54001-X CrossRefPubMedGoogle Scholar
  2. 2.
    Lu QL, Bou-Gharios G, Partridge TA (2003) Non-viral gene delivery in skeletal muscle: a protein factory. Gene Ther 10(2):131–142.  https://doi.org/10.1038/sj.gt.3301874 CrossRefPubMedGoogle Scholar
  3. 3.
    Belmadi N, Midoux P, Loyer P, Passirani C, Pichon C, Le Gall T, Jaffres PA, Lehn P, Montier T (2015) Synthetic vectors for gene delivery: an overview of their evolution depending on routes of administration. Biotechnol J 10(9):1370–1389.  https://doi.org/10.1002/biot.201400841 CrossRefPubMedGoogle Scholar
  4. 4.
    Bondi ML, Craparo EF (2010) Solid lipid nanoparticles for applications in gene therapy: a review of the state of the art. Expert Opin Drug Deliv 7(1):7–18.  https://doi.org/10.1517/17425240903362410 CrossRefPubMedGoogle Scholar
  5. 5.
    Magin-Lachmann C, Kotzamanis G, D’Aiuto L, Cooke H, Huxley C, Wagner E (2004) In vitro and in vivo delivery of intact BAC DNA—comparison of different methods. J Gene Med 6(2):195–209.  https://doi.org/10.1002/jgm.481 CrossRefPubMedGoogle Scholar
  6. 6.
    Karmali PP, Chaudhuri A (2007) Cationic liposomes as non-viral carriers of gene medicines: resolved issues, open questions, and future promises. Med Res Rev 27(5):696–722.  https://doi.org/10.1002/med.20090 CrossRefPubMedGoogle Scholar
  7. 7.
    Braun S (2008) Muscular gene transfer using nonviral vectors. Curr Gene Ther 8(5):391–405CrossRefGoogle Scholar
  8. 8.
    Li S, Ma Z (2001) Nonviral gene therapy. Curr Gene Ther 1(2):201–226CrossRefGoogle Scholar
  9. 9.
    Felgner PL, Gadek TR, Holm M, Roman R, Chan HW, Wenz M, Northrop JP, Ringold GM, Danielsen M (1987) Lipofection: a highly efficient, lipid-mediated DNA-transfection procedure. Proc Natl Acad Sci U S A 84(21):7413–7417CrossRefGoogle Scholar
  10. 10.
    Behr JP (1994) Gene transfer with synthetic cationic amphiphiles: prospects for gene therapy. Bioconjug Chem 5(5):382–389CrossRefGoogle Scholar
  11. 11.
    Boussif O, Lezoualc’h F, Zanta MA, Mergny MD, Scherman D, Demeneix B, Behr JP (1995) A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc Natl Acad Sci U S A 92(16):7297–7301CrossRefGoogle Scholar
  12. 12.
    Wu GY, Wu CH (1987) Receptor-mediated in vitro gene transformation by a soluble DNA carrier system. J Biol Chem 262(10):4429–4432PubMedGoogle Scholar
  13. 13.
    Guo W, Lee RJ (2000) Efficient gene delivery using anionic liposome-complexed polyplexes (LPDII). Biosci Rep 20(5):419–432CrossRefGoogle Scholar
  14. 14.
    Almofti MR, Harashima H, Shinohara Y, Almofti A, Baba Y, Kiwada H (2003) Cationic liposome-mediated gene delivery: biophysical study and mechanism of internalization. Arch Biochem Biophys 410(2):246–253CrossRefGoogle Scholar
  15. 15.
    Kostarelos K, Miller AD (2005) Synthetic, self-assembly ABCD nanoparticles; a structural paradigm for viable synthetic non-viral vectors. Chem Soc Rev 34(11):970–994.  https://doi.org/10.1039/b307062j CrossRefPubMedGoogle Scholar
  16. 16.
    Gomez JP, Pichon C, Midoux P (2013) Ability of plasmid DNA complexed with histidinylated lPEI and lPEI to cross in vitro lung and muscle vascular endothelial barriers. Gene 525(2):182–190.  https://doi.org/10.1016/j.gene.2013.03.055 CrossRefPubMedGoogle Scholar
  17. 17.
    Li S, Tseng WC, Stolz DB, Wu SP, Watkins SC, Huang L (1999) Dynamic changes in the characteristics of cationic lipidic vectors after exposure to mouse serum: implications for intravenous lipofection. Gene Ther 6(4):585–594.  https://doi.org/10.1038/sj.gt.3300865 CrossRefPubMedGoogle Scholar
  18. 18.
    Tseng WC, Jong CM (2003) Improved stability of polycationic vector by dextran-grafted branched polyethylenimine. Biomacromolecules 4(5):1277–1284.  https://doi.org/10.1021/bm034083y CrossRefPubMedGoogle Scholar
  19. 19.
    Plank C, Mechtler K, Szoka FC Jr, Wagner E (1996) Activation of the complement system by synthetic DNA complexes: a potential barrier for intravenous gene delivery. Hum Gene Ther 7(12):1437–1446.  https://doi.org/10.1089/hum.1996.7.12-1437 CrossRefPubMedGoogle Scholar
  20. 20.
    Ishiwata H, Suzuki N, Ando S, Kikuchi H, Kitagawa T (2000) Characteristics and biodistribution of cationic liposomes and their DNA complexes. J Control Release 69(1):139–148CrossRefGoogle Scholar
  21. 21.
    Lee H, Jeong JH, Park TG (2002) PEG grafted polylysine with fusogenic peptide for gene delivery: high transfection efficiency with low cytotoxicity. J Control Release 79(1-3):283–291CrossRefGoogle Scholar
  22. 22.
    Ward CM, Pechar M, Oupicky D, Ulbrich K, Seymour LW (2002) Modification of pLL/DNA complexes with a multivalent hydrophilic polymer permits folate-mediated targeting in vitro and prolonged plasma circulation in vivo. J Gene Med 4(5):536–547.  https://doi.org/10.1002/jgm.296 CrossRefPubMedGoogle Scholar
  23. 23.
    Labat-Moleur F, Steffan AM, Brisson C, Perron H, Feugeas O, Furstenberger P, Oberling F, Brambilla E, Behr JP (1996) An electron microscopy study into the mechanism of gene transfer with lipopolyamines. Gene Ther 3(11):1010–1017PubMedGoogle Scholar
  24. 24.
    Zuhorn IS, Kalicharan R, Hoekstra D (2002) Lipoplex-mediated transfection of mammalian cells occurs through the cholesterol-dependent clathrin-mediated pathway of endocytosis. J Biol Chem 277(20):18021–18028.  https://doi.org/10.1074/jbc.M111257200 CrossRefPubMedGoogle Scholar
  25. 25.
    Conner SD, Schmid SL (2003) Regulated portals of entry into the cell. Nature 422(6927):37–44.  https://doi.org/10.1038/nature01451 CrossRefPubMedGoogle Scholar
  26. 26.
    El-Sayed A, Harashima H (2013) Endocytosis of gene delivery vectors: from clathrin-dependent to lipid raft-mediated endocytosis. Mol Ther 21(6):1118–1130.  https://doi.org/10.1038/mt.2013.54 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Keswani RK, Lazebnik M, Pack DW (2015) Intracellular trafficking of hybrid gene delivery vectors. J Control Release 207:120–130.  https://doi.org/10.1016/j.jconrel.2015.04.015 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Bartsch M, Weeke-Klimp AH, Meijer DK, Scherphof GL, Kamps JA (2005) Cell-specific targeting of lipid-based carriers for ODN and DNA. J Liposome Res 15(1-2):59–92.  https://doi.org/10.1081/LPR-64961 CrossRefPubMedGoogle Scholar
  29. 29.
    Lechardeur D, Sohn KJ, Haardt M, Joshi PB, Monck M, Graham RW, Beatty B, Squire J, O’Brodovich H, Lukacs GL (1999) Metabolic instability of plasmid DNA in the cytosol: a potential barrier to gene transfer. Gene Ther 6(4):482–497.  https://doi.org/10.1038/sj.gt.3300867 CrossRefPubMedGoogle Scholar
  30. 30.
    Zelphati O, Szoka FC Jr (1996) Mechanism of oligonucleotide release from cationic liposomes. Proc Natl Acad Sci U S A 93(21):11493–11498CrossRefGoogle Scholar
  31. 31.
    Zabner J, Fasbender AJ, Moninger T, Poellinger KA, Welsh MJ (1995) Cellular and molecular barriers to gene transfer by a cationic lipid. J Biol Chem 270(32):18997–19007CrossRefGoogle Scholar
  32. 32.
    Wilson GL, Dean BS, Wang G, Dean DA (1999) Nuclear import of plasmid DNA in digitonin-permeabilized cells requires both cytoplasmic factors and specific DNA sequences. J Biol Chem 274(31):22025–22032CrossRefGoogle Scholar
  33. 33.
    Hebert E (2003) Improvement of exogenous DNA nuclear importation by nuclear localization signal-bearing vectors: a promising way for non-viral gene therapy? Biol Cell 95(2):59–68CrossRefGoogle Scholar
  34. 34.
    Simonson OE, Svahn MG, Tornquist E, Lundin KE, Smith CI (2005) Bioplex technology: novel synthetic gene delivery pharmaceutical based on peptides anchored to nucleic acids. Curr Pharm Des 11(28):3671–3680CrossRefGoogle Scholar
  35. 35.
    Liu D, Ren T, Gao X (2003) Cationic transfection lipids. Curr Med Chem 10(14):1307–1315CrossRefGoogle Scholar
  36. 36.
    Pouton CW, Seymour LW (2001) Key issues in non-viral gene delivery. Adv Drug Deliv Rev 46(1-3):187–203CrossRefGoogle Scholar
  37. 37.
    Hudlicka O (2011) Microcirculation in skeletal muscle. Muscles Ligaments Tendons J 1(1):3–11PubMedPubMedCentralGoogle Scholar
  38. 38.
    Nemunaitis G, Jay CM, Maples PB, Gahl WA, Huizing M, Yardeni T, Tong AW, Phadke AP, Pappen BO, Bedell C, Allen H, Hernandez C, Templeton NS, Kuhn J, Senzer N, Nemunaitis J (2011) Hereditary inclusion body myopathy: single patient response to intravenous dosing of GNE gene lipoplex. Hum Gene Ther 22(11):1331–1341.  https://doi.org/10.1089/hum.2010.192 CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Kato N, Nakanishi K, Nemoto K, Morishita R, Kaneda Y, Uenoyama M, Ikeda T, Fujikawa K (2003) Efficient gene transfer from innervated muscle into rat peripheral and central nervous systems using a non-viral haemagglutinating virus of Japan (HVJ)-liposome method. J Neurochem 85(3):810–815CrossRefGoogle Scholar
  40. 40.
    Lopes CD, Goncalves NP, Gomes CP, Saraiva MJ, Pego AP (2017) BDNF gene delivery mediated by neuron-targeted nanoparticles is neuroprotective in peripheral nerve injury. Biomaterials 121:83–96.  https://doi.org/10.1016/j.biomaterials.2016.12.025 CrossRefPubMedGoogle Scholar
  41. 41.
    Qin L, Ding Y, Pahud DR, Chang E, Imperiale MJ, Bromberg JS (1997) Promoter attenuation in gene therapy: interferon-gamma and tumor necrosis factor-alpha inhibit transgene expression. Hum Gene Ther 8(17):2019–2029.  https://doi.org/10.1089/hum.1997.8.17-2019 CrossRefPubMedGoogle Scholar
  42. 42.
    Kwissa M, von Kampen v K, Zurbriggen R, Gluck R, Reimann J, Schirmbeck R (2000) Efficient vaccination by intradermal or intramuscular inoculation of plasmid DNA expressing hepatitis B surface antigen under desmin promoter/enhancer control. Vaccine 18(22):2337–2344CrossRefGoogle Scholar
  43. 43.
    Bartlett RJ, Secore SL, Singer JT, Bodo M, Sharma K, Ricordi C (1996) Long-term expression of a fluorescent reporter gene via direct injection of plasmid vector into mouse skeletal muscle: comparison of human creatine kinase and CMV promoter expression levels in vivo. Cell Transplant 5(3):411–419CrossRefGoogle Scholar
  44. 44.
    Trollet C, Bloquel C, Scherman D, Bigey P (2006) Electrotransfer into skeletal muscle for protein expression. Curr Gene Ther 6(5):561–578CrossRefGoogle Scholar
  45. 45.
    Verthelyi D (2006) Adjuvant properties of CpG oligonucleotides in primates. Methods Mol Med 127:139–158.  https://doi.org/10.1385/1-59745-168-1:139 CrossRefPubMedGoogle Scholar
  46. 46.
    Wolff JA, Malone RW, Williams P, Chong W, Acsadi G, Jani A, Felgner PL (1990) Direct gene transfer into mouse muscle in vivo. Science 247(4949 Pt 1):1465–1468CrossRefGoogle Scholar
  47. 47.
    Wolff JA, Ludtke JJ, Acsadi G, Williams P, Jani A (1992) Long-term persistence of plasmid DNA and foreign gene expression in mouse muscle. Hum Mol Genet 1(6):363–369CrossRefGoogle Scholar
  48. 48.
    Jiao S, Williams P, Berg RK, Hodgeman BA, Liu L, Repetto G, Wolff JA (1992) Direct gene transfer into nonhuman primate myofibers in vivo. Hum Gene Ther 3(1):21–33.  https://doi.org/10.1089/hum.1992.3.1-21 CrossRefPubMedGoogle Scholar
  49. 49.
    Trollet C, Scherman D, Bigey P (2008) Delivery of DNA into muscle for treating systemic diseases: advantages and challenges. Methods Mol Biol 423:199–214.  https://doi.org/10.1007/978-1-59745-194-9_14 CrossRefPubMedGoogle Scholar
  50. 50.
    Gaffney MM, Hynes SO, Barry F, O’Brien T (2007) Cardiovascular gene therapy: current status and therapeutic potential. Br J Pharmacol 152(2):175–188.  https://doi.org/10.1038/sj.bjp.0707315 CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Hammer A, Steiner S (2013) Gene therapy for therapeutic angiogenesis in peripheral arterial disease - a systematic review and meta-analysis of randomized, controlled trials. Vasa 42(5):331–339.  https://doi.org/10.1024/0301-1526/a000298 CrossRefPubMedGoogle Scholar
  52. 52.
    Tsai SW, Tung YT, Chen HL, Yang SH, Liu CY, Lu M, Pai HJ, Lin CC, Chen CM (2016) Myostatin propeptide gene delivery by gene gun ameliorates muscle atrophy in a rat model of botulinum toxin-induced nerve denervation. Life Sci 146:15–23.  https://doi.org/10.1016/j.lfs.2015.12.056 CrossRefPubMedGoogle Scholar
  53. 53.
    Olivan S, Calvo AC, Rando A, Herrando-Grabulosa M, Manzano R, Zaragoza P, Tizzano EF, Aquilera J, Osta R (2016) Neuroprotective effect of non-viral gene therapy treatment based on tetanus toxin C-fragment in a severe mouse model of spinal muscular atrophy. Front Mol Neurosci 9:76.  https://doi.org/10.3389/fnmol.2016.00076 CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Vitadello M, Schiaffino MV, Picard A, Scarpa M, Schiaffino S (1994) Gene transfer in regenerating muscle. Hum Gene Ther 5(1):11–18.  https://doi.org/10.1089/hum.1994.5.1-11 CrossRefPubMedGoogle Scholar
  55. 55.
    Favard C, Dean DS, Rols MP (2007) Electrotransfer as a non viral method of gene delivery. Curr Gene Ther 7(1):67–77CrossRefGoogle Scholar
  56. 56.
    Yamashita Y, Shimada M, Tachibana K, Harimoto N, Tsujita E, Shirabe K, Miyazaki J, Sugimachi K (2002) In vivo gene transfer into muscle via electro-sonoporation. Hum Gene Ther 13(17):2079–2084.  https://doi.org/10.1089/10430340260395929 CrossRefPubMedGoogle Scholar
  57. 57.
    Wang Z, Troilo PJ, Wang X, Griffiths TG, Pacchione SJ, Barnum AB, Harper LB, Pauley CJ, Niu Z, Denisova L, Follmer TT, Rizzuto G, Ciliberto G, Fattori E, Monica NL, Manam S, Ledwith BJ (2004) Detection of integration of plasmid DNA into host genomic DNA following intramuscular injection and electroporation. Gene Ther 11(8):711–721.  https://doi.org/10.1038/sj.gt.3302213 CrossRefPubMedGoogle Scholar
  58. 58.
    Wang S, Zhang C, Zhang L, Li J, Huang Z, Lu S (2008) The relative immunogenicity of DNA vaccines delivered by the intramuscular needle injection, electroporation and gene gun methods. Vaccine 26(17):2100–2110.  https://doi.org/10.1016/j.vaccine.2008.02.033 CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Budker V, Zhang G, Danko I, Williams P, Wolff J (1998) The efficient expression of intravascularly delivered DNA in rat muscle. Gene Ther 5(2):272–276.  https://doi.org/10.1038/sj.gt.3300572 CrossRefPubMedGoogle Scholar
  60. 60.
    Hagstrom JE (2003) Plasmid-based gene delivery to target tissues in vivo: the intravascular approach. Curr Opin Mol Ther 5(4):338–344PubMedGoogle Scholar
  61. 61.
    Budker V, Budker T, Zhang G, Subbotin V, Loomis A, Wolff JA (2000) Hypothesis: naked plasmid DNA is taken up by cells in vivo by a receptor-mediated process. J Gene Med 2(2):76–88.  https://doi.org/10.1002/(SICI)1521-2254(200003/04)2:2<76::AID-JGM97>3.0.CO;2-4 CrossRefPubMedGoogle Scholar
  62. 62.
    Toumi H, Hegge J, Subbotin V, Noble M, Herweijer H, Best TM, Hagstrom JE (2006) Rapid intravascular injection into limb skeletal muscle: a damage assessment study. Mol Ther 13(1):229–236.  https://doi.org/10.1016/j.ymthe.2005.07.699 CrossRefPubMedGoogle Scholar
  63. 63.
    Vigen KK, Hegge JO, Zhang G, Mukherjee R, Braun S, Grist TM, Wolff JA (2007) Magnetic resonance imaging-monitored plasmid DNA delivery in primate limb muscle. Hum Gene Ther 18(3):257–268.  https://doi.org/10.1089/hum.2006.115 CrossRefPubMedGoogle Scholar
  64. 64.
    Duan D (2008) Myodys, a full-length dystrophin plasmid vector for Duchenne and Becker muscular dystrophy gene therapy. Curr Opin Mol Ther 10(1):86–94PubMedGoogle Scholar
  65. 65.
    Sebestyen MG, Hegge JO, Noble MA, Lewis DL, Herweijer H, Wolff JA (2007) Progress toward a nonviral gene therapy protocol for the treatment of anemia. Hum Gene Ther 18(3):269–285.  https://doi.org/10.1089/hum.2006.186 CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Romero NB, Braun S, Benveniste O, Leturcq F, Hogrel JY, Morris GE, Barois A, Eymard B, Payan C, Ortega V, Boch AL, Lejean L, Thioudellet C, Mourot B, Escot C, Choquel A, Recan D, Kaplan JC, Dickson G, Klatzmann D, Molinier-Frenckel V, Guillet JG, Squiban P, Herson S, Fardeau M (2004) Phase I study of dystrophin plasmid-based gene therapy in Duchenne/Becker muscular dystrophy. Hum Gene Ther 15(11):1065–1076.  https://doi.org/10.1089/hum.2004.15.1065 CrossRefPubMedGoogle Scholar
  67. 67.
    Fan Z, Kocis K, Valley R, Howard JF Jr, Chopra M, Chen Y, An H, Lin W, Muenzer J, Powers W (2015) High-pressure transvenous perfusion of the upper extremity in human muscular dystrophy: a safety study with 0.9% saline. Hum Gene Ther 26(9):614–621.  https://doi.org/10.1089/hum.2015.023 CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Hegge JO, Wooddell CI, Zhang G, Hagstrom JE, Braun S, Huss T, Sebestyen MG, Emborg ME, Wolff JA (2010) Evaluation of hydrodynamic limb vein injections in nonhuman primates. Hum Gene Ther 21(7):829–842.  https://doi.org/10.1089/hum.2009.172 CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Wooddell CI, Hegge JO, Zhang G, Sebestyen MG, Noble M, Griffin JB, Pfannes LV, Herweijer H, Hagstrom JE, Braun S, Huss T, Wolff JA (2011) Dose response in rodents and nonhuman primates after hydrodynamic limb vein delivery of naked plasmid DNA. Hum Gene Ther 22(7):889–903.  https://doi.org/10.1089/hum.2010.160 CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Zhang G, Wooddell CI, Hegge JO, Griffin JB, Huss T, Braun S, Wolff JA (2010) Functional efficacy of dystrophin expression from plasmids delivered to mdx mice by hydrodynamic limb vein injection. Hum Gene Ther 21(2):221–237.  https://doi.org/10.1089/hum.2009.133 CrossRefPubMedGoogle Scholar
  71. 71.
    Braun S (2013) Gene-based therapies of neuromuscular disorders: an update and the pivotal role of patient organizations in their discovery and implementation. J Gene Med 15(11-12):397–413.  https://doi.org/10.1002/jgm.2747 CrossRefPubMedGoogle Scholar
  72. 72.
    Stevenson FK, Ottensmeier CH, Johnson P, Zhu D, Buchan SL, McCann KJ, Roddick JS, King AT, McNicholl F, Savelyeva N, Rice J (2004) DNA vaccines to attack cancer. Proc Natl Acad Sci U S A 101(Suppl 2):14646–14652.  https://doi.org/10.1073/pnas.0404896101 CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Berry SE (2015) Concise review: mesoangioblast and mesenchymal stem cell therapy for muscular dystrophy: progress, challenges, and future directions. Stem Cells Transl Med 4(1):91–98.  https://doi.org/10.5966/sctm.2014-0060 CrossRefPubMedGoogle Scholar
  74. 74.
    Briggs D, Morgan JE (2013) Recent progress in satellite cell/myoblast engraftment—relevance for therapy. FEBS J 280(17):4281–4293.  https://doi.org/10.1111/febs.12273 CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Catanzaro AT, Roederer M, Koup RA, Bailer RT, Enama ME, Nason MC, Martin JE, Rucker S, Andrews CA, Gomez PL, Mascola JR, Nabel GJ, Graham BS, Team VRCS (2007) Phase I clinical evaluation of a six-plasmid multiclade HIV-1 DNA candidate vaccine. Vaccine 25(20):4085–4092.  https://doi.org/10.1016/j.vaccine.2007.02.050 CrossRefPubMedGoogle Scholar
  76. 76.
    Cebere I, Dorrell L, McShane H, Simmons A, McCormack S, Schmidt C, Smith C, Brooks M, Roberts JE, Darwin SC, Fast PE, Conlon C, Rowland-Jones S, McMichael AJ, Hanke T (2006) Phase I clinical trial safety of DNA- and modified virus Ankara-vectored human immunodeficiency virus type 1 (HIV-1) vaccines administered alone and in a prime-boost regime to healthy HIV-1-uninfected volunteers. Vaccine 24(4):417–425.  https://doi.org/10.1016/j.vaccine.2005.08.041 CrossRefPubMedGoogle Scholar
  77. 77.
    Chong SY, Egan MA, Kutzler MA, Megati S, Masood A, Roopchard V, Garcia-Hand D, Montefiori DC, Quiroz J, Rosati M, Schadeck EB, Boyer JD, Pavlakis GN, Weiner DB, Sidhu M, Eldridge JH, Israel ZR (2007) Comparative ability of plasmid IL-12 and IL-15 to enhance cellular and humoral immune responses elicited by a SIVgag plasmid DNA vaccine and alter disease progression following SHIV(89.6P) challenge in rhesus macaques. Vaccine 25(26):4967–4982.  https://doi.org/10.1016/j.vaccine.2006.11.070 CrossRefPubMedGoogle Scholar
  78. 78.
    Cox KS, Clair JH, Prokop MT, Sykes KJ, Dubey SA, Shiver JW, Robertson MN, Casimiro DR (2008) DNA gag/adenovirus type 5 (Ad5) gag and Ad5 gag/Ad5 gag vaccines induce distinct T-cell response profiles. J Virol 82(16):8161–8171.  https://doi.org/10.1128/JVI.00620-08 CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Eller MA, Eller LA, Opollo MS, Ouma BJ, Oballah PO, Galley L, Karnasuta C, Kim SR, Robb ML, Michael NL, Kibuuka H, Wabwire-Mangen F, Graham BS, Birx DL, de Souza MS, Cox JH (2007) Induction of HIV-specific functional immune responses by a multiclade HIV-1 DNA vaccine candidate in healthy Ugandans. Vaccine 25(45):7737–7742.  https://doi.org/10.1016/j.vaccine.2007.08.056 CrossRefPubMedGoogle Scholar
  80. 80.
    Goonetilleke N, Moore S, Dally L, Winstone N, Cebere I, Mahmoud A, Pinheiro S, Gillespie G, Brown D, Loach V, Roberts J, Guimaraes-Walker A, Hayes P, Loughran K, Smith C, De Bont J, Verlinde C, Vooijs D, Schmidt C, Boaz M, Gilmour J, Fast P, Dorrell L, Hanke T, McMichael AJ (2006) Induction of multifunctional human immunodeficiency virus type 1 (HIV-1)-specific T cells capable of proliferation in healthy subjects by using a prime-boost regimen of DNA- and modified vaccinia virus Ankara-vectored vaccines expressing HIV-1 Gag coupled to CD8+ T-cell epitopes. J Virol 80(10):4717–4728.  https://doi.org/10.1128/JVI.80.10.4717-4728.2006 CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Gorse GJ, Baden LR, Wecker M, Newman MJ, Ferrari G, Weinhold KJ, Livingston BD, Villafana TL, Li H, Noonan E, Russell ND, Network HIVVT (2008) Safety and immunogenicity of cytotoxic T-lymphocyte poly-epitope, DNA plasmid (EP HIV-1090) vaccine in healthy, human immunodeficiency virus type 1 (HIV-1)-uninfected adults. Vaccine 26(2):215–223.  https://doi.org/10.1016/j.vaccine.2007.10.061 CrossRefPubMedGoogle Scholar
  82. 82.
    Graham BS, Koup RA, Roederer M, Bailer RT, Enama ME, Moodie Z, Martin JE, McCluskey MM, Chakrabarti BK, Lamoreaux L, Andrews CA, Gomez PL, Mascola JR, Nabel GJ, Vaccine Research Center 004 Study Team (2006) Phase 1 safety and immunogenicity evaluation of a multiclade HIV-1 DNA candidate vaccine. J Infect Dis 194(12):1650–1660.  https://doi.org/10.1086/509259 CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Hanke T, Goonetilleke N, McMichael AJ, Dorrell L (2007) Clinical experience with plasmid DNA- and modified vaccinia virus Ankara-vectored human immunodeficiency virus type 1 clade A vaccine focusing on T-cell induction. J Gen Virol 88(Pt 1):1–12.  https://doi.org/10.1099/vir.0.82493-0 CrossRefPubMedGoogle Scholar
  84. 84.
    Kelleher AD, Puls RL, Bebbington M, Boyle D, Ffrench R, Kent SJ, Kippax S, Purcell DF, Thomson S, Wand H, Cooper DA, Emery S (2006) A randomized, placebo-controlled phase I trial of DNA prime, recombinant fowlpox virus boost prophylactic vaccine for HIV-1. AIDS 20(2):294–297.  https://doi.org/10.1097/01.aids.0000199819.40079.e9 CrossRefPubMedGoogle Scholar
  85. 85.
    MacGregor RR, Boyer JD, Ugen KE, Lacy KE, Gluckman SJ, Bagarazzi ML, Chattergoon MA, Baine Y, Higgins TJ, Ciccarelli RB, Coney LR, Ginsberg RS, Weiner DB (1998) First human trial of a DNA-based vaccine for treatment of human immunodeficiency virus type 1 infection: safety and host response. J Infect Dis 178(1):92–100CrossRefGoogle Scholar
  86. 86.
    McCormack S, Stohr W, Barber T, Bart PA, Harari A, Moog C, Ciuffreda D, Cellerai C, Cowen M, Gamboni R, Burnet S, Legg K, Brodnicki E, Wolf H, Wagner R, Heeney J, Frachette MJ, Tartaglia J, Babiker A, Pantaleo G, Weber J (2008) EV02: a phase I trial to compare the safety and immunogenicity of HIV DNA-C prime-NYVAC-C boost to NYVAC-C alone. Vaccine 26(25):3162–3174.  https://doi.org/10.1016/j.vaccine.2008.02.072 CrossRefPubMedGoogle Scholar
  87. 87.
    Mulligan MJ, Russell ND, Celum C, Kahn J, Noonan E, Montefiori DC, Ferrari G, Weinhold KJ, Smith JM, Amara RR, Robinson HL, Network NNDHVT (2006) Excellent safety and tolerability of the human immunodeficiency virus type 1 pGA2/JS2 plasmid DNA priming vector vaccine in HIV type 1 uninfected adults. AIDS Res Hum Retrovir 22(7):678–683.  https://doi.org/10.1089/aid.2006.22.678 CrossRefPubMedGoogle Scholar
  88. 88.
    Mwau M, Cebere I, Sutton J, Chikoti P, Winstone N, Wee EG, Beattie T, Chen YH, Dorrell L, McShane H, Schmidt C, Brooks M, Patel S, Roberts J, Conlon C, Rowland-Jones SL, Bwayo JJ, McMichael AJ, Hanke T (2004) A human immunodeficiency virus 1 (HIV-1) clade A vaccine in clinical trials: stimulation of HIV-specific T-cell responses by DNA and recombinant modified vaccinia virus Ankara (MVA) vaccines in humans. J Gen Virol 85(Pt 4):911–919.  https://doi.org/10.1099/vir.0.19701-0 CrossRefPubMedGoogle Scholar
  89. 89.
    Tavel JA, Martin JE, Kelly GG, Enama ME, Shen JM, Gomez PL, Andrews CA, Koup RA, Bailer RT, Stein JA, Roederer M, Nabel GJ, Graham BS (2007) Safety and immunogenicity of a Gag-Pol candidate HIV-1 DNA vaccine administered by a needle-free device in HIV-1-seronegative subjects. J Acquir Immune Defic Syndr 44(5):601–605.  https://doi.org/10.1097/QAI.0b013e3180417cb6 CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Wang S, Kennedy JS, West K, Montefiori DC, Coley S, Lawrence J, Shen S, Green S, Rothman AL, Ennis FA, Arthos J, Pal R, Markham P, Lu S (2008) Cross-subtype antibody and cellular immune responses induced by a polyvalent DNA prime-protein boost HIV-1 vaccine in healthy human volunteers. Vaccine 26(8):1098–1110.  https://doi.org/10.1016/j.vaccine.2007.12.024 CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Wilson CC, Newman MJ, Livingston BD, MaWhinney S, Forster JE, Scott J, Schooley RT, Benson CA (2008) Clinical phase 1 testing of the safety and immunogenicity of an epitope-based DNA vaccine in human immunodeficiency virus type 1-infected subjects receiving highly active antiretroviral therapy. Clin Vaccine Immunol 15(6):986–994.  https://doi.org/10.1128/CVI.00492-07 CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Goilav C, Prinsen H, Piot P (1990) Protective efficacy of a recombinant DNA vaccine against hepatitis B in male homosexuals: results at 36 months. Vaccine 8(Suppl):S50–S52; discussion S60-52CrossRefGoogle Scholar
  93. 93.
    Mancini-Bourgine M, Fontaine H, Scott-Algara D, Pol S, Brechot C, Michel ML (2004) Induction or expansion of T-cell responses by a hepatitis B DNA vaccine administered to chronic HBV carriers. Hepatology 40(4):874–882.  https://doi.org/10.1002/hep.20408 CrossRefPubMedGoogle Scholar
  94. 94.
    Latimer B, Toporovski R, Yan J, Pankhong P, Morrow MP, Khan AS, Sardesai NY, Welles SL, Jacobson JM, Weiner DB, Kutzler MA (2014) Strong HCV NS3/4a, NS4b, NS5a, NS5b-specific cellular immune responses induced in Rhesus macaques by a novel HCV genotype 1a/1b consensus DNA vaccine. Hum Vaccin Immunother 10(8):2357–2365.  https://doi.org/10.4161/hv.29590 CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Martin JE, Sullivan NJ, Enama ME, Gordon IJ, Roederer M, Koup RA, Bailer RT, Chakrabarti BK, Bailey MA, Gomez PL, Andrews CA, Moodie Z, Gu L, Stein JA, Nabel GJ, Graham BS (2006) A DNA vaccine for Ebola virus is safe and immunogenic in a phase I clinical trial. Clin Vaccine Immunol 13(11):1267–1277.  https://doi.org/10.1128/CVI.00162-06 CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    Sullivan NJ, Sanchez A, Rollin PE, Yang ZY, Nabel GJ (2000) Development of a preventive vaccine for Ebola virus infection in primates. Nature 408(6812):605–609.  https://doi.org/10.1038/35046108 CrossRefPubMedGoogle Scholar
  97. 97.
    Sheets RL, Stein J, Manetz TS, Andrews C, Bailer R, Rathmann J, Gomez PL (2006) Toxicological safety evaluation of DNA plasmid vaccines against HIV-1, Ebola, Severe Acute Respiratory Syndrome, or West Nile virus is similar despite differing plasmid backbones or gene-inserts. Toxicol Sci 91(2):620–630.  https://doi.org/10.1093/toxsci/kfj170 CrossRefPubMedPubMedCentralGoogle Scholar
  98. 98.
    Cinatl J Jr, Michaelis M, Doerr HW (2007) The threat of avian influenza A (H5N1). Part IV: development of vaccines. Med Microbiol Immunol 196(4):213–225.  https://doi.org/10.1007/s00430-007-0052-3 CrossRefPubMedGoogle Scholar
  99. 99.
    Trimble CL, Morrow MP, Kraynyak KA, Shen X, Dallas M, Yan J, Edwards L, Parker RL, Denny L, Giffear M, Brown AS, Marcozzi-Pierce K, Shah D, Slager AM, Sylvester AJ, Khan A, Broderick KE, Juba RJ, Herring TA, Boyer J, Lee J, Sardesai NY, Weiner DB, Bagarazzi ML (2015) Safety, efficacy, and immunogenicity of VGX-3100, a therapeutic synthetic DNA vaccine targeting human papillomavirus 16 and 18 E6 and E7 proteins for cervical intraepithelial neoplasia 2/3: a randomised, double-blind, placebo-controlled phase 2b trial. Lancet 386(10008):2078–2088.  https://doi.org/10.1016/S0140-6736(15)00239-1 CrossRefPubMedPubMedCentralGoogle Scholar
  100. 100.
    Mori T, Kanda Y, Takenaka K, Okamoto S, Kato J, Kanda J, Yoshimoto G, Gondo H, Doi S, Inaba M, Kodera Y (2017) Safety of ASP0113, a cytomegalovirus DNA vaccine, in recipients undergoing allogeneic hematopoietic cell transplantation: an open-label phase 2 trial. Int J Hematol 105(2):206–212.  https://doi.org/10.1007/s12185-016-2110-3 CrossRefPubMedGoogle Scholar
  101. 101.
    Smith LR, Wloch MK, Chaplin JA, Gerber M, Rolland AP (2013) Clinical development of a cytomegalovirus DNA vaccine: from product concept to pivotal phase 3 trial. Vaccines (Basel) 1(4):398–414.  https://doi.org/10.3390/vaccines1040398 CrossRefGoogle Scholar
  102. 102.
    Wloch MK, Smith LR, Boutsaboualoy S, Reyes L, Han C, Kehler J, Smith HD, Selk L, Nakamura R, Brown JM, Marbury T, Wald A, Rolland A, Kaslow D, Evans T, Boeckh M (2008) Safety and immunogenicity of a bivalent cytomegalovirus DNA vaccine in healthy adult subjects. J Infect Dis 197(12):1634–1642.  https://doi.org/10.1086/588385 CrossRefPubMedPubMedCentralGoogle Scholar
  103. 103.
    Le TP, Coonan KM, Hedstrom RC, Charoenvit Y, Sedegah M, Epstein JE, Kumar S, Wang R, Doolan DL, Maguire JD, Parker SE, Hobart P, Norman J, Hoffman SL (2000) Safety, tolerability and humoral immune responses after intramuscular administration of a malaria DNA vaccine to healthy adult volunteers. Vaccine 18(18):1893–1901CrossRefGoogle Scholar
  104. 104.
    Richie TL, Charoenvit Y, Wang R, Epstein JE, Hedstrom RC, Kumar S, Luke TC, Freilich DA, Aguiar JC, Sacci JB Jr, Sedegah M, Nosek RA Jr, De La Vega P, Berzins MP, Majam VF, Abot EN, Ganeshan H, Richie NO, Banania JG, Baraceros MF, Geter TG, Mere R, Bebris L, Limbach K, Hickey BW, Lanar DE, Ng J, Shi M, Hobart PM, Norman JA, Soisson LA, Hollingdale MR, Rogers WO, Doolan DL, Hoffman SL (2012) Clinical trial in healthy malaria-naive adults to evaluate the safety, tolerability, immunogenicity and efficacy of MuStDO5, a five-gene, sporozoite/hepatic stage Plasmodium falciparum DNA vaccine combined with escalating dose human GM-CSF DNA. Hum Vaccin Immunother 8(11):1564–1584.  https://doi.org/10.4161/hv.22129 CrossRefPubMedPubMedCentralGoogle Scholar
  105. 105.
    Hawkins WG, Gold JS, Dyall R, Wolchok JD, Hoos A, Bowne WB, Srinivasan R, Houghton AN, Lewis JJ (2000) Immunization with DNA coding for gp100 results in CD4 T-cell independent antitumor immunity. Surgery 128(2):273–280.  https://doi.org/10.1067/msy.2000.107421 CrossRefPubMedGoogle Scholar
  106. 106.
    Rosenberg SA, Yang JC, Sherry RM, Hwu P, Topalian SL, Schwartzentruber DJ, Restifo NP, Haworth LR, Seipp CA, Freezer LJ, Morton KE, Mavroukakis SA, White DE (2003) Inability to immunize patients with metastatic melanoma using plasmid DNA encoding the gp100 melanoma-melanocyte antigen. Hum Gene Ther 14(8):709–714.  https://doi.org/10.1089/104303403765255110 CrossRefPubMedPubMedCentralGoogle Scholar
  107. 107.
    Spanggaard I, Snoj M, Cavalcanti A, Bouquet C, Sersa G, Robert C, Cemazar M, Dam E, Vasseur B, Attali P, Mir LM, Gehl J (2013) Gene electrotransfer of plasmid antiangiogenic metargidin peptide (AMEP) in disseminated melanoma: safety and efficacy results of a phase I first-in-man study. Hum Gene Ther Clin Dev 24(3):99–107.  https://doi.org/10.1089/humc.2012.240 CrossRefPubMedGoogle Scholar
  108. 108.
    Triozzi PL, Aldrich W, Allen KO, Carlisle RR, LoBuglio AF, Conry RM (2005) Phase I study of a plasmid DNA vaccine encoding MART-1 in patients with resected melanoma at risk for relapse. J Immunother 28(4):382–388CrossRefGoogle Scholar
  109. 109.
    Wolchok JD, Yuan J, Houghton AN, Gallardo HF, Rasalan TS, Wang J, Zhang Y, Ranganathan R, Chapman PB, Krown SE, Livingston PO, Heywood M, Riviere I, Panageas KS, Terzulli SL, Perales MA (2007) Safety and immunogenicity of tyrosinase DNA vaccines in patients with melanoma. Mol Ther 15(11):2044–2050.  https://doi.org/10.1038/sj.mt.6300290 CrossRefPubMedGoogle Scholar
  110. 110.
    Viehl CT, Frey DM, Phommaly C, Chen T, Fleming TP, Gillanders WE, Eberlein TJ, Goedegebuure PS (2008) Generation of mammaglobin-A-specific CD4 T cells and identification of candidate CD4 epitopes for breast cancer vaccine strategies. Breast Cancer Res Treat 109(2):305–314.  https://doi.org/10.1007/s10549-007-9657-x CrossRefPubMedGoogle Scholar
  111. 111.
    Timmerman JM, Singh G, Hermanson G, Hobart P, Czerwinski DK, Taidi B, Rajapaksa R, Caspar CB, Van Beckhoven A, Levy R (2002) Immunogenicity of a plasmid DNA vaccine encoding chimeric idiotype in patients with B-cell lymphoma. Cancer Res 62(20):5845–5852PubMedGoogle Scholar
  112. 112.
    Smorlesi A, Papalini F, Pierpaoli S, Provinciali M (2008) HER2/neu DNA vaccination for breast tumors. Methods Mol Biol 423:473–485.  https://doi.org/10.1007/978-1-59745-194-9_37 CrossRefPubMedGoogle Scholar
  113. 113.
    Pavlenko M, Roos AK, Lundqvist A, Palmborg A, Miller AM, Ozenci V, Bergman B, Egevad L, Hellstrom M, Kiessling R, Masucci G, Wersall P, Nilsson S, Pisa P (2004) A phase I trial of DNA vaccination with a plasmid expressing prostate-specific antigen in patients with hormone-refractory prostate cancer. Br J Cancer 91(4):688–694.  https://doi.org/10.1038/sj.bjc.6602019 CrossRefPubMedPubMedCentralGoogle Scholar
  114. 114.
    Tjelle TE, Rabussay D, Ottensmeier C, Mathiesen I, Kjeken R (2008) Taking electroporation-based delivery of DNA vaccination into humans: a generic clinical protocol. Methods Mol Biol 423:497–507.  https://doi.org/10.1007/978-1-59745-194-9_39 CrossRefPubMedGoogle Scholar
  115. 115.
    Wolchok JD, Gregor PD, Nordquist LT, Slovin SF, Scher HI (2003) DNA vaccines: an active immunization strategy for prostate cancer. Semin Oncol 30(5):659–666CrossRefGoogle Scholar
  116. 116.
    Rebar EJ (2004) Development of pro-angiogenic engineered transcription factors for the treatment of cardiovascular disease. Expert Opin Investig Drugs 13(7):829–839.  https://doi.org/10.1517/13543784.13.7.829 CrossRefPubMedGoogle Scholar
  117. 117.
    Nikol S, Baumgartner I, Van Belle E, Diehm C, Visona A, Capogrossi MC, Ferreira-Maldent N, Gallino A, Graham Wyatt M, Dinesh Wijesinghe L, Fusari M, Stephan D, Emmerich J, Pompilio G, Vermassen F, Pham E, Grek V, Coleman M, Meyer F (2008) Therapeutic angiogenesis with intramuscular NV1FGF improves amputation-free survival in patients with critical limb ischemia. Mol Ther 16(5):972–978.  https://doi.org/10.1038/mt.2008.33 CrossRefPubMedGoogle Scholar
  118. 118.
    Baumgartner I, Pieczek A, Manor O, Blair R, Kearney M, Walsh K, Isner JM (1998) Constitutive expression of phVEGF165 after intramuscular gene transfer promotes collateral vessel development in patients with critical limb ischemia. Circulation 97(12):1114–1123CrossRefGoogle Scholar
  119. 119.
    Belch J, Hiatt WR, Baumgartner I, Driver IV, Nikol S, Norgren L, Van Belle E, TAMARIS Committees and Investigators (2011) Effect of fibroblast growth factor NV1FGF on amputation and death: a randomised placebo-controlled trial of gene therapy in critical limb ischaemia. Lancet 377(9781):1929–1937.  https://doi.org/10.1016/S0140-6736(11)60394-2 CrossRefPubMedGoogle Scholar
  120. 120.
    Comerota AJ, Throm RC, Miller KA, Henry T, Chronos N, Laird J, Sequeira R, Kent CK, Bacchetta M, Goldman C, Salenius JP, Schmieder FA, Pilsudski R (2002) Naked plasmid DNA encoding fibroblast growth factor type 1 for the treatment of end-stage unreconstructible lower extremity ischemia: preliminary results of a phase I trial. J Vasc Surg 35(5):930–936CrossRefGoogle Scholar
  121. 121.
    Cui S, Guo L, Li X, Gu Y, Fu J, Dong L, Song H, Chen X, Lu Y, Hu C, Xiao F, Zhu D, Wu Z, Zhang Q (2015) Clinical safety and preliminary efficacy of plasmid pUDK-HGF expressing human hepatocyte growth factor (HGF) in patients with critical limb ischemia. Eur J Vasc Endovasc Surg 50(4):494–501.  https://doi.org/10.1016/j.ejvs.2015.05.007 CrossRefPubMedGoogle Scholar
  122. 122.
    Freedman SB, Vale P, Kalka C, Kearney M, Pieczek A, Symes J, Losordo D, Isner JM (2002) Plasma vascular endothelial growth factor (VEGF) levels after intramuscular and intramyocardial gene transfer of VEGF-1 plasmid DNA. Hum Gene Ther 13(13):1595–1603.  https://doi.org/10.1089/10430340260201680 CrossRefPubMedGoogle Scholar
  123. 123.
    Kim HJ, Jang SY, Park JI, Byun J, Kim DI, Do YS, Kim JM, Kim S, Kim BM, Kim WB, Kim DK (2004) Vascular endothelial growth factor-induced angiogenic gene therapy in patients with peripheral artery disease. Exp Mol Med 36(4):336–344.  https://doi.org/10.1038/emm.2004.44 CrossRefPubMedGoogle Scholar
  124. 124.
    Kusumanto YH, van Weel V, Mulder NH, Smit AJ, van den Dungen JJ, Hooymans JM, Sluiter WJ, Tio RA, Quax PH, Gans RO, Dullaart RP, Hospers GA (2006) Treatment with intramuscular vascular endothelial growth factor gene compared with placebo for patients with diabetes mellitus and critical limb ischemia: a double-blind randomized trial. Hum Gene Ther 17(6):683–691.  https://doi.org/10.1089/hum.2006.17.683 CrossRefPubMedGoogle Scholar
  125. 125.
    Lazarous DF, Unger EF, Epstein SE, Stine A, Arevalo JL, Chew EY, Quyyumi AA (2000) Basic fibroblast growth factor in patients with intermittent claudication: results of a phase I trial. J Am Coll Cardiol 36(4):1239–1244CrossRefGoogle Scholar
  126. 126.
    Powell RJ, Simons M, Mendelsohn FO, Daniel G, Henry TD, Koga M, Morishita R, Annex BH (2008) Results of a double-blind, placebo-controlled study to assess the safety of intramuscular injection of hepatocyte growth factor plasmid to improve limb perfusion in patients with critical limb ischemia. Circulation 118(1):58–65.  https://doi.org/10.1161/CIRCULATIONAHA.107.727347 CrossRefPubMedGoogle Scholar
  127. 127.
    Shah PB, Losordo DW (2005) Non-viral vectors for gene therapy: clinical trials in cardiovascular disease. Adv Genet 54:339–361.  https://doi.org/10.1016/S0065-2660(05)54014-8 CrossRefPubMedGoogle Scholar
  128. 128.
    Shyu KG, Chang H, Wang BW, Kuan P (2003) Intramuscular vascular endothelial growth factor gene therapy in patients with chronic critical leg ischemia. Am J Med 114(2):85–92CrossRefGoogle Scholar
  129. 129.
    Grossman PM, Mendelsohn F, Henry TD, Hermiller JB, Litt M, Saucedo JF, Weiss RJ, Kandzari DE, Kleiman N, Anderson RD, Gottlieb D, Karlsberg R, Snell J, Rocha-Singh K (2007) Results from a phase II multicenter, double-blind placebo-controlled study of Del-1 (VLTS-589) for intermittent claudication in subjects with peripheral arterial disease. Am Heart J 153(5):874–880.  https://doi.org/10.1016/j.ahj.2007.01.038 CrossRefPubMedGoogle Scholar
  130. 130.
    Rajagopalan S, Olin JW, Young S, Erikson M, Grossman PM, Mendelsohn FO, Regensteiner JG, Hiatt WR, Annex BH (2004) Design of the Del-1 for therapeutic angiogenesis trial (DELTA-1), a phase II multicenter, double-blind, placebo-controlled trial of VLTS-589 in subjects with intermittent claudication secondary to peripheral arterial disease. Hum Gene Ther 15(6):619–624.  https://doi.org/10.1089/104303404323142060 CrossRefPubMedGoogle Scholar
  131. 131.
    Isner JM, Baumgartner I, Rauh G, Schainfeld R, Blair R, Manor O, Razvi S, Symes JF (1998) Treatment of thromboangiitis obliterans (Buerger’s disease) by intramuscular gene transfer of vascular endothelial growth factor: preliminary clinical results. J Vasc Surg 28(6):964–973; discussion 973-965CrossRefGoogle Scholar
  132. 132.
    Makino H, Aoki M, Hashiya N, Yamasaki K, Azuma J, Sawa Y, Kaneda Y, Ogihara T, Morishita R (2012) Long-term follow-up evaluation of results from clinical trial using hepatocyte growth factor gene to treat severe peripheral arterial disease. Arterioscler Thromb Vasc Biol 32(10):2503–2509.  https://doi.org/10.1161/ATVBAHA.111.244632 CrossRefPubMedGoogle Scholar
  133. 133.
    Bar-Or A, Vollmer T, Antel J, Arnold DL, Bodner CA, Campagnolo D, Gianettoni J, Jalili F, Kachuck N, Lapierre Y, Niino M, Oger J, Price M, Rhodes S, Robinson WH, Shi FD, Utz PJ, Valone F, Weiner L, Steinman L, Garren H (2007) Induction of antigen-specific tolerance in multiple sclerosis after immunization with DNA encoding myelin basic protein in a randomized, placebo-controlled phase 1/2 trial. Arch Neurol 64(10):1407–1415.  https://doi.org/10.1001/archneur.64.10.nct70002 CrossRefPubMedGoogle Scholar
  134. 134.
    Kessler JA, Smith AG, Cha BS, Choi SH, Wymer J, Shaibani A, Ajroud-Driss S, Vinik A, Group VD-IS (2015) Double-blind, placebo-controlled study of HGF gene therapy in diabetic neuropathy. Ann Clin Transl Neurol 2(5):465–478.  https://doi.org/10.1002/acn3.186 CrossRefPubMedPubMedCentralGoogle Scholar
  135. 135.
    Ropper AH, Gorson KC, Gooch CL, Weinberg DH, Pieczek A, Ware JH, Kershen J, Rogers A, Simovic D, Schratzberger P, Kirchmair R, Losordo D (2009) Vascular endothelial growth factor gene transfer for diabetic polyneuropathy: a randomized, double-blinded trial. Ann Neurol 65(4):386–393.  https://doi.org/10.1002/ana.21675 CrossRefPubMedPubMedCentralGoogle Scholar
  136. 136.
    Simovic D, Isner JM, Ropper AH, Pieczek A, Weinberg DH (2001) Improvement in chronic ischemic neuropathy after intramuscular phVEGF165 gene transfer in patients with critical limb ischemia. Arch Neurol 58(5):761–768CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.AFM-TelethonEvry CedexFrance

Personalised recommendations