Advertisement

Elimination of Mutant Mitochondrial DNA in Mitochondrial Myopathies Using Gene-Editing Enzymes

  • Sandra R. Bacman
  • Carlos T. MoraesEmail author
Chapter

Abstract

Mitochondrial diseases form a genetically and clinically heterogeneous group of disorders that result in the dysfunction of the mitochondria oxidative phosphorylation (OXPHOS). This system is responsible for the generation of the cellular energy required for the function of cells, tissues, and organs. Skeletal and cardiac muscle dysfunction is also a common feature of mitochondrial diseases. Effective treatments have not been developed and are mostly related to supportive management and palliative therapies. Most pathogenic mitochondrial DNA (mtDNA) mutations are in a heteroplasmic state, and high levels of mutated mtDNA within a cell are required to exceed a critical threshold to cause a phenotype. Therefore, the goal of a therapeutic intervention would be to eliminate or decrease the amount of mutated mtDNA below a certain threshold to avoid clinical and biochemical manifestations of the disease. Our group and others have made several advances over the last 15 years inducing heteroplasmy shift as a potential strategy to treat mtDNA disorders. Although mitochondrial-targeted restriction endonucleases can efficiently change mtDNA heteroplasmy both ex vivo and in vivo, this approach can be used therapeutically only if a unique restriction site is created by a mtDNA mutation. To overcome this, non-specific endonucleases targeted to mitochondrial mutations have been developed using gene-editing nucleases such as zinc finger nucleases (ZFNs) and transcription activator-like effector nucleases (TALENs). These are being used to reduce mutant mtDNA in the muscle and heart of mouse models. Although some limitations and concerns exist, future experiments should make this approach safe to treat patients.

Keywords

Mitochondria Gene therapy Myopathies Endonucleases TALEN ZFN 

Notes

Acknowledgments

This work was supported by the US National Institutes of Health grants 5R01EY010804, 1R01AG036871, and 1R01NS079965. The following grants also helped support this work: the Muscular Dystrophy Association and the NEI center grant P30-EY014801 from the National Institutes of Health (NIH).

References

  1. 1.
    El-Hattab AW, Scaglia F (2016) Mitochondrial cardiomyopathies. Front Cardiovasc Med 3:25.  https://doi.org/10.3389/fcvm.2016.00025 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    DiMauro S, Schon EA, Carelli V, Hirano M (2013) The clinical maze of mitochondrial neurology. Nat Rev Neurol 9(8):429–444.  https://doi.org/10.1038/nrneurol.2013.126 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Adler M, Shieh PB (2015) Metabolic myopathies. Semin Neurol 35(4):385–397.  https://doi.org/10.1055/s-0035-1558973 CrossRefPubMedGoogle Scholar
  4. 4.
    Pitceathly RD, McFarland R (2014) Mitochondrial myopathies in adults and children: management and therapy development. Curr Opin Neurol 27(5):576–582.  https://doi.org/10.1097/WCO.0000000000000126 CrossRefPubMedGoogle Scholar
  5. 5.
    Finsterer J, Kothari S (2014) Cardiac manifestations of primary mitochondrial disorders. Int J Cardiol 177(3):754–763.  https://doi.org/10.1016/j.ijcard.2014.11.014 CrossRefPubMedGoogle Scholar
  6. 6.
    Pitceathly RD, Rahman S, Wedatilake Y, Polke JM, Cirak S, Foley AR, Sailer A, Hurles ME, Stalker J, Hargreaves I, Woodward CE, Sweeney MG, Muntoni F, Houlden H, Taanman JW, Hanna MG, Consortium UK (2013) NDUFA4 mutations underlie dysfunction of a cytochrome c oxidase subunit linked to human neurological disease. Cell Rep 3(6):1795–1805.  https://doi.org/10.1016/j.celrep.2013.05.005 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Brecht M, Richardson M, Taranath A, Grist S, Thorburn D, Bratkovic D (2015) Leigh syndrome caused by the MT-ND5 m.13513G>A mutation: a case presenting with WPW-like conduction defect, cardiomyopathy, hypertension and hyponatraemia. JIMD Rep 19:95–100.  https://doi.org/10.1007/8904_2014_375 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Fassone E, Rahman S (2012) Complex I deficiency: clinical features, biochemistry and molecular genetics. J Med Genet 49(9):578–590.  https://doi.org/10.1136/jmedgenet-2012-101159 CrossRefPubMedGoogle Scholar
  9. 9.
    Alston CL, Ceccatelli Berti C, Blakely EL, Olahova M, He L, McMahon CJ, Olpin SE, Hargreaves IP, Nolli C, McFarland R, Goffrini P, O’Sullivan MJ, Taylor RW (2015) A recessive homozygous p.Asp92Gly SDHD mutation causes prenatal cardiomyopathy and a severe mitochondrial complex II deficiency. Hum Genet 134(8):869–879.  https://doi.org/10.1007/s00439-015-1568-z CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Carossa V, Ghelli A, Tropeano CV, Valentino ML, Iommarini L, Maresca A, Caporali L, La Morgia C, Liguori R, Barboni P, Carbonelli M, Rizzo G, Tonon C, Lodi R, Martinuzzi A, De Nardo V, Rugolo M, Ferretti L, Gandini F, Pala M, Achilli A, Olivieri A, Torroni A, Carelli V (2014) A novel in-frame 18-bp microdeletion in MT-CYB causes a multisystem disorder with prominent exercise intolerance. Hum Mutat 35(8):954–958.  https://doi.org/10.1002/humu.22596 CrossRefPubMedGoogle Scholar
  11. 11.
    Andreu AL, Hanna MG, Reichmann H, Bruno C, Penn AS, Tanji K, Pallotti F, Iwata S, Bonilla E, Lach B, Morgan-Hughes J, DiMauro S (1999) Exercise intolerance due to mutations in the cytochrome b gene of mitochondrial DNA. N Engl J Med 341(14):1037–1044.  https://doi.org/10.1056/NEJM199909303411404 CrossRefPubMedGoogle Scholar
  12. 12.
    Marin-Garcia J, Goldenthal MJ, Ananthakrishnan R, Pierpont ME (2000) The complete sequence of mtDNA genes in idiopathic dilated cardiomyopathy shows novel missense and tRNA mutations. J Card Fail 6(4):321–329.  https://doi.org/10.1054/jcaf.2000.19232 CrossRefPubMedGoogle Scholar
  13. 13.
    Abdulhag UN, Soiferman D, Schueler-Furman O, Miller C, Shaag A, Elpeleg O, Edvardson S, Saada A (2015) Mitochondrial complex IV deficiency, caused by mutated COX6B1, is associated with encephalomyopathy, hydrocephalus and cardiomyopathy. Eur J Hum Genet 23(2):159–164.  https://doi.org/10.1038/ejhg.2014.85 CrossRefPubMedGoogle Scholar
  14. 14.
    Pitceathly RD, Taanman JW, Rahman S, Meunier B, Sadowski M, Cirak S, Hargreaves I, Land JM, Nanji T, Polke JM, Woodward CE, Sweeney MG, Solanki S, Foley AR, Hurles ME, Stalker J, Blake J, Holton JL, Phadke R, Muntoni F, Reilly MM, Hanna MG, Consortium UK (2013) COX10 mutations resulting in complex multisystem mitochondrial disease that remains stable into adulthood. JAMA Neurol 70(12):1556–1561.  https://doi.org/10.1001/jamaneurol.2013.3242 CrossRefPubMedGoogle Scholar
  15. 15.
    Wedatilake Y, Brown RM, McFarland R, Yaplito-Lee J, Morris AA, Champion M, Jardine PE, Clarke A, Thorburn DR, Taylor RW, Land JM, Forrest K, Dobbie A, Simmons L, Aasheim ET, Ketteridge D, Hanrahan D, Chakrapani A, Brown GK, Rahman S (2013) SURF1 deficiency: a multi-centre natural history study. Orphanet J Rare Dis 8:96.  https://doi.org/10.1186/1750-1172-8-96 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Blakely EL, Alston CL, Lecky B, Chakrabarti B, Falkous G, Turnbull DM, Taylor RW, Gorman GS (2014) Distal weakness with respiratory insufficiency caused by the m.8344A > G “MERRF” mutation. Neuromuscul Disord 24(6):533–536.  https://doi.org/10.1016/j.nmd.2014.03.011 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Goto Y, Nonaka I, Horai S (1991) A new mtDNA mutation associated with mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes (MELAS). Biochim Biophys Acta 1097(3):238–240CrossRefGoogle Scholar
  18. 18.
    Yang CC, Hwang CC, Pang CY, Wei YH (1998) Mitochondrial myopathy with predominant respiratory dysfunction in a patient with A3243G mutation in the mitochondrial tRNA(Leu(UUR))gene. J Formos Med Assoc 97(10):715–719PubMedGoogle Scholar
  19. 19.
    Murakami H, Ono K (2017) MELAS: mitochondrial encephalomyopathy, lactic acidosis and stroke-like episodes. Brain Nerve 69(2):111–117.  https://doi.org/10.11477/mf.1416200650 CrossRefPubMedGoogle Scholar
  20. 20.
    Brunel-Guitton C, Levtova A, Sasarman F (2015) Mitochondrial diseases and cardiomyopathies. Can J Cardiol 31(11):1360–1376.  https://doi.org/10.1016/j.cjca.2015.08.017 CrossRefPubMedGoogle Scholar
  21. 21.
    Lehmann D, Schubert K, Joshi PR, Hardy SA, Tuppen HA, Baty K, Blakely EL, Bamberg C, Zierz S, Deschauer M, Taylor RW (2015) Pathogenic mitochondrial mt-tRNA(Ala) variants are uniquely associated with isolated myopathy. Eur J Hum Genet 23(12):1735–1738.  https://doi.org/10.1038/ejhg.2015.73 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Leigh D (1951) Subacute necrotizing encephalomyelopathy in an infant. J Neurol Neurosurg Psychiatry 14(3):216–221CrossRefGoogle Scholar
  23. 23.
    Aure K, Dubourg O, Jardel C, Clarysse L, Sternberg D, Fournier E, Laforet P, Streichenberger N, Petiot P, Gervais-Bernard H, Vial C, Bedat-Millet AL, Drouin-Garraud V, Bouillaud F, Vandier C, Fontaine B, Lombes A (2013) Episodic weakness due to mitochondrial DNA MT-ATP6/8 mutations. Neurology 81(21):1810–1818.  https://doi.org/10.1212/01.wnl.0000436067.43384.0b CrossRefPubMedGoogle Scholar
  24. 24.
    McClelland C, Manousakis G, Lee MS (2016) Progressive external ophthalmoplegia. Curr Neurol Neurosci Rep 16(6):53.  https://doi.org/10.1007/s11910-016-0652-7 CrossRefPubMedGoogle Scholar
  25. 25.
    Magner M, Kolarova H, Honzik T, Svandova I, Zeman J (2015) Clinical manifestation of mitochondrial diseases. Dev Period Med 19(4):441–449PubMedGoogle Scholar
  26. 26.
    Filosto M, Mancuso M, Nishigaki Y, Pancrudo J, Harati Y, Gooch C, Mankodi A, Bayne L, Bonilla E, Shanske S, Hirano M, DiMauro S (2003) Clinical and genetic heterogeneity in progressive external ophthalmoplegia due to mutations in polymerase gamma. Arch Neurol 60(9):1279–1284.  https://doi.org/10.1001/archneur.60.9.1279 CrossRefPubMedGoogle Scholar
  27. 27.
    Rowland LP, Blake DM, Hirano M, Di Mauro S, Schon EA, Hays AP, Devivo DC (1991) Clinical syndromes associated with ragged red fibers. Rev Neurol (Paris) 147(6–7):467–473Google Scholar
  28. 28.
    Petruzzella V, Moraes CT, Sano MC, Bonilla E, DiMauro S, Schon EA (1994) Extremely high levels of mutant mtDNAs co-localize with cytochrome c oxidase-negative ragged-red fibers in patients harboring a point mutation at nt 3243. Hum Mol Genet 3(3):449–454CrossRefGoogle Scholar
  29. 29.
    Cardaioli E, Da Pozzo P, Gallus GN, Malandrini A, Gambelli S, Gaudiano C, Malfatti E, Viscomi C, Zicari E, Berti G, Serni G, Dotti MT, Federico A (2007) A novel heteroplasmic tRNA(Ser(UCN)) mtDNA point mutation associated with progressive external ophthalmoplegia and hearing loss. Neuromuscul Disord 17(9–10):681–683.  https://doi.org/10.1016/j.nmd.2007.05.001 CrossRefPubMedGoogle Scholar
  30. 30.
    Komulainen T, Hautakangas MR, Hinttala R, Pakanen S, Vahasarja V, Lehenkari P, Olsen P, Vieira P, Saarenpaa-Heikkila O, Palmio J, Tuominen H, Kinnunen P, Majamaa K, Rantala H, Uusimaa J (2015) Mitochondrial DNA depletion and deletions in paediatric patients with neuromuscular diseases: novel phenotypes. JIMD Rep 23:91–100.  https://doi.org/10.1007/8904_2015_438 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Massie R, Wong LJ, Milone M (2010) Exercise intolerance due to cytochrome b mutation. Muscle Nerve 42(1):136–140.  https://doi.org/10.1002/mus.21649 CrossRefPubMedGoogle Scholar
  32. 32.
    Bruno C, Santorelli FM, Assereto S, Tonoli E, Tessa A, Traverso M, Scapolan S, Bado M, Tedeschi S, Minetti C (2003) Progressive exercise intolerance associated with a new muscle-restricted nonsense mutation (G142X) in the mitochondrial cytochrome b gene. Muscle Nerve 28(4):508–511.  https://doi.org/10.1002/mus.10429 CrossRefPubMedGoogle Scholar
  33. 33.
    Russell O, Turnbull D (2014) Mitochondrial DNA disease-molecular insights and potential routes to a cure. Exp Cell Res 325(1):38–43.  https://doi.org/10.1016/j.yexcr.2014.03.012 CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Viscomi C, Bottani E, Zeviani M (2015) Emerging concepts in the therapy of mitochondrial disease. Biochim Biophys Acta 1847(6–7):544–557.  https://doi.org/10.1016/j.bbabio.2015.03.001 CrossRefPubMedGoogle Scholar
  35. 35.
    Hirano M, Marti R, Casali C, Tadesse S, Uldrick T, Fine B, Escolar DM, Valentino ML, Nishino I, Hesdorffer C, Schwartz J, Hawks RG, Martone DL, Cairo MS, DiMauro S, Stanzani M, Garvin JH Jr, Savage DG (2006) Allogeneic stem cell transplantation corrects biochemical derangements in MNGIE. Neurology 67(8):1458–1460.  https://doi.org/10.1212/01.wnl.0000240853.97716.24 CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Halter J, Schupbach WM, Casali C, Elhasid R, Fay K, Hammans S, Illa I, Kappeler L, Krahenbuhl S, Lehmann T, Mandel H, Marti R, Mattle H, Orchard K, Savage D, Sue CM, Valcarcel D, Gratwohl A, Hirano M (2011) Allogeneic hematopoietic SCT as treatment option for patients with mitochondrial neurogastrointestinal encephalomyopathy (MNGIE): a consensus conference proposal for a standardized approach. Bone Marrow Transplant 46(3):330–337.  https://doi.org/10.1038/bmt.2010.100 CrossRefPubMedGoogle Scholar
  37. 37.
    Torres-Torronteras J, Gomez A, Eixarch H, Palenzuela L, Pizzorno G, Hirano M, Andreu AL, Barquinero J, Marti R (2011) Hematopoietic gene therapy restores thymidine phosphorylase activity in a cell culture and a murine model of MNGIE. Gene Ther 18(8):795–806.  https://doi.org/10.1038/gt.2011.24 CrossRefPubMedGoogle Scholar
  38. 38.
    Lopez-Estevez S, Ferrer G, Torres-Torronteras J, Mansilla MJ, Casacuberta-Serra S, Martorell L, Hirano M, Marti R, Barquinero J (2014) Thymidine phosphorylase is both a therapeutic and a suicide gene in a murine model of mitochondrial neurogastrointestinal encephalomyopathy. Gene Ther 21(7):673–681.  https://doi.org/10.1038/gt.2014.41 CrossRefPubMedGoogle Scholar
  39. 39.
    Torres-Torronteras J, Cabrera-Perez R, Barba I, Costa C, de Luna N, Andreu AL, Barquinero J, Hirano M, Camara Y, Marti R (2016) Long-term restoration of thymidine phosphorylase function and nucleoside homeostasis using hematopoietic gene therapy in a murine model of mitochondrial neurogastrointestinal encephalomyopathy. Hum Gene Ther 27(9):656–667.  https://doi.org/10.1089/hum.2015.160 CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Torres-Torronteras J, Viscomi C, Cabrera-Perez R, Camara Y, Di Meo I, Barquinero J, Auricchio A, Pizzorno G, Hirano M, Zeviani M, Marti R (2014) Gene therapy using a liver-targeted AAV vector restores nucleoside and nucleotide homeostasis in a murine model of MNGIE. Mol Ther 22(5):901–907.  https://doi.org/10.1038/mt.2014.6 CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Flierl A, Chen Y, Coskun PE, Samulski RJ, Wallace DC (2005) Adeno-associated virus-mediated gene transfer of the heart/muscle adenine nucleotide translocator (ANT) in mouse. Gene Ther 12(7):570–578.  https://doi.org/10.1038/sj.gt.3302443 CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Tiranti V, Viscomi C, Hildebrandt T, Di Meo I, Mineri R, Tiveron C, Levitt MD, Prelle A, Fagiolari G, Rimoldi M, Zeviani M (2009) Loss of ETHE1, a mitochondrial dioxygenase, causes fatal sulfide toxicity in ethylmalonic encephalopathy. Nat Med 15(2):200–205.  https://doi.org/10.1038/nm.1907 CrossRefPubMedGoogle Scholar
  43. 43.
    Di Meo I, Auricchio A, Lamperti C, Burlina A, Viscomi C, Zeviani M (2012) Effective AAV-mediated gene therapy in a mouse model of ethylmalonic encephalopathy. EMBO Mol Med 4(9):1008–1014.  https://doi.org/10.1002/emmm.201201433 CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Moraes CT (1996) Mitochondrial disorders. Curr Opin Neurol 9(5):369–374CrossRefGoogle Scholar
  45. 45.
    Moraes CT, Ricci E, Petruzzella V, Shanske S, DiMauro S, Schon EA, Bonilla E (1992) Molecular analysis of the muscle pathology associated with mitochondrial DNA deletions. Nat Genet 1(5):359–367.  https://doi.org/10.1038/ng0892-359 CrossRefPubMedGoogle Scholar
  46. 46.
    Tuppen HA, Blakely EL, Turnbull DM, Taylor RW (2010) Mitochondrial DNA mutations and human disease. Biochim Biophys Acta 1797(2):113–128.  https://doi.org/10.1016/j.bbabio.2009.09.005 CrossRefPubMedGoogle Scholar
  47. 47.
    Sciacco M, Bonilla E, Schon EA, DiMauro S, Moraes CT (1994) Distribution of wild-type and common deletion forms of mtDNA in normal and respiration-deficient muscle fibers from patients with mitochondrial myopathy. Hum Mol Genet 3(1):13–19CrossRefGoogle Scholar
  48. 48.
    Srivastava S, Moraes CT (2001) Manipulating mitochondrial DNA heteroplasmy by a mitochondrially targeted restriction endonuclease. Hum Mol Genet 10(26):3093–3099CrossRefGoogle Scholar
  49. 49.
    Tanaka M, Borgeld HJ, Zhang J, Muramatsu S, Gong JS, Yoneda M, Maruyama W, Naoi M, Ibi T, Sahashi K, Shamoto M, Fuku N, Kurata M, Yamada Y, Nishizawa K, Akao Y, Ohishi N, Miyabayashi S, Umemoto H, Muramatsu T, Furukawa K, Kikuchi A, Nakano I, Ozawa K, Yagi K (2002) Gene therapy for mitochondrial disease by delivering restriction endonuclease SmaI into mitochondria. J Biomed Sci 9(6 Pt 1):534–541.  https://doi.org/10.1159/000064726 CrossRefPubMedGoogle Scholar
  50. 50.
    Holt IJ, Harding AE, Petty RK, Morgan-Hughes JA (1990) A new mitochondrial disease associated with mitochondrial DNA heteroplasmy. Am J Hum Genet 46(3):428–433PubMedPubMedCentralGoogle Scholar
  51. 51.
    Tatuch Y, Christodoulou J, Feigenbaum A, Clarke JT, Wherret J, Smith C, Rudd N, Petrova-Benedict R, Robinson BH (1992) Heteroplasmic mtDNA mutation (T----G) at 8993 can cause Leigh disease when the percentage of abnormal mtDNA is high. Am J Hum Genet 50(4):852–858PubMedPubMedCentralGoogle Scholar
  52. 52.
    Alexeyev CN, Yavorsky MA, Shvedov VG (2008) Angular momentum flux of counterpropagating paraxial beams. J Opt Soc Am A Opt Image Sci Vis 25(3):643–646CrossRefGoogle Scholar
  53. 53.
    Bayona-Bafaluy MP, Blits B, Battersby BJ, Shoubridge EA, Moraes CT (2005) Rapid directional shift of mitochondrial DNA heteroplasmy in animal tissues by a mitochondrially targeted restriction endonuclease. Proc Natl Acad Sci U S A 102(40):14392–14397.  https://doi.org/10.1073/pnas.0502896102 CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Jenuth JP, Peterson AC, Shoubridge EA (1997) Tissue-specific selection for different mtDNA genotypes in heteroplasmic mice. Nat Genet 16(1):93–95.  https://doi.org/10.1038/ng0597-93 CrossRefPubMedGoogle Scholar
  55. 55.
    Bacman SR, Williams SL, Hernandez D, Moraes CT (2007) Modulating mtDNA heteroplasmy by mitochondria-targeted restriction endonucleases in a ‘differential multiple cleavage-site’ model. Gene Ther 14(18):1309–1318.  https://doi.org/10.1038/sj.gt.3302981 CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Bacman SR, Williams SL, Garcia S, Moraes CT (2010) Organ-specific shifts in mtDNA heteroplasmy following systemic delivery of a mitochondria-targeted restriction endonuclease. Gene Ther 17(6):713–720.  https://doi.org/10.1038/gt.2010.25 CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Bacman SR, Williams SL, Duan D, Moraes CT (2012) Manipulation of mtDNA heteroplasmy in all striated muscles of newborn mice by AAV9-mediated delivery of a mitochondria-targeted restriction endonuclease. Gene Ther 19(11):1101–1106.  https://doi.org/10.1038/gt.2011.196 CrossRefPubMedGoogle Scholar
  58. 58.
    Inagaki K, Fuess S, Storm TA, Gibson GA, McTiernan CF, Kay MA, Nakai H (2006) Robust systemic transduction with AAV9 vectors in mice: efficient global cardiac gene transfer superior to that of AAV8. Mol Ther 14(1):45–53.  https://doi.org/10.1016/j.ymthe.2006.03.014 CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Ghosh A, Yue Y, Long C, Bostick B, Duan D (2007) Efficient whole-body transduction with trans-splicing adeno-associated viral vectors. Mol Ther 15(4):750–755.  https://doi.org/10.1038/sj.mt.6300081 CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Gaj T, Gersbach CA, Barbas CF (2013) ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol 31(7):397–405.  https://doi.org/10.1016/j.tibtech.2013.04.004 CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA, Zhang F (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339(6121):819–823.  https://doi.org/10.1126/science.1231143 CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Ramirez CL, Foley JE, Wright DA, Muller-Lerch F, Rahman SH, Cornu TI, Winfrey RJ, Sander JD, Fu F, Townsend JA, Cathomen T, Voytas DF, Joung JK (2008) Unexpected failure rates for modular assembly of engineered zinc fingers. Nat Methods 5(5):374–375.  https://doi.org/10.1038/nmeth0508-374 CrossRefPubMedGoogle Scholar
  63. 63.
    Boch J, Bonas U (2010) Xanthomonas AvrBs3 family-type III effectors: discovery and function. Annu Rev Phytopathol 48:419–436.  https://doi.org/10.1146/annurev-phyto-080508-081936 CrossRefPubMedGoogle Scholar
  64. 64.
    Urnov FD, Miller JC, Lee YL, Beausejour CM, Rock JM, Augustus S, Jamieson AC, Porteus MH, Gregory PD, Holmes MC (2005) Highly efficient endogenous human gene correction using designed zinc-finger nucleases. Nature 435(7042):646–651.  https://doi.org/10.1038/nature03556 CrossRefPubMedGoogle Scholar
  65. 65.
    Bacman SR, Williams SL, Pinto M, Moraes CT (2014) The use of mitochondria-targeted endonucleases to manipulate mtDNA. Methods Enzymol 547:373–397.  https://doi.org/10.1016/B978-0-12-801415-8.00018-7 CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Kim YG, Cha J, Chandrasegaran S (1996) Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. Proc Natl Acad Sci U S A 93(3):1156–1160CrossRefGoogle Scholar
  67. 67.
    West SC (2003) Molecular views of recombination proteins and their control. Nat Rev Mol Cell Biol 4(6):435–445.  https://doi.org/10.1038/nrm1127 CrossRefPubMedGoogle Scholar
  68. 68.
    Cox DB, Platt RJ, Zhang F (2015) Therapeutic genome editing: prospects and challenges. Nat Med 21(2):121–131.  https://doi.org/10.1038/nm.3793 CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Wu J, Kandavelou K, Chandrasegaran S (2007) Custom-designed zinc finger nucleases: what is next? Cell Mol Life Sci 64(22):2933–2944.  https://doi.org/10.1007/s00018-007-7206-8 CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Smith J, Bibikova M, Whitby FG, Reddy AR, Chandrasegaran S, Carroll D (2000) Requirements for double-strand cleavage by chimeric restriction enzymes with zinc finger DNA-recognition domains. Nucleic Acids Res 28(17):3361–3369CrossRefGoogle Scholar
  71. 71.
    Cathomen T, Joung JK (2008) Zinc-finger nucleases: the next generation emerges. Mol Ther 16(7):1200–1207.  https://doi.org/10.1038/mt.2008.114 CrossRefPubMedGoogle Scholar
  72. 72.
    Urnov FD, Rebar EJ, Holmes MC, Zhang HS, Gregory PD (2010) Genome editing with engineered zinc finger nucleases. Nat Rev Genet 11(9):636–646.  https://doi.org/10.1038/nrg2842 CrossRefPubMedGoogle Scholar
  73. 73.
    Carroll D (2008) Progress and prospects: zinc-finger nucleases as gene therapy agents. Gene Ther 15(22):1463–1468.  https://doi.org/10.1038/gt.2008.145 CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Minczuk M, Papworth MA, Kolasinska P, Murphy MP, Klug A (2006) Sequence-specific modification of mitochondrial DNA using a chimeric zinc finger methylase. Proc Natl Acad Sci U S A 103(52):19689–19694.  https://doi.org/10.1073/pnas.0609502103 CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Minczuk M, Papworth MA, Miller JC, Murphy MP, Klug A (2008) Development of a single-chain, quasi-dimeric zinc-finger nuclease for the selective degradation of mutated human mitochondrial DNA. Nucleic Acids Res 36(12):3926–3938.  https://doi.org/10.1093/nar/gkn313 CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Gammage PA, Rorbach J, Vincent AI, Rebar EJ, Minczuk M (2014) Mitochondrially targeted ZFNs for selective degradation of pathogenic mitochondrial genomes bearing large-scale deletions or point mutations. EMBO Mol Med 6(4):458–466.  https://doi.org/10.1002/emmm.201303672 CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Gammage PA, Gaude E, Van Haute L, Rebelo-Guiomar P, Jackson CB, Rorbach J, Pekalski ML, Robinson AJ, Charpentier M, Concordet JP, Frezza C, Minczuk M (2016) Near-complete elimination of mutant mtDNA by iterative or dynamic dose-controlled treatment with mtZFNs. Nucleic Acids Res 44(16):7804–7816.  https://doi.org/10.1093/nar/gkw676 CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Grady JP, Campbell G, Ratnaike T, Blakely EL, Falkous G, Nesbitt V, Schaefer AM, McNally RJ, Gorman GS, Taylor RW, Turnbull DM, McFarland R (2014) Disease progression in patients with single, large-scale mitochondrial DNA deletions. Brain 137(Pt 2):323–334.  https://doi.org/10.1093/brain/awt321 CrossRefPubMedGoogle Scholar
  79. 79.
    Hockemeyer D, Wang H, Kiani S, Lai CS, Gao Q, Cassady JP, Cost GJ, Zhang L, Santiago Y, Miller JC, Zeitler B, Cherone JM, Meng X, Hinkley SJ, Rebar EJ, Gregory PD, Urnov FD, Jaenisch R (2011) Genetic engineering of human pluripotent cells using TALE nucleases. Nat Biotechnol 29(8):731–734.  https://doi.org/10.1038/nbt.1927 CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Valton J, Cabaniols JP, Galetto R, Delacote F, Duhamel M, Paris S, Blanchard DA, Lebuhotel C, Thomas S, Moriceau S, Demirdjian R, Letort G, Jacquet A, Gariboldi A, Rolland S, Daboussi F, Juillerat A, Bertonati C, Duclert A, Duchateau P (2014) Efficient strategies for TALEN-mediated genome editing in mammalian cell lines. Methods 69(2):151–170.  https://doi.org/10.1016/j.ymeth.2014.06.013 CrossRefPubMedGoogle Scholar
  81. 81.
    Moscou MJ, Bogdanove AJ (2009) A simple cipher governs DNA recognition by TAL effectors. Science 326(5959):1501.  https://doi.org/10.1126/science.1178817 CrossRefPubMedGoogle Scholar
  82. 82.
    Boch J, Scholze H, Schornack S, Landgraf A, Hahn S, Kay S, Lahaye T, Nickstadt A, Bonas U (2009) Breaking the code of DNA binding specificity of TAL-type III effectors. Science 326(5959):1509–1512.  https://doi.org/10.1126/science.1178811 CrossRefPubMedGoogle Scholar
  83. 83.
    Bogdanove AJ, Voytas DF (2011) TAL effectors: customizable proteins for DNA targeting. Science 333(6051):1843–1846.  https://doi.org/10.1126/science.1204094 CrossRefPubMedGoogle Scholar
  84. 84.
    Pan Y, Xiao L, Li AS, Zhang X, Sirois P, Zhang J, Li K (2013) Biological and biomedical applications of engineered nucleases. Mol Biotechnol 55(1):54–62.  https://doi.org/10.1007/s12033-012-9613-9 CrossRefPubMedGoogle Scholar
  85. 85.
    Sung YH, Baek IJ, Kim DH, Jeon J, Lee J, Lee K, Jeong D, Kim JS, Lee HW (2013) Knockout mice created by TALEN-mediated gene targeting. Nat Biotechnol 31(1):23–24.  https://doi.org/10.1038/nbt.2477 CrossRefPubMedGoogle Scholar
  86. 86.
    Cermak T, Doyle EL, Christian M, Wang L, Zhang Y, Schmidt C, Baller JA, Somia NV, Bogdanove AJ, Voytas DF (2011) Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Res 39(12):e82.  https://doi.org/10.1093/nar/gkr218 CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Bitinaite J, Wah DA, Aggarwal AK, Schildkraut I (1998) FokI dimerization is required for DNA cleavage. Proc Natl Acad Sci U S A 95(18):10570–10575CrossRefGoogle Scholar
  88. 88.
    Doyon Y, Vo TD, Mendel MC, Greenberg SG, Wang J, Xia DF, Miller JC, Urnov FD, Gregory PD, Holmes MC (2011) Enhancing zinc-finger-nuclease activity with improved obligate heterodimeric architectures. Nat Methods 8(1):74–79.  https://doi.org/10.1038/nmeth.1539 CrossRefPubMedGoogle Scholar
  89. 89.
    Bacman SR, Williams SL, Pinto M, Peralta S, Moraes CT (2013) Specific elimination of mutant mitochondrial genomes in patient-derived cells by mitoTALENs. Nat Med 19(9):1111–1113.  https://doi.org/10.1038/nm.3261 CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Szymczak AL, Workman CJ, Wang Y, Vignali KM, Dilioglou S, Vanin EF, Vignali DA (2004) Correction of multi-gene deficiency in vivo using a single ‘self-cleaving’ 2A peptide-based retroviral vector. Nat Biotechnol 22(5):589–594.  https://doi.org/10.1038/nbt957 CrossRefPubMedGoogle Scholar
  91. 91.
    Schon EA, Rizzuto R, Moraes CT, Nakase H, Zeviani M, DiMauro S (1989) A direct repeat is a hotspot for large-scale deletion of human mitochondrial DNA. Science 244(4902):346–349CrossRefGoogle Scholar
  92. 92.
    Corral-Debrinski M, Horton T, Lott MT, Shoffner JM, Beal MF, Wallace DC (1992) Mitochondrial DNA deletions in human brain: regional variability and increase with advanced age. Nat Genet 2(4):324–329.  https://doi.org/10.1038/ng1292-324 CrossRefPubMedGoogle Scholar
  93. 93.
    Jun AS, Trounce IA, Brown MD, Shoffner JM, Wallace DC (1996) Use of transmitochondrial cybrids to assign a complex I defect to the mitochondrial DNA-encoded NADH dehydrogenase subunit 6 gene mutation at nucleotide pair 14459 that causes Leber hereditary optic neuropathy and dystonia. Mol Cell Biol 16(3):771–777CrossRefGoogle Scholar
  94. 94.
    Hashimoto M, Bacman SR, Peralta S, Falk MJ, Chomyn A, Chan DC, Williams SL, Moraes CT (2015) MitoTALEN: a general approach to reduce mutant mtDNA loads and restore oxidative phosphorylation function in mitochondrial diseases. Mol Ther 23(10):1592–1599.  https://doi.org/10.1038/mt.2015.126 CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Shoffner JM, Lott MT, Lezza AM, Seibel P, Ballinger SW, Wallace DC (1990) Myoclonic epilepsy and ragged-red fiber disease (MERRF) is associated with a mitochondrial DNA tRNA(Lys) mutation. Cell 61(6):931–937CrossRefGoogle Scholar
  96. 96.
    Berkovic SF, Shoubridge EA, Andermann F, Andermann E, Carpenter S, Karpati G (1991) Clinical spectrum of mitochondrial DNA mutation at base pair 8344. Lancet 338(8764):457CrossRefGoogle Scholar
  97. 97.
    Chol M, Lebon S, Benit P, Chretien D, de Lonlay P, Goldenberg A, Odent S, Hertz-Pannier L, Vincent-Delorme C, Cormier-Daire V, Rustin P, Rotig A, Munnich A (2003) The mitochondrial DNA G13513A MELAS mutation in the NADH dehydrogenase 5 gene is a frequent cause of Leigh-like syndrome with isolated complex I deficiency. J Med Genet 40(3):188–191CrossRefGoogle Scholar
  98. 98.
    Shanske S, Coku J, Lu J, Ganesh J, Krishna S, Tanji K, Bonilla E, Naini AB, Hirano M, DiMauro S (2008) The G13513A mutation in the ND5 gene of mitochondrial DNA as a common cause of MELAS or Leigh syndrome: evidence from 12 cases. Arch Neurol 65(3):368–372.  https://doi.org/10.1001/archneurol.2007.67 CrossRefPubMedGoogle Scholar
  99. 99.
    Jo A, Ham S, Lee GH, Lee YI, Kim S, Lee YS, Shin JH, Lee Y (2015) Efficient mitochondrial genome editing by CRISPR/Cas9. Biomed Res Int 2015:305716.  https://doi.org/10.1155/2015/305716 CrossRefPubMedPubMedCentralGoogle Scholar
  100. 100.
    Reddy P, Ocampo A, Suzuki K, Luo J, Bacman SR, Williams SL, Sugawara A, Okamura D, Tsunekawa Y, Wu J, Lam D, Xiong X, Montserrat N, Esteban CR, Liu GH, Sancho-Martinez I, Manau D, Civico S, Cardellach F, Del Mar O’Callaghan M, Campistol J, Zhao H, Campistol JM, Moraes CT, Izpisua Belmonte JC (2015) Selective elimination of mitochondrial mutations in the germline by genome editing. Cell 161(3):459–469.  https://doi.org/10.1016/j.cell.2015.03.051 CrossRefPubMedPubMedCentralGoogle Scholar
  101. 101.
    Bayona-Bafaluy MP, Muller S, Moraes CT (2005) Fast adaptive coevolution of nuclear and mitochondrial subunits of ATP synthetase in orangutan. Mol Biol Evol 22(3):716–724.  https://doi.org/10.1093/molbev/msi059 CrossRefPubMedGoogle Scholar
  102. 102.
    Jun AS, Brown MD, Wallace DC (1994) A mitochondrial DNA mutation at nucleotide pair 14459 of the NADH dehydrogenase subunit 6 gene associated with maternally inherited Leber hereditary optic neuropathy and dystonia. Proc Natl Acad Sci U S A 91(13):6206–6210CrossRefGoogle Scholar
  103. 103.
    Taylor RW, Turnbull DM (2005) Mitochondrial DNA mutations in human disease. Nat Rev Genet 6(5):389–402.  https://doi.org/10.1038/nrg1606 CrossRefPubMedPubMedCentralGoogle Scholar
  104. 104.
    Guilinger JP, Pattanayak V, Reyon D, Tsai SQ, Sander JD, Joung JK, Liu DR (2014) Broad specificity profiling of TALENs results in engineered nucleases with improved DNA-cleavage specificity. Nat Methods 11(4):429–435.  https://doi.org/10.1038/nmeth.2845 CrossRefPubMedPubMedCentralGoogle Scholar
  105. 105.
    Lamb BM, Mercer AC, Barbas CF 3rd (2013) Directed evolution of the TALE N-terminal domain for recognition of all 5′ bases. Nucleic Acids Res 41(21):9779–9785.  https://doi.org/10.1093/nar/gkt754 CrossRefPubMedPubMedCentralGoogle Scholar
  106. 106.
    Wirth T, Parker N, Yla-Herttuala S (2013) History of gene therapy. Gene 525(2):162–169.  https://doi.org/10.1016/j.gene.2013.03.137 CrossRefPubMedGoogle Scholar
  107. 107.
    Zincarelli C, Soltys S, Rengo G, Rabinowitz JE (2008) Analysis of AAV serotypes 1-9 mediated gene expression and tropism in mice after systemic injection. Mol Ther 16(6):1073–1080.  https://doi.org/10.1038/mt.2008.76 CrossRefPubMedGoogle Scholar
  108. 108.
    Samulski RJ, Muzyczka N (2014) AAV-mediated gene therapy for research and therapeutic purposes. Annu Rev Virol 1(1):427–451.  https://doi.org/10.1146/annurev-virology-031413-085355 CrossRefPubMedGoogle Scholar
  109. 109.
    Li H, Haurigot V, Doyon Y, Li T, Wong SY, Bhagwat AS, Malani N, Anguela XM, Sharma R, Ivanciu L, Murphy SL, Finn JD, Khazi FR, Zhou S, Paschon DE, Rebar EJ, Bushman FD, Gregory PD, Holmes MC, High KA (2011) In vivo genome editing restores haemostasis in a mouse model of haemophilia. Nature 475(7355):217–221.  https://doi.org/10.1038/nature10177 CrossRefPubMedPubMedCentralGoogle Scholar
  110. 110.
    Wickham TJ, Tzeng E, Shears LL 2nd, Roelvink PW, Li Y, Lee GM, Brough DE, Lizonova A, Kovesdi I (1997) Increased in vitro and in vivo gene transfer by adenovirus vectors containing chimeric fiber proteins. J Virol 71(11):8221–8229PubMedPubMedCentralGoogle Scholar
  111. 111.
    Boquet MP, Wonganan P, Dekker JD, Croyle MA (2008) Influence of method of systemic administration of adenovirus on virus-mediated toxicity: focus on mortality, virus distribution, and drug metabolism. J Pharmacol Toxicol Methods 58(3):222–232.  https://doi.org/10.1016/j.vascn.2008.07.003 CrossRefPubMedPubMedCentralGoogle Scholar
  112. 112.
    Iizuka S, Sakurai F, Shimizu K, Ohashi K, Nakamura S, Tachibana M, Mizuguchi H (2015) Evaluation of transduction properties of an adenovirus vector in neonatal mice. Biomed Res Int 2015:685374.  https://doi.org/10.1155/2015/685374 CrossRefPubMedPubMedCentralGoogle Scholar
  113. 113.
    Jozkowicz A, Dulak J (2005) Helper-dependent adenoviral vectors in experimental gene therapy. Acta Biochim Pol 52(3):589–599PubMedPubMedCentralGoogle Scholar
  114. 114.
    Salganik M, Hirsch ML, Samulski RJ (2015) Adeno-associated virus as a mammalian DNA vector. Microbiol Spectr 3(4):829–851.  https://doi.org/10.1128/microbiolspec.MDNA3-0052-2014 CrossRefGoogle Scholar
  115. 115.
    Levy C, Verhoeyen E, Cosset FL (2015) Surface engineering of lentiviral vectors for gene transfer into gene therapy target cells. Curr Opin Pharmacol 24:79–85.  https://doi.org/10.1016/j.coph.2015.08.003 CrossRefPubMedGoogle Scholar
  116. 116.
    Vargas JE, Chicaybam L, Stein RT, Tanuri A, Delgado-Canedo A, Bonamino MH (2016) Retroviral vectors and transposons for stable gene therapy: advances, current challenges and perspectives. J Transl Med 14(1):288.  https://doi.org/10.1186/s12967-016-1047-x CrossRefPubMedPubMedCentralGoogle Scholar
  117. 117.
    Long C, Amoasii L, Mireault AA, McAnally JR, Li H, Sanchez-Ortiz E, Bhattacharyya S, Shelton JM, Bassel-Duby R, Olson EN (2016) Postnatal genome editing partially restores dystrophin expression in a mouse model of muscular dystrophy. Science 351(6271):400–403.  https://doi.org/10.1126/science.aad5725 CrossRefPubMedGoogle Scholar
  118. 118.
    Chamberlain K, Riyad JM, Weber T (2017) Cardiac gene therapy with adeno-associated virus-based vectors. Curr Opin Cardiol 32(3):275–282.  https://doi.org/10.1097/HCO.0000000000000386 CrossRefGoogle Scholar
  119. 119.
    Saraiva J, Nobre RJ, Pereira de Almeida L (2016) Gene therapy for the CNS using AAVs: the impact of systemic delivery by AAV9. J Control Release 241:94–109.  https://doi.org/10.1016/j.jconrel.2016.09.011 CrossRefPubMedGoogle Scholar
  120. 120.
    Kleinstiver BP, Wang L, Wolfs JM, Kolaczyk T, McDowell B, Wang X, Schild-Poulter C, Bogdanove AJ, Edgell DR (2014) The I-TevI nuclease and linker domains contribute to the specificity of monomeric TALENs. G3 (Bethesda) 4(6):1155–1165.  https://doi.org/10.1534/g3.114.011445 CrossRefGoogle Scholar
  121. 121.
    Nakada K, Hayashi J (2011) Transmitochondrial mice as models for mitochondrial DNA-based diseases. Exp Anim 60(5):421–431CrossRefGoogle Scholar
  122. 122.
    Lehmann D, Schubert K, Joshi PR, Baty K, Blakely EL, Zierz S, Taylor RW, Deschauer M (2015) A novel m.7539C>T point mutation in the mt-tRNA(Asp) gene associated with multisystemic mitochondrial disease. Neuromuscul Disord 25(1):81–84.  https://doi.org/10.1016/j.nmd.2014.09.008 CrossRefPubMedPubMedCentralGoogle Scholar
  123. 123.
    Kauppila JH, Baines HL, Bratic A, Simard ML, Freyer C, Mourier A, Stamp C, Filograna R, Larsson NG, Greaves LC, Stewart JB (2016) A phenotype-driven approach to generate mouse models with pathogenic mtDNA mutations causing mitochondrial disease. Cell Rep 16(11):2980–2990.  https://doi.org/10.1016/j.celrep.2016.08.037 CrossRefPubMedPubMedCentralGoogle Scholar
  124. 124.
    Palpant NJ, Dudzinski D (2013) Zinc finger nucleases: looking toward translation. Gene Ther 20(2):121–127.  https://doi.org/10.1038/gt.2012.2 CrossRefPubMedGoogle Scholar
  125. 125.
    Hay EA, Khalaf AR, Marini P, Brown A, Heath K, Sheppard D, MacKenzie A (2016) An analysis of possible off target effects following CAS9/CRISPR targeted deletions of neuropeptide gene enhancers from the mouse genome. Neuropeptides 64:101–107.  https://doi.org/10.1016/j.npep.2016.11.003 CrossRefPubMedGoogle Scholar
  126. 126.
    Stella S, Montoya G (2016) The genome editing revolution: a CRISPR-Cas TALE off-target story. BioEssays 38(Suppl 1):S4–S13.  https://doi.org/10.1002/bies.201670903 CrossRefPubMedGoogle Scholar
  127. 127.
    Yee JK (2016) Off-target effects of engineered nucleases. FEBS J 283(17):3239–3248.  https://doi.org/10.1111/febs.13760 CrossRefPubMedGoogle Scholar
  128. 128.
    Wang D, Zhong L, Nahid MA, Gao G (2014) The potential of adeno-associated viral vectors for gene delivery to muscle tissue. Expert Opin Drug Deliv 11(3):345–364.  https://doi.org/10.1517/17425247.2014.871258 CrossRefPubMedPubMedCentralGoogle Scholar
  129. 129.
    Chew WL, Tabebordbar M, Cheng JK, Mali P, Wu EY, Ng AH, Zhu K, Wagers AJ, Church GM (2016) A multifunctional AAV-CRISPR-Cas9 and its host response. Nat Methods 13(10):868–874.  https://doi.org/10.1038/nmeth.3993 CrossRefPubMedPubMedCentralGoogle Scholar
  130. 130.
    Benjamin R, Berges BK, Solis-Leal A, Igbinedion O, Strong CL, Schiller MR (2016) TALEN gene editing takes aim on HIV. Hum Genet 135(9):1059–1070.  https://doi.org/10.1007/s00439-016-1678-2 CrossRefPubMedPubMedCentralGoogle Scholar
  131. 131.
    Bacman SR, Kauppila JHK, Pereira CV, Nissanka N, Miranda M, Pinto M, Williams SL, Larsson NG, Stewart JB, Moraes CT (2018) MitoTALEN reduces mutant mtDNA load and restores tRNAAla levels in a mouse model of heteroplasmic mtDNA mutation. Nat Med 24(11):1696–1700. https://www.nature.com/articles/s41591-018-0166-8 CrossRefGoogle Scholar
  132. 132.
    Gammage PA, Viscomi C, Simard ML, Costa ASH, Gaude E, Powell CA, Van Haute L, McCann BJ, Rebelo-Guiomar P, Cerutti R, Zhang L, Rebar EJ, Zeviani M, Frezza C, Stewart JB, Minczuk M (2018) Genome editing in mitochondria corrects a pathogenic mtDNA mutation in vivo. Nat Med 24(11):1691–1695. https://www.nature.com/articles/s41591-018-0165-9 CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of NeurologyUniversity of Miami Miller School of MedicineMiamiUSA

Personalised recommendations