Advertisement

Muscle MRI as an Endpoint in Clinical Trials

  • Dirk FischerEmail author
  • Ulrike Bonati
  • Mike P. Wattjes
Chapter

Abstract

In the last decade, there has been substantial progress in the genetic characterization and classification of inherited muscle disorders. In addition to clinical assessment, clinical neurophysiology, and the diagnostic gold standard of histopathology including immunohistochemistry, muscle imaging, and particularly magnetic resonance imaging (MRI), has increasingly been used in the diagnostic work-up of inherited muscle disease. Novel quantitative muscle MRI techniques have been developed in order to characterize and quantify the severity and pattern of muscle involvement in clinical routine as well as in therapeutic trials. This chapter provides a comprehensive overview of current MRI techniques in inherited muscle diseases with special emphasis on the use of quantitative muscle MRI in clinical therapeutic trials.

Keywords

Muscle imaging Quantitative muscle magnetic resonance imaging Muscular dystrophy Clinical trials 

References

  1. 1.
    Wattjes MP, Kley RA, Fischer D (2010) Neuromuscular imaging in inherited muscle diseases. Eur Radiol 20:2447–2460CrossRefGoogle Scholar
  2. 2.
    Ten Dam L, van der Kooi AJ, Verhamme C, Wattjes MP, de Visser M (2016) Muscle imaging in inherited and acquired muscle diseases. Eur J Neurol 23:688–703CrossRefGoogle Scholar
  3. 3.
    Wattjes MP, Fischer D (2013) Neuromuscular imaging. Springer, New YorkCrossRefGoogle Scholar
  4. 4.
    Quijano-Roy S, Avila-Smirnow D, Carlier RY (2012) Whole body muscle MRI protocol: pattern recognition in early onset NM disorders. Neuromuscul Disord 22(Suppl 2):S68–S84CrossRefGoogle Scholar
  5. 5.
    Kornblum C, Lutterbey G, Bogdanow M et al (2006) Distinct neuromuscular phenotypes in myotonic dystrophy types 1 and 2: a whole body highfield MRI study. J Neurol 253:753–761CrossRefGoogle Scholar
  6. 6.
    Eggers H, Bornert P (2014) Chemical shift encoding-based water-fat separation methods. J Magn Reson Imaging 40:251–268CrossRefGoogle Scholar
  7. 7.
    Janiczek RL, Gambarota G, Sinclair CD et al (2011) Simultaneous T(2) and lipid quantitation using IDEAL-CPMG. Magn Reson Med 66:1293–1302CrossRefGoogle Scholar
  8. 8.
    Quijano-Roy S, Carlier RY, Fischer D (2011) Muscle imaging in congenital myopathies. Semin Pediatr Neurol 18:221–229CrossRefGoogle Scholar
  9. 9.
    Hankiewicz K, Carlier RY, Lazaro L et al (2015) Whole-body muscle magnetic resonance imaging in SEPN1-related myopathy shows a homogeneous and recognizable pattern. Muscle Nerve 52:728–735CrossRefGoogle Scholar
  10. 10.
    Diaz-Manera J, Alejaldre A, Gonzalez L et al (2016) Muscle imaging in muscle dystrophies produced by mutations in the EMD and LMNA genes. Neuromuscul Disord 26:33–40CrossRefGoogle Scholar
  11. 11.
    Gomez-Andres D, Dabaj I, Mompoint D et al (2016) Pediatric laminopathies: Whole-body magnetic resonance imaging fingerprint and comparison with Sepn1 myopathy. Muscle Nerve 54:192–202CrossRefGoogle Scholar
  12. 12.
    Gerevini S, Scarlato M, Maggi L et al (2016) Muscle MRI findings in facioscapulohumeral muscular dystrophy. Eur Radiol 26:693–705CrossRefGoogle Scholar
  13. 13.
    Tasca G, Monforte M, Ottaviani P et al (2016) Magnetic resonance imaging in a large cohort of facioscapulohumeral muscular dystrophy patients: pattern refinement and implications for clinical trials. Ann Neurol 79(5):854–864CrossRefGoogle Scholar
  14. 14.
    Finlayson S, Morrow JM, Rodriguez Cruz PM et al (2016) Muscle magnetic resonance imaging in congenital myasthenic syndromes. Muscle Nerve 54:211–219CrossRefGoogle Scholar
  15. 15.
    Kesper K, Kornblum C, Reimann J, Lutterbey G, Schroder R, Wattjes MP (2009) Pattern of skeletal muscle involvement in primary dysferlinopathies: a whole-body 3.0-T magnetic resonance imaging study. Acta Neurol Scand 120:111–118CrossRefGoogle Scholar
  16. 16.
    Morrow JM, Sinclair CD, Fischmann A et al (2014) Reproducibility, and age, body-weight and gender dependency of candidate skeletal muscle MRI outcome measures in healthy volunteers. Eur Radiol 24:1610–1620CrossRefGoogle Scholar
  17. 17.
    Fischmann A, Morrow JM, Sinclair CD et al (2013) Improved anatomical reproducibility in quantitative lower-limb muscle MRI. J Magn Reson Imaging 39(4):1033–1038CrossRefGoogle Scholar
  18. 18.
    Dixon WT (1984) Simple proton spectroscopic imaging. Radiology 153:189–194CrossRefGoogle Scholar
  19. 19.
    Peterson P, Romu T, Brorson H, Dahlqvist Leinhard O, Mansson S (2016) Fat quantification in skeletal muscle using multigradient-echo imaging: Comparison of fat and water references. J Magn Reson Imaging 43:203–212CrossRefGoogle Scholar
  20. 20.
    Hooijmans MT, Damon BM, Froeling M et al (2015) Evaluation of skeletal muscle DTI in patients with duchenne muscular dystrophy. NMR Biomed 28:1589–1597CrossRefGoogle Scholar
  21. 21.
    Wokke BH, van den Bergen JC, Hooijmans MT, Verschuuren JJ, Niks EH, Kan HE (2015) T2 relaxation times are increased in skeletal muscle of DMD but not BMD patients. Muscle Nerve 53(1):38–43CrossRefGoogle Scholar
  22. 22.
    Weber MA, Nagel AM, Marschar AM et al (2016) 7-T (35)Cl and (23)Na MR imaging for detection of mutation-dependent alterations in muscular edema and fat fraction with sodium and chloride concentrations in muscular periodic paralyses. Radiology 281:326CrossRefGoogle Scholar
  23. 23.
    Kornblum C, Lutterbey GG, Czermin B et al (2010) Whole-body high-field MRI shows no skeletal muscle degeneration in young patients with recessive myotonia congenita. Acta Neurol Scand 121:131–135CrossRefGoogle Scholar
  24. 24.
    Antoni G, Lubberink M, Estrada S et al (2013) In vivo visualization of amyloid deposits in the heart with 11C-PIB and PET. J Nucl Med 54:213–220CrossRefGoogle Scholar
  25. 25.
    Maetzler W, Reimold M, Schittenhelm J et al (2011) Increased [11C]PIB-PET levels in inclusion body myositis are indicative of amyloid beta deposition. J Neurol Neurosurg Psychiatry 82:1060–1062CrossRefGoogle Scholar
  26. 26.
    Morrow JM, Sinclair CD, Fischmann A et al (2016) MRI biomarker assessment of neuromuscular disease progression: a prospective observational cohort study. Lancet Neurol 15:65–77CrossRefGoogle Scholar
  27. 27.
    Fischmann A, Hafner P, Fasler S et al (2012) Quantitative MRI can detect subclinical disease progression in muscular dystrophy. J Neurol 259:1648–1654CrossRefGoogle Scholar
  28. 28.
    Bonati U, Hafner P, Schadelin S et al (2015) Quantitative muscle MRI: a powerful surrogate outcome measure in Duchenne muscular dystrophy. Neuromuscul Disord 25:679–685CrossRefGoogle Scholar
  29. 29.
    Forbes SC, Willcocks RJ, Triplett WT et al (2014) Magnetic resonance imaging and spectroscopy assessment of lower extremity skeletal muscles in boys with Duchenne muscular dystrophy: a multicenter cross sectional study. PLoS One 9:e106435CrossRefGoogle Scholar
  30. 30.
    Fischmann A, Hafner P, Gloor M et al (2013) Quantitative MRI and loss of free ambulation in Duchenne muscular dystrophy. J Neurol 260:969–974CrossRefGoogle Scholar
  31. 31.
    Wokke BH, van den Bergen JC, Versluis MJ et al (2014) Quantitative MRI and strength measurements in the assessment of muscle quality in Duchenne muscular dystrophy. Neuromuscul Disord 24:409–416CrossRefGoogle Scholar
  32. 32.
    Bonati U, Schmid M, Hafner P et al (2015) Longitudinal 2-point dixon muscle magnetic resonance imaging in becker muscular dystrophy. Muscle Nerve 51:918–921CrossRefGoogle Scholar
  33. 33.
    Fischer D, Hafner P, Rubino D et al (2016) The 6-minute walk test, motor function measure and quantitative thigh muscle MRI in Becker muscular dystrophy: A cross-sectional study. Neuromuscul Disord 26:414–422CrossRefGoogle Scholar
  34. 34.
    Arpan I, Willcocks RJ, Forbes SC et al (2014) Examination of effects of corticosteroids on skeletal muscles of boys with DMD using MRI and MRS. Neurology 83:974–980CrossRefGoogle Scholar
  35. 35.
    Willcocks RJ, Arpan IA, Forbes SC et al (2014) Longitudinal measurements of MRI-T2 in boys with Duchenne muscular dystrophy: effects of age and disease progression. Neuromuscul Disord 24:393–401CrossRefGoogle Scholar
  36. 36.
    Hafner P, Bonati U, Erne B et al (2016) Improved muscle function in Duchenne muscular dystrophy through L-arginine and metformin: an investigator-initiated, open-label, single-center, proof-of-concept-study. PLoS One 11:e0147634CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Dirk Fischer
    • 1
    • 2
    Email author
  • Ulrike Bonati
    • 1
    • 2
  • Mike P. Wattjes
    • 3
  1. 1.Division of NeuropaediatricsUniversity Children’s Hospital Basel, University of BaselBaselSwitzerland
  2. 2.Department of NeurologyUniversity Hospital Basel, University of BaselBaselSwitzerland
  3. 3.Department of Diagnostic and Interventional NeuroradiologyHannover Medical SchoolHannoverGermany

Personalised recommendations