Muscle Stem Cell Biology and Implications in Gene Therapy

  • Terence PartridgeEmail author


As the most abundant tissue in the body, skeletal muscle is a challenging target for the would-be gene therapist, particularly in the context of a severe disease such as Duchenne muscular dystrophy (DMD), where the bulk of tissue is simultaneously being destroyed and regenerated. Such instability poses the problem of maintaining any potential therapeutic expression construct or genetically corrected nuclear information but offers the compensation of the prospect of using the repair mechanism itself as a vector for genetic material. The best-attested myogenic stem cell is the skeletal muscle satellite cell, a Pax7+ve cell, sandwiched between the muscle fibre plasmalemma and the overlying basement membrane. However other cell types capable of myogenesis have been identified, lying outside the muscle basement membrane and, in the dormant state, not expressing Pax7; their place in muscle development and maintenance has yet to be definitively established. Two major unresolved problems for the strategy of direct intramuscular transplantation of muscle precursor cells are the massive necrotic loss of such cells when grafted into muscle and their poor migration within the recipient muscles. The main alternative approach involves grafting cells derived from pericytes or CD133-expressing cells isolated from muscle, which are shown to be distributable via the blood to widespread muscles where they extravasate, adopt a myogenic phenotype and repair diseased and damaged muscle fibres. This approach is subject to the problems that the cells are incompletely characterized, and their property of being distributable via the vasculature has not been widely reproduced.


Satellite cell Muscle precursor cell Stem cell Myoblast transplantation Myogenesis 


  1. 1.
    Maehle AH (2011) Ambiguous cells: the emergence of the stem cell concept in the nineteenth and twentieth centuries. Notes Rec R Soc Lond 65(4):359–378CrossRefGoogle Scholar
  2. 2.
    Whitmore GF, Stanners CP, Till JE, Gulyas S (1961) Nucleic acid synthesis and the division cycle in x-irradiated L-strain mouse cells. Biochim Biophys Acta 47:66–77CrossRefGoogle Scholar
  3. 3.
    Till JE, McCulloch EA (1961) A direct measurement of the radiation sensitivity of normal mouse bone marrow cells. Radiat Res 14:213–222CrossRefGoogle Scholar
  4. 4.
    Banks-Schlegel S, Green H (1980) Formation of epidermis by serially cultivated human epidermal cells transplanted as an epithelium to athymic mice. Transplantation 29(4):308–313CrossRefGoogle Scholar
  5. 5.
    Green H, Kehinde O, Thomas J (1979) Growth of cultured human epidermal cells into multiple epithelia suitable for grafting. Proc Natl Acad Sci U S A 76(11):5665–5668CrossRefGoogle Scholar
  6. 6.
    Lander AD (2009) The ‘stem cell’ concept: is it holding us back? J Biol 8(8):70. CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Lander AD, Kimble J, Clevers H, Fuchs E, Montarras D, Buckingham M, Calof AL, Trumpp A, Oskarsson T (2012) What does the concept of the stem cell niche really mean today? BMC Biol 10:19. CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Mauro A (1961) Satellite cell of skeletal muscle fibers. J Biophys Biochem Cytol 9:493–495CrossRefGoogle Scholar
  9. 9.
    Katz B (1961) The terminations of the afferent nerve fibre in the muscle spindle of the frog. Philos Trans R Soc Lond Ser B Biol Sci 243:221–240Google Scholar
  10. 10.
    Stockdale FE (2008) Myogenesis - the early years. In: Schiaffino S, Partridge TA (eds) Skeletal muscle repair and regeneration, Advances in muscle research, vol 3. Springer, Dordrecht, pp 1–17CrossRefGoogle Scholar
  11. 11.
    Seale P, Sabourin LA, Girgis-Gabardo A, Mansouri A, Gruss P, Rudnicki MA (2000) Pax7 is required for the specification of myogenic satellite cells. Cell 102:777–786CrossRefGoogle Scholar
  12. 12.
    von Maltzahn J, Jones AE, Parks RJ, Rudnicki MA (2013) Pax7 is critical for the normal function of satellite cells in adult skeletal muscle. Proc Natl Acad Sci U S A 110(41):16474–16479. CrossRefGoogle Scholar
  13. 13.
    Gunther S, Kim J, Kostin S, Lepper C, Fan CM, Braun T (2013) Myf5-positive satellite cells contribute to Pax7-dependent long-term maintenance of adult muscle stem cells. Cell Stem Cell 13(5):590–601. CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Mitchell KJ, Pannerec A, Cadot B, Parlakian A, Besson V, Gomes ER, Marazzi G, Sassoon DA (2010) Identification and characterization of a non-satellite cell muscle resident progenitor during postnatal development. Nat Cell Biol 12(3):257–266. CrossRefPubMedGoogle Scholar
  15. 15.
    Dellavalle A, Maroli G, Covarello D, Azzoni E, Innocenzi A, Perani L, Antonini S, Sambasivan R, Brunelli S, Tajbakhsh S, Cossu G (2011) Pericytes resident in postnatal skeletal muscle differentiate into muscle fibres and generate satellite cells. Nat Commun 2:499. CrossRefPubMedGoogle Scholar
  16. 16.
    Torrente Y, Belicchi M, Sampaolesi M, Pisati F, Meregalli M, D’Antona G, Tonlorenzi R, Porretti L, Gavina M, Mamchaoui K, Pellegrino MA, Furling D, Mouly V, Butler-Browne GS, Bottinelli R, Cossu G, Bresolin N (2004) Human circulating AC133(+) stem cells restore dystrophin expression and ameliorate function in dystrophic skeletal muscle. J Clin Invest 114(2):182–195. CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Negroni E, Riederer I, Chaouch S, Belicchi M, Razini P, Di Santo J, Torrente Y, Butler-Browne GS, Mouly V (2009) In vivo myogenic potential of human CD133+ muscle-derived stem cells: a quantitative study. Mol Ther 17(10):1771–1778. CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Liu N, Garry GA, Li S, Bezprozvannaya S, Sanchez-Ortiz E, Chen B, Shelton JM, Jaichander P, Bassel-Duby R, Olson EN (2017) A Twist2-dependent progenitor cell contributes to adult skeletal muscle. Nat Cell Biol 19(3):202–213. CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Lepper C, Partridge TA, Fan CM (2011) An absolute requirement for Pax7-positive satellite cells in acute injury-induced skeletal muscle regeneration. Development 138(17):3639–3646. CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Sambasivan R, Gayraud-Morel B, Dumas G, Cimper C, Paisant S, Kelly RG, Tajbakhsh S (2009) Distinct regulatory cascades govern extraocular and pharyngeal arch muscle progenitor cell fates. Dev Cell 16(6):810–821. CrossRefPubMedGoogle Scholar
  21. 21.
    Murphy MM, Lawson JA, Mathew SJ, Hutcheson DA, Kardon G (2011) Satellite cells, connective tissue fibroblasts and their interactions are crucial for muscle regeneration. Development 138(17):3625–3637. CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Stitelman DH, Brazelton TR, Endo M, Bora A, Traas J, Zoltick PW, Flake AW (2015) Life-long transgene expression in skeletal muscle without transduction of satellite cells following embryonic myogenic progenitor transduction by lentivirus administered in utero. Stem Cells Dev 24(16):1878–1887. CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Stuelsatz P, Shearer A, Li Y, Muir LA, Ieronimakis N, Shen QW, Kirillova I, Yablonka-Reuveni Z (2015) Extraocular muscle satellite cells are high performance myo-engines retaining efficient regenerative capacity in dystrophin deficiency. Dev Biol 397(1):31–44. CrossRefPubMedGoogle Scholar
  24. 24.
    Hoh JF, Hughes S (1988) Myogenic and neurogenic regulation of myosin gene expression in cat jaw-closing muscles regenerating in fast and slow limb muscle beds. J Muscle Res Cell Motil 9(1):59–72CrossRefGoogle Scholar
  25. 25.
    Morgan JE, Watt DJ, Sloper JC, Partridge TA (1988) Partial correction of an inherited biochemical defect of skeletal muscle by grafts of normal muscle precursor cells. J Neurol Sci 86:137–147CrossRefGoogle Scholar
  26. 26.
    Morgan JE, Watt DJ (1993) Myoblast transplantation in inherited myopathies. In: Partridge TA (ed) Molecular and cell biology of muscular dystrophy, Molecular and cell biology of human diseases, vol 3. Chapman & Hall, London, pp 303–331CrossRefGoogle Scholar
  27. 27.
    Morgan JE, Moore SE, Walsh FS, Partridge TA (1992) Formation of skeletal muscle in vivo from the mouse C2 cell line. J Cell Sci 102(Pt 4):779–787PubMedGoogle Scholar
  28. 28.
    Huard J, Bouchard JP, Roy R, Labrecque C, Dansereau G, Lemieux B, Tremblay JP (1991) Myoblast transplantation produced dystrophin-positive muscle fibres in a 16-year-old patient with Duchenne muscular dystrophy. Clin Sci (Lond) 81(2):287–288CrossRefGoogle Scholar
  29. 29.
    Huard J, Labrecque C, Dansereau G, Robitaille L, Tremblay JP (1991) Dystrophin expression in myotubes formed by the fusion of normal and dystrophic myoblasts. Muscle Nerve 14(2):178–182. CrossRefPubMedGoogle Scholar
  30. 30.
    Labrecque C, Bouchard JP, Malouin F, Roy R, Huard J, Tremblay JP (1991) Myoblasts transplantation in Duchenne muscular-dystrophy. Med Sci 7(8):821–829Google Scholar
  31. 31.
    Huard J, Bouchard JP, Roy R, Malouin F, Dansereau G, Labrecque C, Albert N, Richards CL, Lemieux B, Tremblay JP (1992) Human myoblast transplantation: preliminary results of 4 cases. Muscle Nerve 15(5):550–560. CrossRefPubMedGoogle Scholar
  32. 32.
    Griggs RC, Karpati G (eds) (1990) Myoblast transfer therapy. Plenum Press, New YorkGoogle Scholar
  33. 33.
    Karpati G, Pouliot Y, Zubrzycka-Gaarn E, Carpenter S, Ray PN, Worton RG, Holland P (1989) Dystrophin is expressed in mdx skeletal muscle fibers after normal myoblast implantation. Am J Pathol 135(1):27–32PubMedPubMedCentralGoogle Scholar
  34. 34.
    Karpati G, Pouilot Y, Carpenter S, Holland P (1989) Implantation of nondystrophic allogenic myoblasts into dystrophic muscles of mdx mice produces “mosaic” fibres of normal microscopic phenotype. In: Kedes L, Stockdale FE (eds) Cellular and molecular biology of muscle development. Alan R. Liss, New York, pp 973–985Google Scholar
  35. 35.
    Partridge TA, Morgan JE, Coulton GR, Hoffman EP, Kunkel LM (1989) Conversion of mdx myofibres from dystrophin-negative to -positive by injection of normal myoblasts. Nature 337(6203):176–179. CrossRefPubMedGoogle Scholar
  36. 36.
    Sherwood RI, Wagers AJ (2006) Harnessing the potential of myogenic satellite cells. Trends Mol Med 12(5):189–192. CrossRefPubMedGoogle Scholar
  37. 37.
    Cerletti M, Jurga S, Witczak CA, Hirshman MF, Shadrach JL, Goodyear LJ, Wagers AJ (2008) Highly efficient, functional engraftment of skeletal muscle stem cells in dystrophic muscles. Cell 134(1):37–47CrossRefGoogle Scholar
  38. 38.
    Irintchev A, Zweyer M, Wernig A (1995) Cellular and molecular reactions in mouse muscles after myoblast implantation. J Neurocytol 24:320–321CrossRefGoogle Scholar
  39. 39.
    Wernig A, Irintchev A, Lange G (1995) Functional effects of myoblast implantation into histoincompatible mice with or without immunosuppression. J Physiol 484(2):493–504CrossRefGoogle Scholar
  40. 40.
    Irintchev A, Rosenblatt JD, Cullen MJ, Zweyer M, Wernig A (1998) Ectopic skeletal muscles derived from myoblasts implanted under the skin. J Cell Sci 111(Pt 22):3287–3297PubMedGoogle Scholar
  41. 41.
    Wernig A, Zweyer A, Irintchev A (2000) Function of skeletal muscle tissue formed after myoblast transplantation into irradiated mouse muscles. J Physiol 522(2):333–345CrossRefGoogle Scholar
  42. 42.
    Qu-Petersen Z, Deasy B, Jankowski R, Ikezawa M, Cummins J, Pruchnic R, Mytinger J, Cao B, Gates C, Wernig A, Huard J (2002) Identification of a novel population of muscle stem cells in mice: potential for muscle regeneration. J Cell Biol 157(5):851–864CrossRefGoogle Scholar
  43. 43.
    Dedkov EI, Borisov AB, Wernig A, Carlson BM (2003) Aging of skeletal muscle does not affect the response of satellite cells to denervation. J Histochem Cytochem 51(7):853–863CrossRefGoogle Scholar
  44. 44.
    Wernig A, Schafer R, Knauf U, Mundegar RR, Zweyer M, Hogemeier O, Martens UM, Zimmermann S (2005) On the regenerative capacity of human skeletal muscle. Artif Organs 29(3):192–198CrossRefGoogle Scholar
  45. 45.
    Moisset P, Skuk D, Asselin I, Goulet M, Roy B, Karpati G, Tremblay JP (1998) Successful transplantation of genetically corrected DMD myoblasts following ex vivo transduction with the dystrophin minigene. Biochem Biophys Res Commun 247:94–99CrossRefGoogle Scholar
  46. 46.
    Quenneville SP, Chapdelaine P, Skuk D, Paradis M, Goulet M, Rousseau J, Xiao X, Garcia L, Tremblay JP (2007) Autologous transplantation of muscle precursor cells modified with a lentivirus for muscular dystrophy: human cells and primate models. Mol Ther 15(2):431–438. CrossRefPubMedGoogle Scholar
  47. 47.
    Fan Y, Maley M, Beilharz M, Grounds M (1996) Rapid death of injected myoblasts in myoblast transfer therapy. Muscle Nerve 19:853–860CrossRefGoogle Scholar
  48. 48.
    Urish K, Kanda Y, Huard J (2005) Initial failure in myoblast transplantation therapy has led the way toward the isolation of muscle stem cells: potential for tissue regeneration. Curr Top Dev Biol 68:263–280. CrossRefPubMedGoogle Scholar
  49. 49.
    Beauchamp JR, Morgan JE, Pagel CN, Partridge TA (1999) Dynamics of myoblast transplantation reveal a discrete minority of precursors with stem cell-like properties as the myogenic source. J Cell Biol 144(6):1113–1122CrossRefGoogle Scholar
  50. 50.
    Beauchamp JR, Pagel CN, Partridge TA (1997) A dual-marker system for quantitative studies of myoblast transplantation in the mouse. Transplantation 63(12):1794–1797CrossRefGoogle Scholar
  51. 51.
    Beauchamp JR, Morgan JE, Pagel CN (1994) Quantitative studies of the efficacy of myoblast transplantation. Muscle Nerve 18:S261Google Scholar
  52. 52.
    Arpke RW, Kyba M (2016) Flow cytometry and transplantation-based quantitative assays for satellite cell self-renewal and differentiation. Methods Mol Biol 1460:163–179. CrossRefPubMedGoogle Scholar
  53. 53.
    Skuk D, Goulet M, Roy B, Piette V, Cote CH, Chapdelaine P, Hogrel JY, Paradis M, Bouchard JP, Sylvain M, Lachance JG, Tremblay JP (2007) First test of a “high-density injection” protocol for myogenic cell transplantation throughout large volumes of muscles in a Duchenne muscular dystrophy patient: eighteen months follow-up. Neuromuscul Disord 17(1):38–46CrossRefGoogle Scholar
  54. 54.
    Morgan JE, Fletcher RM, Partridge TA (1996) Yields of muscle from myogenic cells implanted into young and old mdx hosts. Muscle Nerve 19(2):132–139.<132::AID-MUS2>3.0.CO;2-F CrossRefPubMedGoogle Scholar
  55. 55.
    Collins CA, Olsen I, Zammit PS, Heslop L, Petrie A, Partridge TA, Morgan JE (2005) Stem cell function, self-renewal, and behavioral heterogeneity of cells from the adult muscle satellite cell niche. Cell 122(2):289–301. CrossRefGoogle Scholar
  56. 56.
    Collins CA, Partridge TA (2005) Self-renewal of the adult skeletal muscle satellite cell. Cell Cycle 4(10):1338–1341CrossRefGoogle Scholar
  57. 57.
    Montarras D, Morgan J, Collins C, Relaix F, Zaffran S, Cumano A, Partridge T, Buckingham M (2005) Direct isolation of satellite cells for skeletal muscle regeneration. Science 309(5743):2064–2067CrossRefGoogle Scholar
  58. 58.
    Skuk D, Goulet M, Roy B, Chapdelaine P, Bouchard JP, Roy R, Dugre FJ, Sylvain M, Lachance JG, Deschenes L, Senay H, Tremblay JP (2006) Dystrophin expression in muscles of Duchenne muscular dystrophy patients after high-density injections of normal myogenic cells. J Neuropathol Exp Neurol 65(4):371–386. CrossRefPubMedGoogle Scholar
  59. 59.
    Skuk D, Goulet M, Roy B, Tremblay JP (2002) Efficacy of myoblast transplantation in nonhuman primates following simple intramuscular cell injections: toward defining strategies applicable to humans. Exp Neurol 175(1):112–126CrossRefGoogle Scholar
  60. 60.
    Skuk D, Goulet M, Tremblay JP (2011) Transplanted myoblasts can migrate several millimeters to fuse with damaged myofibers in nonhuman primate skeletal muscle. J Neuropathol Exp Neurol 70(9):770–778. CrossRefPubMedGoogle Scholar
  61. 61.
    Richards CS, Watkins SC, Hoffman EP, Schneider NR, Milsark IW, Katz KS, Cook JD, Kunkel LM, Cortada JM (1990) Skewed X inactivation in a female MZ twin results in Duchenne muscular dystrophy. Am J Hum Genet 46(4):672–681PubMedPubMedCentralGoogle Scholar
  62. 62.
    Partridge TA, Morgan JE (2014) Multiple insights from myogenic cell transplants. Hum Gene Ther 25(5):404–405. CrossRefPubMedGoogle Scholar
  63. 63.
    Blaveri K, Heslop L, Yu DS, Rosenblatt JD, Gross JG, Partridge TA, Morgan JE (1999) Patterns of repair of dystrophic mouse muscle: studies on isolated fibers. Dev Dyn 216(3):244–256CrossRefGoogle Scholar
  64. 64.
    Cappellari O, Cossu G (2013) Pericytes in development and pathology of skeletal muscle. Circ Res 113(3):341–347. CrossRefPubMedGoogle Scholar
  65. 65.
    Tonlorenzi R, Dellavalle A, Schnapp E, Cossu G, Sampaolesi M (2007) Isolation and characterization of mesoangioblasts from mouse, dog, and human tissues. Curr Protoc Stem Cell Biol 3:2B-1. CrossRefGoogle Scholar
  66. 66.
    Dellavalle A, Sampaolesi M, Tonlorenzi R, Tagliafico E, Sacchetti B, Perani L, Innocenzi A, Galvez BG, Messina G, Morosetti R, Li S, Belicchi M, Peretti G, Chamberlain JS, Wright WE, Torrente Y, Ferrari S, Bianco P, Cossu G (2007) Pericytes of human skeletal muscle are myogenic precursors distinct from satellite cells. Nat Cell Biol 9(3):255–267. CrossRefPubMedGoogle Scholar
  67. 67.
    Sampaolesi M, Torrente Y, Innocenzi A, Tonlorenzi R, D’Antona G, Pellegrino MA, Barresi R, Bresolin N, De Angelis MG, Campbell KP, Bottinelli R, Cossu G (2003) Cell therapy of alpha-sarcoglycan null dystrophic mice through intra-arterial delivery of mesoangioblasts. Science 301(5632):487–492. CrossRefPubMedGoogle Scholar
  68. 68.
    Sampaolesi M, Blot S, D'Antona G, Granger N, Tonlorenzi R, Innocenzi A, Mognol P, Thibaud JL, Galvez BG, Barthelemy I, Perani L, Mantero S, Guttinger M, Pansarasa O, Rinaldi C, Cusella De Angelis MG, Torrente Y, Bordignon C, Bottinelli R, Cossu G (2006) Mesoangioblast stem cells ameliorate muscle function in dystrophic dogs. Nature 444(7119):574–579. CrossRefPubMedGoogle Scholar
  69. 69.
    Meng J, Chun S, Asfahani R, Lochmuller H, Muntoni F, Morgan J (2014) Human skeletal muscle-derived CD133(+) cells form functional satellite cells after intramuscular transplantation in immunodeficient host mice. Mol Ther 22(5):1008–1017. CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Cossu G, Previtali SC, Napolitano S, Cicalese MP, Tedesco FS, Nicastro F, Noviello M, Roostalu U, Natali Sora MG, Scarlato M, De Pellegrin M, Godi C, Giuliani S, Ciotti F, Tonlorenzi R, Lorenzetti I, Rivellini C, Benedetti S, Gatti R, Marktel S, Mazzi B, Tettamanti A, Ragazzi M, Imro MA, Marano G, Ambrosi A, Fiori R, Sormani MP, Bonini C, Venturini M, Politi LS, Torrente Y, Ciceri F (2015) Intra-arterial transplantation of HLA-matched donor mesoangioblasts in Duchenne muscular dystrophy. EMBO Mol Med 7(12):1513–1528. CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Sitzia C, Farini A, Jardim L, Razini P, Belicchi M, Cassinelli L, Villa C, Erratico S, Parolini D, Bella P, da Silva Bizario JC, Garcia L, Dias-Baruffi M, Meregalli M, Torrente Y (2016) Adaptive immune response impairs the efficacy of autologous transplantation of engineered stem cells in dystrophic dogs. Mol Ther 24(11):1949–1964. CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Meng J, Adkin CF, Xu SW, Muntoni F, Morgan JE (2011) Contribution of human muscle-derived cells to skeletal muscle regeneration in dystrophic host mice. PLoS One 6(3):e17454. CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Skuk D, Tremblay JP (2014) First study of intra-arterial delivery of myogenic mononuclear cells to skeletal muscles in primates. Cell Transplant 23(Suppl 1):S141–S150. CrossRefPubMedGoogle Scholar
  74. 74.
    Rouger K, Larcher T, Dubreil L, Deschamps JY, Le Guiner C, Jouvion G, Delorme B, Lieubeau B, Carlus M, Fornasari B, Theret M, Orlando P, Ledevin M, Zuber C, Leroux I, Deleau S, Guigand L, Testault I, Le Rumeur E, Fiszman M, Cherel Y (2011) Systemic delivery of allogenic muscle stem cells induces long-term muscle repair and clinical efficacy in Duchenne muscular dystrophy dogs. Am J Pathol 179(5):2501–2518. CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Robriquet F, Babarit C, Larcher T, Dubreil L, Ledevin M, Goubin H, Rouger K, Guevel L (2016) Identification in GRMD dog muscle of critical miRNAs involved in pathophysiology and effects associated with MuStem cell transplantation. BMC Musculoskelet Disord 17:209. CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Robriquet F, Lardenois A, Babarit C, Larcher T, Dubreil L, Leroux I, Zuber C, Ledevin M, Deschamps JY, Fromes Y, Cherel Y, Guevel L, Rouger K (2015) Differential gene expression profiling of dystrophic dog muscle after MuStem cell transplantation. PLoS One 10(5):e0123336. CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Darabi R, Arpke RW, Irion S, Dimos JT, Grskovic M, Kyba M, Perlingeiro RC (2012) Human ES- and iPS-derived myogenic progenitors restore DYSTROPHIN and improve contractility upon transplantation in dystrophic mice. Cell Stem Cell 10(5):610–619. CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Chal J, Al Tanoury Z, Hestin M, Gobert B, Aivio S, Hick A, Cherrier T, Nesmith AP, Parker KK, Pourquie O (2016) Generation of human muscle fibers and satellite-like cells from human pluripotent stem cells in vitro. Nat Protoc 11(10):1833–1850. CrossRefPubMedGoogle Scholar
  79. 79.
    Duddy W, Duguez S, Johnston H, Cohen TV, Phadke A, Gordish-Dressman H, Nagaraju K, Gnocchi V, Low S, Partridge T (2015) Muscular dystrophy in the mdx mouse is a severe myopathy compounded by hypotrophy, hypertrophy and hyperplasia. Skelet Muscle 5:16. CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Chandler RJ, Sands MS, Venditti CP (2017) Recombinant adeno-associated viral integration and genotoxicity: insights from animal models. Hum Gene Ther 28(4):314–322. CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Tabebordbar M, Zhu K, Cheng JK, Chew WL, Widrick JJ, Yan WX, Maesner C, Wu EY, Xiao R, Ran FA, Cong L, Zhang F, Vandenberghe LH, Church GM, Wagers AJ (2016) In vivo gene editing in dystrophic mouse muscle and muscle stem cells. Science 351(6271):407–411. CrossRefPubMedGoogle Scholar
  82. 82.
    Arnett AL, Konieczny P, Ramos JN, Hall J, Odom G, Yablonka-Reuveni Z, Chamberlain JR, Chamberlain JS (2014) Adeno-associated viral (AAV) vectors do not efficiently target muscle satellite cells. Mol Ther Methods Clin Dev 1:14038. CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Counsell JR, Asgarian Z, Meng J, Ferrer V, Vink CA, Howe SJ, Waddington SN, Thrasher AJ, Muntoni F, Morgan JE, Danos O (2017) Lentiviral vectors can be used for full-length dystrophin gene therapy. Sci Rep 7:44775. CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Liu Y, Conboy I (2017) Unexpected evolutionarily conserved rapid effects of viral infection on oxytocin receptor and TGF-beta/pSmad3. Skelet Muscle 7(1):7. CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Nelson CE, Hakim CH, Ousterout DG, Thakore PI, Moreb EA, Castellanos Rivera RM, Madhavan S, Pan X, Ran FA, Yan WX, Asokan A, Zhang F, Duan D, Gersbach CA (2016) In vivo genome editing improves muscle function in a mouse model of Duchenne muscular dystrophy. Science 351(6271):403–407. CrossRefPubMedGoogle Scholar
  86. 86.
    Ousterout DG, Kabadi AM, Thakore PI, Majoros WH, Reddy TE, Gersbach CA (2015) Multiplex CRISPR/Cas9-based genome editing for correction of dystrophin mutations that cause Duchenne muscular dystrophy. Nat Commun 6:6244. CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Long C, Amoasii L, Mireault AA, McAnally JR, Li H, Sanchez-Ortiz E, Bhattacharyya S, Shelton JM, Bassel-Duby R, Olson EN (2016) Postnatal genome editing partially restores dystrophin expression in a mouse model of muscular dystrophy. Science 351(6271):400–403. CrossRefPubMedGoogle Scholar
  88. 88.
    Bengtsson NE, Hall JK, Odom GL, Phelps MP, Andrus CR, Hawkins RD, Hauschka SD, Chamberlain JR, Chamberlain JS (2017) Muscle-specific CRISPR/Cas9 dystrophin gene editing ameliorates pathophysiology in a mouse model for Duchenne muscular dystrophy. Nat Commun 8:14454. CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Barton ER, Morris L, Musaro A, Rosenthal N, Sweeney HL (2002) Muscle-specific expression of insulin-like growth factor I counters muscle decline in mdx mice. J Cell Biol 157(1):137–148. CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Bogdanovich S, Krag TO, Barton ER, Morris LD, Whittemore LA, Ahima RS, Khurana TS (2002) Functional improvement of dystrophic muscle by myostatin blockade. Nature 420(6914):418–421CrossRefGoogle Scholar
  91. 91.
    Li Y, Li J, Zhu J, Sun B, Branca M, Tang Y, Foster W, Xiao X, Huard J (2007) Decorin gene transfer promotes muscle cell differentiation and muscle regeneration. Mol Ther 15(9):1616–1622. CrossRefPubMedGoogle Scholar
  92. 92.
    Fadic R, Mezzano V, Alvarez K, Cabrera D, Holmgren J, Brandan E (2006) Increase in decorin and biglycan in Duchenne muscular dystrophy: role of fibroblasts as cell source of these proteoglycans in the disease. J Cell Mol Med 10(3):758–769CrossRefGoogle Scholar
  93. 93.
    Ceco E, McNally EM (2013) Modifying muscular dystrophy through transforming growth factor-beta. FEBS J 280(17):4198–4209. CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Chen YW, Nagaraju K, Bakay M, McIntyre O, Rawat R, Shi R, Hoffman EP (2005) Early onset of inflammation and later involvement of TGFbeta in Duchenne muscular dystrophy. Neurology 65(6):826–834. CrossRefPubMedGoogle Scholar
  95. 95.
    Goldstein JA, McNally EM (2010) Mechanisms of muscle weakness in muscular dystrophy. J Gen Physiol 136(1):29–34. CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    Morales MG, Gutierrez J, Cabello-Verrugio C, Cabrera D, Lipson KE, Goldschmeding R, Brandan E (2013) Reducing CTGF/CCN2 slows down mdx muscle dystrophy and improves cell therapy. Hum Mol Genet 22(24):4938–4951. CrossRefPubMedGoogle Scholar
  97. 97.
    Bentzinger CF, Wang YX, von Maltzahn J, Soleimani VD, Yin H, Rudnicki MA (2013) Fibronectin regulates Wnt7a signaling and satellite cell expansion. Cell Stem Cell 12(1):75–87. CrossRefPubMedPubMedCentralGoogle Scholar
  98. 98.
    von Maltzahn J, Zinoviev R, Chang NC, Bentzinger CF, Rudnicki MA (2013) A truncated Wnt7a retains full biological activity in skeletal muscle. Nat Commun 4:2869. CrossRefGoogle Scholar
  99. 99.
    Jones AE, Price FD, Le Grand F, Soleimani VD, Dick SA, Megeney LA, Rudnicki MA (2015) Wnt/beta-catenin controls follistatin signalling to regulate satellite cell myogenic potential. Skelet Muscle 5:14. CrossRefPubMedPubMedCentralGoogle Scholar
  100. 100.
    Rinaldi F, Zhang Y, Mondragon-Gonzalez R, Harvey J, Perlingeiro RC (2016) Treatment with rGDF11 does not improve the dystrophic muscle pathology of mdx mice. Skelet Muscle 6:21. CrossRefPubMedPubMedCentralGoogle Scholar
  101. 101.
    Morrison J, Palmer DB, Cobbold S, Partridge T, Bou-Gharios G (2005) Effects of T-lymphocyte depletion on muscle fibrosis in the mdx mouse. Am J Pathol 166(6):1701–1710CrossRefGoogle Scholar
  102. 102.
    Morrison J, Partridge T, Bou-Gharios G (2005) Nude mutation influences limb skeletal muscle development. Matrix Biol 23(8):535–542. CrossRefPubMedGoogle Scholar
  103. 103.
    Partridge TA (2013) The mdx mouse model as a surrogate for Duchenne muscular dystrophy. FEBS J 280(17):4177–4186. CrossRefPubMedPubMedCentralGoogle Scholar
  104. 104.
    Kornegay JN (2017) The golden retriever model of Duchenne muscular dystrophy. Skelet Muscle 7(1):9CrossRefGoogle Scholar
  105. 105.
    Geng J, Liu G, Peng F, Yang L, Cao J, Li Q, Chen F, Kong J, Pang R, Zhang C (2012) Decorin promotes myogenic differentiation and mdx mice therapeutic effects after transplantation of rat adipose-derived stem cells. Cytotherapy 14(7):877–886. CrossRefPubMedGoogle Scholar
  106. 106.
    Coley WD, Bogdanik L, Vila MC, Yu Q, Van Der Meulen JH, Rayavarapu S, Novak JS, Nearing M, Quinn JL, Saunders A, Dolan C, Andrews W, Lammert C, Austin A, Partridge TA, Cox GA, Lutz C, Nagaraju K (2016) Effect of genetic background on the dystrophic phenotype in mdx mice. Hum Mol Genet 25(1):130–145. CrossRefPubMedGoogle Scholar
  107. 107.
    Le Hir M, Goyenvalle A, Peccate C, Precigout G, Davies KE, Voit T, Garcia L, Lorain S (2013) AAV genome loss from dystrophic mouse muscles during AAV-U7 snRNA-mediated exon-skipping therapy. Mol Ther 21(8):1551–1558. CrossRefPubMedPubMedCentralGoogle Scholar
  108. 108.
    Lai Y, Thomas GD, Yue Y, Yang HT, Li D, Long C, Judge L, Bostick B, Chamberlain JS, Terjung RL, Duan D (2009) Dystrophins carrying spectrin-like repeats 16 and 17 anchor nNOS to the sarcolemma and enhance exercise performance in a mouse model of muscular dystrophy. J Clin Invest 119(3):624–635. CrossRefPubMedPubMedCentralGoogle Scholar
  109. 109.
    Koo T, Popplewell L, Athanasopoulos T, Dickson G (2014) Triple trans-splicing adeno-associated virus vectors capable of transferring the coding sequence for full-length dystrophin protein into dystrophic mice. Hum Gene Ther 25(2):98–108. CrossRefPubMedGoogle Scholar
  110. 110.
    Athanasopoulos T, Foster H, Foster K, Dickson G (2011) Codon optimization of the microdystrophin gene for Duchene muscular dystrophy gene therapy. Methods Mol Biol 709:21–37. CrossRefPubMedGoogle Scholar
  111. 111.
    Ertl HCJ, High KA (2017) Impact of AAV capsid-specific T-cell responses on design and outcome of clinical gene transfer trials with recombinant adeno-associated viral vectors: an evolving controversy. Hum Gene Ther 28(4):328–337. CrossRefPubMedGoogle Scholar
  112. 112.
    Wang Z, Storb R, Lee D, Kushmerick MJ, Chu B, Berger C, Arnett A, Allen J, Chamberlain JS, Riddell SR, Tapscott SJ (2010) Immune responses to AAV in canine muscle monitored by cellular assays and noninvasive imaging. Mol Ther 18(3):617–624. CrossRefPubMedGoogle Scholar
  113. 113.
    Wang Z, Tapscott SJ, Chamberlain JS, Storb R (2011) Immunity and AAV-mediated gene therapy for muscular dystrophies in large animal models and human trials. Front Microbiol 2:201. CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Children’s National Medical CenterWashington, DCUSA

Personalised recommendations