Advertisement

Gene Therapy Clinical Trials for Duchenne and Limb Girdle Muscular Dystrophies: Lessons Learned

  • Jerry R. MendellEmail author
  • Louise R. Rodino-Klapac
  • Christopher Walker
Chapter

Abstract

This chapter reviews the discovery of the Duchenne muscular dystrophy (DMD) gene, early attempts at plasmid-mediated DMD gene delivery and its limitations for clinical efficacy, and modifying the DMD cDNA to circumvent the obstacle of packaging in adeno-associated virus (AAV). The unfortunate events of the Jesse Gelsinger death are briefly discussed. The essence of the chapter is the review of the first clinical experience of DMD gene therapy using a mini-dystrophin and the challenges for immune responses. The potential way forward where possible to avoid these problems is fully described. In addition to DMD, our experience in limb girdle muscular dystrophy 2D (LGMD2D), alpha-sarcoglycan, gene therapy in clinical trial is also described. Success was achieved with long-term gene expression following intramuscular delivery, but again we encountered an obstacle for delivery related to pre-existing immunity to AAV. The lessons learned from these clinical trials provide a template and a path for additional clinical trials for muscular dystrophies.

Keywords

DMD Limb girdle muscular dystrophy LGMD Gene therapy clinical trials Immune response 

Notes

Acknowledgments

This work was supported by the National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health 1U54NS055958, NIH Grant1R01 AI060388, Parent Project Muscular Dystrophy, the Muscular Dystrophy Association, and Jesse’s Journey and performed under FDA IND# BB-IND 13434.

References

  1. 1.
    Koenig M, Hoffman EP, Bertelson CJ, Monaco AP, Feener C, Kunkel LM (1987) Complete cloning of the Duchenne muscular dystrophy (DMD) cDNA and preliminary genomic organization of the DMD gene in normal and affected individuals. Cell 50(3):509–517CrossRefGoogle Scholar
  2. 2.
    Mendell JR, Goemans N, Lowes LP, Alfano LN, Berry K, Shao J, Kaye EM, Mercuri E, Eteplirsen Study G, Telethon Foundation DMDIN (2016) Longitudinal effect of eteplirsen versus historical control on ambulation in Duchenne muscular dystrophy. Ann Neurol 79(2):257–271.  https://doi.org/10.1002/ana.24555 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Pennisi E (2013) The CRISPR craze. Science 341(6148):833–836.  https://doi.org/10.1126/science.341.6148.833 CrossRefPubMedGoogle Scholar
  4. 4.
    Long C, Amoasii L, Mireault AA, McAnally JR, Li H, Sanchez-Ortiz E, Bhattacharyya S, Shelton JM, Bassel-Duby R, Olson EN (2016) Postnatal genome editing partially restores dystrophin expression in a mouse model of muscular dystrophy. Science 351(6271):400–403.  https://doi.org/10.1126/science.aad5725 CrossRefPubMedGoogle Scholar
  5. 5.
    Nelson CE, Hakim CH, Ousterout DG, Thakore PI, Moreb EA, Castellanos Rivera RM, Madhavan S, Pan X, Ran FA, Yan WX, Asokan A, Zhang F, Duan D, Gersbach CA (2016) In vivo genome editing improves muscle function in a mouse model of Duchenne muscular dystrophy. Science 351(6271):403–407.  https://doi.org/10.1126/science.aad5143 CrossRefPubMedGoogle Scholar
  6. 6.
    Tabebordbar M, Zhu K, Cheng JKW, Chew WL, Widrick JJ, Yan WX, Maesner C, Wu EY, Xiao R, Ran FA, Cong L, Zhang F, Vandenberghe LH, Church GM, Wagers AJ (2016) In vivo gene editing in dystrophic mouse muscle and muscle stem cells. Science 351(6271):407–411.  https://doi.org/10.1126/science.aad5177 CrossRefPubMedGoogle Scholar
  7. 7.
    Mendell JR, Rodino-Klapac LR (2016) Duchenne muscular dystrophy: CRISPR/Cas9 treatment. Cell Res 26(5):513–514.  https://doi.org/10.1038/cr.2016.28 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Wolff JA, Malone RW, Williams P, Chong W, Acsadi G, Jani A, Felgner PL (1990) Direct gene transfer into mouse muscle in vivo. Science 247(4949 Pt 1):1465–1468CrossRefGoogle Scholar
  9. 9.
    Braun S (2008) Muscular gene transfer using nonviral vectors. Curr Gene Ther 8(5):391–405CrossRefGoogle Scholar
  10. 10.
    Duan D (2008) Myodys, a full-length dystrophin plasmid vector for Duchenne and Becker muscular dystrophy gene therapy. Curr Opin Mol Ther 10(1):86–94PubMedGoogle Scholar
  11. 11.
    Danko I, Fritz JD, Latendresse JS, Herweijer H, Schultz E, Wolff JA (1993) Dystrophin expression improves myofiber survival in mdx muscle following intramuscular plasmid DNA injection. Hum Mol Genet 2(12):2055–2061CrossRefGoogle Scholar
  12. 12.
    Hartikka J, Sukhu L, Buchner C, Hazard D, Bozoukova V, Margalith M, Nishioka WK, Wheeler CJ, Manthorp M, Sawdey M (2001) Electroporation-facilitated delivery of plasmid DNA in skeletal muscle: plasmid dependence of muscle damage and effect of poloxamer 188. Mol Ther 4(5):407–415.  https://doi.org/10.1006/mthe.2001.0483 CrossRefPubMedGoogle Scholar
  13. 13.
    Wolff JA, Ludtke JJ, Acsadi G, Williams P, Jani A (1992) Long-term persistence of plasmid DNA and foreign gene expression in mouse muscle. Hum Mol Genet 1(6):363–369CrossRefGoogle Scholar
  14. 14.
    Liang KW, Nishikawa M, Liu F, Sun B, Ye Q, Huang L (2004) Restoration of dystrophin expression in mdx mice by intravascular injection of naked DNA containing full-length dystrophin cDNA. Gene Ther 11(11):901–908.  https://doi.org/10.1038/sj.gt.3302239 CrossRefPubMedGoogle Scholar
  15. 15.
    Zhang G, Budker V, Williams P, Subbotin V, Wolff JA (2001) Efficient expression of naked dna delivered intraarterially to limb muscles of nonhuman primates. Hum Gene Ther 12(4):427–438.  https://doi.org/10.1089/10430340150504046 CrossRefPubMedGoogle Scholar
  16. 16.
    Zhang G, Ludtke JJ, Thioudellet C, Kleinpeter P, Antoniou M, Herweijer H, Braun S, Wolff JA (2004) Intraarterial delivery of naked plasmid DNA expressing full-length mouse dystrophin in the mdx mouse model of duchenne muscular dystrophy. Hum Gene Ther 15(8):770–782.  https://doi.org/10.1089/1043034041648408 CrossRefPubMedGoogle Scholar
  17. 17.
    Zhang G, Wooddell CI, Hegge JO, Griffin JB, Huss T, Braun S, Wolff JA (2010) Functional efficacy of dystrophin expression from plasmids delivered to mdx mice by hydrodynamic limb vein injection. Hum Gene Ther 21(2):221–237.  https://doi.org/10.1089/hum.2009.133 CrossRefPubMedGoogle Scholar
  18. 18.
    Pichavant C, Chapdelaine P, Cerri DG, Bizario JC, Tremblay JP (2010) Electrotransfer of the full-length dog dystrophin into mouse and dystrophic dog muscles. Hum Gene Ther 21(11):1591–1601.  https://doi.org/10.1089/hum.2010.024 CrossRefPubMedGoogle Scholar
  19. 19.
    Mendell JR, Campbell K, Rodino-Klapac L, Sahenk Z, Shilling C, Lewis S, Bowles D, Gray S, Li C, Galloway G, Malik V, Coley B, Clark KR, Li J, Xiao X, Samulski J, McPhee SW, Samulski RJ, Walker CM (2010) Dystrophin immunity in Duchenne’s muscular dystrophy. N Engl J Med 363(15):1429–1437.  https://doi.org/10.1056/NEJMoa1000228 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Romero NB, Braun S, Benveniste O, Leturcq F, Hogrel JY, Morris GE, Barois A, Eymard B, Payan C, Ortega V, Boch AL, Lejean L, Thioudellet C, Mourot B, Escot C, Choquel A, Recan D, Kaplan JC, Dickson G, Klatzmann D, Molinier-Frenckel V, Guillet JG, Squiban P, Herson S, Fardeau M (2004) Phase I study of dystrophin plasmid-based gene therapy in Duchenne/Becker muscular dystrophy. Hum Gene Ther 15(11):1065–1076.  https://doi.org/10.1089/hum.2004.15.1065 CrossRefPubMedGoogle Scholar
  21. 21.
    DelloRusso C, Scott JM, Hartigan-O’Connor D, Salvatori G, Barjot C, Robinson AS, Crawford RW, Brooks SV, Chamberlain JS (2002) Functional correction of adult mdx mouse muscle using gutted adenoviral vectors expressing full-length dystrophin. Proc Natl Acad Sci U S A 99(20):12979–12984.  https://doi.org/10.1073/pnas.202300099 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Somia N, Verma IM (2000) Gene therapy: trials and tribulations. Nat Rev Genet 1(2):91–99.  https://doi.org/10.1038/35038533 CrossRefPubMedGoogle Scholar
  23. 23.
    Assessment of adenoviral vector safety and toxicity: report of the National Institutes of Health Recombinant DNA Advisory Committee (2002). Hum Gene Ther 13(1):3–13.  https://doi.org/10.1089/10430340152712629
  24. 24.
    Marshall E (1999) Gene therapy death prompts review of adenovirus vector. Science 286(5448):2244–2245CrossRefGoogle Scholar
  25. 25.
    Thomas CE, Ehrhardt A, Kay MA (2003) Progress and problems with the use of viral vectors for gene therapy. Nat Rev Genet 4(5):346–358.  https://doi.org/10.1038/nrg1066 CrossRefPubMedGoogle Scholar
  26. 26.
    Bostanci A (2002) Gene therapy. Blood test flags agent in death of Penn subject. Science 295(5555):604–605.  https://doi.org/10.1126/science.295.5555.604b CrossRefPubMedGoogle Scholar
  27. 27.
    Harper SQ, Hauser MA, DelloRusso C, Duan D, Crawford RW, Phelps SF, Harper HA, Robinson AS, Engelhardt JF, Brooks SV, Chamberlain JS (2002) Modular flexibility of dystrophin: implications for gene therapy of Duchenne muscular dystrophy. Nat Med 8(3):253–261.  https://doi.org/10.1038/nm0302-253 CrossRefPubMedGoogle Scholar
  28. 28.
    Crawford GE, Faulkner JA, Crosbie RH, Campbell KP, Froehner SC, Chamberlain JS (2000) Assembly of the dystrophin-associated protein complex does not require the dystrophin COOH-terminal domain. J Cell Biol 150(6):1399–1410CrossRefGoogle Scholar
  29. 29.
    Phelps SF, Hauser MA, Cole NM, Rafael JA, Hinkle RT, Faulkner JA, Chamberlain JS (1995) Expression of full-length and truncated dystrophin mini-genes in transgenic mdx mice. Hum Mol Genet 4(8):1251–1258CrossRefGoogle Scholar
  30. 30.
    Rafael JA, Cox GA, Corrado K, Jung D, Campbell KP, Chamberlain JS (1996) Forced expression of dystrophin deletion constructs reveals structure-function correlations. J Cell Biol 134(1):93–102CrossRefGoogle Scholar
  31. 31.
    Kozak M (1986) Point mutations define a sequence flanking the AUG initiator codon that modulates translation by eukaryotic ribosomes. Cell 44(2):283–292CrossRefGoogle Scholar
  32. 32.
    Banks GB, Judge LM, Allen JM, Chamberlain JS (2010) The polyproline site in hinge 2 influences the functional capacity of truncated dystrophins. PLoS Genet 6(5):e1000958.  https://doi.org/10.1371/journal.pgen.1000958 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Wang B, Li J, Xiao X (2000) Adeno-associated virus vector carrying human minidystrophin genes effectively ameliorates muscular dystrophy in mdx mouse model. Proc Natl Acad Sci U S A 97(25):13714–13719.  https://doi.org/10.1073/pnas.240335297 CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Watchko J, O’Day T, Wang B, Zhou L, Tang Y, Li J, Xiao X (2002) Adeno-associated virus vector-mediated minidystrophin gene therapy improves dystrophic muscle contractile function in mdx mice. Hum Gene Ther 13(12):1451–1460.  https://doi.org/10.1089/10430340260185085 CrossRefPubMedGoogle Scholar
  35. 35.
    Winnard AV, Mendell JR, Prior TW, Florence J, Burghes AH (1995) Frameshift deletions of exons 3-7 and revertant fibers in Duchenne muscular dystrophy: mechanisms of dystrophin production. Am J Hum Genet 56(1):158–166PubMedPubMedCentralGoogle Scholar
  36. 36.
    Morris G, Man N, Sewry CA (2011) Monitoring Duchenne muscular dystrophy gene therapy with epitope-specific monoclonal antibodies. Methods Mol Biol 709:39–61.  https://doi.org/10.1007/978-1-61737-982-6_3 CrossRefPubMedGoogle Scholar
  37. 37.
    Mendell JR, Rodino-Klapac LR, Rosales XQ, Coley BD, Galloway G, Lewis S, Malik V, Shilling C, Byrne BJ, Conlon T, Campbell KJ, Bremer WG, Taylor LE, Flanigan KM, Gastier-Foster JM, Astbury C, Kota J, Sahenk Z, Walker CM, Clark KR (2010) Sustained alpha-sarcoglycan gene expression after gene transfer in limb-girdle muscular dystrophy, type 2D. Ann Neurol 68(5):629–638.  https://doi.org/10.1002/ana.22251 CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Mendell JR, Rodino-Klapac LR, Rosales-Quintero X, Kota J, Coley BD, Galloway G, Craenen JM, Lewis S, Malik V, Shilling C, Byrne BJ, Conlon T, Campbell KJ, Bremer WG, Viollet L, Walker CM, Sahenk Z, Clark KR (2009) Limb-girdle muscular dystrophy type 2D gene therapy restores alpha-sarcoglycan and associated proteins. Ann Neurol 66(3):290–297.  https://doi.org/10.1002/ana.21732 CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Dressman D, Araishi K, Imamura M, Sasaoka T, Liu LA, Engvall E, Hoffman EP (2002) Delivery of alpha- and beta-sarcoglycan by recombinant adeno-associated virus: efficient rescue of muscle, but differential toxicity. Hum Gene Ther 13(13):1631–1646.  https://doi.org/10.1089/10430340260201725 CrossRefPubMedGoogle Scholar
  40. 40.
    Rodino-Klapac LR, Lee JS, Mulligan RC, Clark KR, Mendell JR (2008) Lack of toxicity of alpha-sarcoglycan overexpression supports clinical gene transfer trial in LGMD2D. Neurology 71(4):240–247.  https://doi.org/10.1212/01.wnl.0000306309.85301.e2 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Jerry R. Mendell
    • 1
    • 2
    Email author
  • Louise R. Rodino-Klapac
    • 1
    • 3
  • Christopher Walker
    • 1
  1. 1.Department of Pediatrics, Nationwide Children’s Hospital and Research InstituteThe Ohio State UniversityColumbusUSA
  2. 2.Department of Neurology, Nationwide Children’s Hospital and Research InstituteThe Ohio State UniversityColumbusUSA
  3. 3.Vice President Gene TherapySarepta TherapeuticsColumbusUSA

Personalised recommendations