Muscle as a Potent Target in Vaccination

  • Axel RossiEmail author
  • Hildegard Büning


“Immunology” and “vaccines” are terms inevitably connected with the name of Edward Jenner, a country doctor from Berkley (UK), who submitted back in 1796 a report on 13 cases of protection against small pox infection through inoculation with cowpox. Since then vaccination has become the most efficient strategy to protect humans and livestock from infectious diseases. With exception of Japan, intramuscular injection serves as a standard vaccination route. Besides its easy accessibility, skeletal muscle presents several unique properties marking this tissue an ideal theater for vaccination. Muscle cells or more specifically myofibers act as unconventional antigen-presenting cells (APCs) supporting the activity of conventional APCs (e.g., dendritic cells (DCs)) rapidly recruited to the site of “damage.” Depending on the vaccine, humoral and/or cytotoxic T cell responses are elicited. Moreover, unique control circuits involving hormone regulation and unconventional co-stimulatory molecules as well as muscle resident stem cells permit balanced immune responses and tissue integrity. The plasticity of this tissue regarding recruitment and regulation of immune cells as well as its regenerative capacity holds promise for the advent of new sophisticated vaccination strategies for targets that so far “escaped” from vaccine-mediated protection or treatment.


Skeletal muscle Innate immune system Adaptive immune system Routes of administration Vaccination strategies 


  1. 1.
    Smith KA (2011) Edward Jenner and the small pox vaccine. Front Immunol 2:21. CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Knight-Jones TJ, Edmond K, Gubbins S, Paton DJ (2014) Veterinary and human vaccine evaluation methods. Proc Biol Sci 281(1784):20132839. CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Mbulaiteye SM, Buonaguro FM (2013) Infections and cancer: debate about using vaccines as a cancer control tool. Infect Agent Cancer 8(1):16. CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Delany I, Rappuoli R, De Gregorio E (2014) Vaccines for the 21st century. EMBO Mol Med 6(6):708–720. CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Kosinska AD, Bauer T, Protzer U (2017) Therapeutic vaccination for chronic hepatitis B. Curr Opin Virol 23:75–81. CrossRefPubMedGoogle Scholar
  6. 6.
    Talwar GP, Gupta JC, Mustafa AS, Kar HK, Katoch K, Parida SK, Reddi PP, Ahmed N, Saini V, Gupta S (2017) Development of a potent invigorator of immune responses endowed with both preventive and therapeutic properties. Biologics 11:55–63. CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    van Aalst S, Ludwig IS, van Kooten PJ, van der Zee R, van Eden W, Broere F (2017) Dynamics of APC recruitment at the site of injection following injection of vaccine adjuvants. Vaccine 35(12):1622–1629. CrossRefPubMedGoogle Scholar
  8. 8.
    Nascimento IP, Leite LC (2012) Recombinant vaccines and the development of new vaccine strategies. Braz J Med Biol Res 45(12):1102–1111CrossRefGoogle Scholar
  9. 9.
    Coffman RL, Sher A, Seder RA (2010) Vaccine adjuvants: putting innate immunity to work. Immunity 33(4):492–503. CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Marino M, Scuderi F, Provenzano C, Bartoccioni E (2011) Skeletal muscle cells: from local inflammatory response to active immunity. Gene Ther 18(2):109–116. CrossRefPubMedGoogle Scholar
  11. 11.
    Lang CH, Frost RA, Vary TC (2007) Regulation of muscle protein synthesis during sepsis and inflammation. Am J Physiol Endocrinol Metab 293(2):E453–E459. CrossRefPubMedGoogle Scholar
  12. 12.
    Wiendl H, Hohlfeld R, Kieseier BC (2005) Immunobiology of muscle: advances in understanding an immunological microenvironment. Trends Immunol 26(7):373–380. CrossRefPubMedGoogle Scholar
  13. 13.
    Kumar H, Kawai T, Akira S (2011) Pathogen recognition by the innate immune system. Int Rev Immunol 30(1):16–34. CrossRefPubMedGoogle Scholar
  14. 14.
    Kawai T, Akira S (2006) TLR signaling. Cell Death Differ 13(5):816–825. CrossRefPubMedGoogle Scholar
  15. 15.
    Gao D, Li W (2017) Structures and recognition modes of toll-like receptors. Proteins 85(1):3–9. CrossRefPubMedGoogle Scholar
  16. 16.
    Liang F, Lore K (2016) Local innate immune responses in the vaccine adjuvant-injected muscle. Clin Transl Immunol 5(4):e74. CrossRefGoogle Scholar
  17. 17.
    Pillon NJ, Krook A (2017) Innate immune receptors in skeletal muscle metabolism. Exp Cell Res 360(1):47–54. CrossRefPubMedGoogle Scholar
  18. 18.
    Malorni W, Iosi F, Zarcone D, Grossi CE, Arancia G (1993) Role of adhesion molecules in the mechanism of non-MHC (major histocompatibility complex) restricted cell-mediated cytotoxicity. Scanning Microsc 7(1):323–331. discussion 331-322PubMedGoogle Scholar
  19. 19.
    Rothlein R, Mainolfi EA, Czajkowski M, Marlin SD (1991) A form of circulating ICAM-1 in human serum. J Immunol 147(11):3788–3793PubMedGoogle Scholar
  20. 20.
    Boursereau R, Abou-Samra M, Lecompte S, Noel L, Brichard SM (2017) New targets to alleviate skeletal muscle inflammation: role of microRNAs regulated by adiponectin. Sci Rep 7:43437. CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Parkes JE, Day PJ, Chinoy H, Lamb JA (2015) The role of microRNAs in the idiopathic inflammatory myopathies. Curr Opin Rheumatol 27(6):608–615. CrossRefPubMedGoogle Scholar
  22. 22.
    Inaba K, Inaba M (2005) Antigen recognition and presentation by dendritic cells. Int J Hematol 81(3):181–187. CrossRefPubMedGoogle Scholar
  23. 23.
    Carosella ED, Moreau P, Aractingi S, Rouas-Freiss N (2001) HLA-G: a shield against inflammatory aggression. Trends Immunol 22(10):553–555CrossRefGoogle Scholar
  24. 24.
    Wiendl H, Behrens L, Maier S, Johnson MA, Weiss EH, Hohlfeld R (2000) Muscle fibers in inflammatory myopathies and cultured myoblasts express the nonclassical major histocompatibility antigen HLA-G. Ann Neurol 48(4):679–684CrossRefGoogle Scholar
  25. 25.
    Kashiwagi Y, Maeda M, Kawashima H, Nakayama T (2014) Inflammatory responses following intramuscular and subcutaneous immunization with aluminum-adjuvanted or non-adjuvanted vaccines. Vaccine 32(27):3393–3401. CrossRefPubMedGoogle Scholar
  26. 26.
    Saitoh A, Okabe N (2012) Current issues with the immunization program in Japan: can we fill the “vaccine gap”? Vaccine 30(32):4752–4756. CrossRefPubMedGoogle Scholar
  27. 27.
    Wang T, Yin H, Li Y, Zhao L, Sun X, Cong H (2017) Vaccination with recombinant adenovirus expressing multi-stage antigens of Toxoplasma gondii by the mucosal route induces higher systemic cellular and local mucosal immune responses than with other vaccination routes. Parasite 24:12. CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Coban C, Kobiyama K, Jounai N, Tozuka M, Ishii KJ (2013) DNA vaccines: a simple DNA sensing matter? Hum Vaccin Immunother 9(10):2216–2221. CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Salonius K, Simard N, Harland R, Ulmer JB (2007) The road to licensure of a DNA vaccine. Curr Opin Investig Drugs 8(8):635–641PubMedGoogle Scholar
  30. 30.
    Le TP, Coonan KM, Hedstrom RC, Charoenvit Y, Sedegah M, Epstein JE, Kumar S, Wang R, Doolan DL, Maguire JD, Parker SE, Hobart P, Norman J, Hoffman SL (2000) Safety, tolerability and humoral immune responses after intramuscular administration of a malaria DNA vaccine to healthy adult volunteers. Vaccine 18(18):1893–1901CrossRefGoogle Scholar
  31. 31.
    Coban C, Kobiyama K, Aoshi T, Takeshita F, Horii T, Akira S, Ishii KJ (2011) Novel strategies to improve DNA vaccine immunogenicity. Curr Gene Ther 11(6):479–484CrossRefGoogle Scholar
  32. 32.
    Conlon J, Burdette DL, Sharma S, Bhat N, Thompson M, Jiang Z, Rathinam VA, Monks B, Jin T, Xiao TS, Vogel SN, Vance RE, Fitzgerald KA (2013) Mouse, but not human STING, binds and signals in response to the vascular disrupting agent 5,6-dimethylxanthenone-4-acetic acid. J Immunol 190(10):5216–5225. CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Margolis SR, Wilson SC, Vance RE (2017) Evolutionary origins of cGAS-STING signaling. Trends Immunol 38(10):733–743. CrossRefPubMedGoogle Scholar
  34. 34.
    Burdette DL, Monroe KM, Sotelo-Troha K, Iwig JS, Eckert B, Hyodo M, Hayakawa Y, Vance RE (2011) STING is a direct innate immune sensor of cyclic di-GMP. Nature 478(7370):515–518. CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Delgado M, Singh S, De Haro S, Master S, Ponpuak M, Dinkins C, Ornatowski W, Vergne I, Deretic V (2009) Autophagy and pattern recognition receptors in innate immunity. Immunol Rev 227(1):189–202. CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Buck CB, Day PM, Trus BL (2013) The papillomavirus major capsid protein L1. Virology 445(1–2):169–174. CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Harper DM, DeMars LR (2017) HPV vaccines - a review of the first decade. Gynecol Oncol 146(1):196–204. CrossRefPubMedGoogle Scholar
  38. 38.
    Muzyczka N, Berns KI (2015) AAV’s Golden Jubilee. Mol Ther 23(5):807–808. CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Ploquin A, Szecsi J, Mathieu C, Guillaume V, Barateau V, Ong KC, Wong KT, Cosset FL, Horvat B, Salvetti A (2013) Protection against henipavirus infection by use of recombinant adeno-associated virus-vector vaccines. J Infect Dis 207(3):469–478. CrossRefPubMedGoogle Scholar
  40. 40.
    Lambe T, Bowyer G, Ewer KJ (2017) A review of Phase I trials of Ebola virus vaccines: what can we learn from the race to develop novel vaccines? Philos Trans R Soc Lond Ser B Biol Sci 372(1721):20160295. CrossRefGoogle Scholar
  41. 41.
    Ali A, Wahid B, Rafique S, Idrees M (2017) Advances in research on Zika virus. Asian Pac J Trop Med 10(4):321–331. CrossRefPubMedGoogle Scholar
  42. 42.
    WHO (2015) Blueprint for R&D preparedness and response to public health emergencies due to highly infectious pathogens. WHO, GenevaGoogle Scholar
  43. 43.
    Mann CJ, Anguela XM, Montane J, Obach M, Roca C, Ruzo A, Otaegui P, Mir LM, Bosch F (2012) Molecular signature of the immune and tissue response to non-coding plasmid DNA in skeletal muscle after electrotransfer. Gene Ther 19(12):1177–1186. CrossRefPubMedGoogle Scholar
  44. 44.
    Dupuis M, Denis-Mize K, Woo C, Goldbeck C, Selby MJ, Chen M, Otten GR, Ulmer JB, Donnelly JJ, Ott G, McDonald DM (2000) Distribution of DNA vaccines determines their immunogenicity after intramuscular injection in mice. J Immunol 165(5):2850–2858CrossRefGoogle Scholar
  45. 45.
    Gothelf A, Gehl J (2012) What you always needed to know about electroporation based DNA vaccines. Hum Vaccin Immunother 8(11):1694–1702. CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Weiland O, Ahlen G, Diepolder H, Jung MC, Levander S, Fons M, Mathiesen I, Sardesai NY, Vahlne A, Frelin L, Sallberg M (2013) Therapeutic DNA vaccination using in vivo electroporation followed by standard of care therapy in patients with genotype 1 chronic hepatitis C. Mol Ther 21(9):1796–1805. CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Iyer SS, Amara RR (2014) DNA/MVA vaccines for HIV/AIDS. Vaccines (Basel) 2(1):160–178. CrossRefGoogle Scholar
  48. 48.
    Rybniker J, Nowag A, Janicki H, Demant K, Hartmann P, Buning H (2012) Incorporation of antigens into viral capsids augments immunogenicity of adeno-associated virus vector-based vaccines. J Virol 86(24):13800–13804. CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Rahman F, Dahmen A, Herzog-Hauff S, Bocher WO, Galle PR, Lohr HF (2000) Cellular and humoral immune responses induced by intradermal or intramuscular vaccination with the major hepatitis B surface antigen. Hepatology 31(2):521–527. CrossRefPubMedGoogle Scholar
  50. 50.
    Yang OO, Ibarrondo FJ, Price C, Hultin LE, Elliott J, Hultin PM, Shih R, Hausner MA, Ng HL, Hoffman J, Jamieson BD, Anton PA (2014) Differential blood and mucosal immune responses against an HIV-1 vaccine administered via inguinal or deltoid injection. PLoS One 9(2):e88621. CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Camilloni B, Basileo M, Valente S, Nunzi E, Iorio AM (2015) Immunogenicity of intramuscular MF59-adjuvanted and intradermal administered influenza enhanced vaccines in subjects aged over 60: a literature review. Hum Vaccin Immunother 11(3):553–563. CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Laboratory for Infection Biology & Gene TransferInstitute of Experimental Hematology, Hannover Medical SchoolHannoverGermany
  2. 2.Laboratory for AAV Vector DevelopmentCenter for Molecular Medicine Cologne (CMMC), University of CologneCologneGermany
  3. 3.German Center for Infection Research (DZIF), Partner Site Hannover-BraunschweigBraunschweigGermany

Personalised recommendations