Preclinical Gene Therapy Studies for Metabolic Myopathy

  • Stephanie Salabarria
  • Barry J. Byrne
  • Cristina Liberati
  • Manuela CortiEmail author


The application of adeno-associated virus (AAV) and adenovirus (AdV) gene therapy has become increasingly important as a therapeutic modality since its first application in humans in 1990. However, over the past 20 years, the field has matured, and tangible clinical outcomes have been achieved in a limited number of studies. Establishing proof of concept and overcoming some of the technical challenges and establishing safety are the focus of preclinical studies on gene therapy to date. Gene therapy has been extensively investigated for some metabolic myopathies such as Pompe, but it has just begun for many others. This chapter will evaluate animal models for future research in metabolic myopathies as well as preclinical gene therapy trials for glycogen storage diseases (GSD) I, III, and V, Barth syndrome, Friedreich’s ataxia, and very long-chain acyl-CoA dehydrogenase (VLCAD) deficiency . These animal models will provide a great opportunity to test novel forms of gene editing and gene replacement therapies.


Metabolic myopathies Glycogen storage diseases Mitochondrial disorders Vector 


  1. 1.
    Angelini C (2015) Spectrum of metabolic myopathies. Biochim Biophys Acta 1852(4):615–621. CrossRefPubMedGoogle Scholar
  2. 2.
    Berardo A, DiMauro S, Hirano M (2010) A diagnostic algorithm for metabolic myopathies. Curr Neurol Neurosci Rep 10(2):118–126. CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Sun B, Brooks ED, Koeberl DD (2015) Preclinical development of new therapy for glycogen storage diseases. Curr Gene Ther 15(4):338–347CrossRefGoogle Scholar
  4. 4.
    Froissart R, Piraud M, Boudjemline AM, Vianey-Saban C, Petit F, Hubert-Buron A, Eberschweiler PT, Gajdos V, Labrune P (2011) Glucose-6-phosphatase deficiency. Orphanet J Rare Dis 6:27. CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Koeberl DD, Kishnani PS, Bali D, Chen YT (2009) Emerging therapies for glycogen storage disease type I. Trends Endocrinol Metab 20(5):252–258. CrossRefPubMedGoogle Scholar
  6. 6.
    Wolfsdorf JI, Crigler JF Jr (1999) Effect of continuous glucose therapy begun in infancy on the long-term clinical course of patients with type I glycogen storage disease. J Pediatr Gastroenterol Nutr 29(2):136–143CrossRefGoogle Scholar
  7. 7.
    Beaty RM, Jackson M, Peterson D, Bird A, Brown T, Benjamin DK Jr, Juopperi T, Kishnani P, Boney A, Chen YT, Koeberl DD (2002) Delivery of glucose-6-phosphatase in a canine model for glycogen storage disease, type Ia, with adeno-associated virus (AAV) vectors. Gene Ther 9(15):1015–1022. CrossRefPubMedGoogle Scholar
  8. 8.
    Koeberl DD, Pinto C, Sun B, Li S, Kozink DM, Benjamin DK Jr, Demaster AK, Kruse MA, Vaughn V, Hillman S, Bird A, Jackson M, Brown T, Kishnani PS, Chen YT (2008) AAV vector-mediated reversal of hypoglycemia in canine and murine glycogen storage disease type Ia. Mol Ther 16(4):665–672. CrossRefPubMedGoogle Scholar
  9. 9.
    Yiu WH, Lee YM, Peng WT, Pan CJ, Mead PA, Mansfield BC, Chou JY (2010) Complete normalization of hepatic G6PC deficiency in murine glycogen storage disease type Ia using gene therapy. Mol Ther 18(6):1076–1084. CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Specht A, Fiske L, Erger K, Cossette T, Verstegen J, Campbell-Thompson M, Struck MB, Lee YM, Chou JY, Byrne BJ, Correia CE, Mah CS, Weinstein DA, Conlon TJ (2011) Glycogen storage disease type Ia in canines: a model for human metabolic and genetic liver disease. J Biomed Biotechnol 2011:646257. CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Weinstein DA, Correia CE, Conlon T, Specht A, Verstegen J, Onclin-Verstegen K, Campbell-Thompson M, Dhaliwal G, Mirian L, Cossette H, Falk DJ, Germain S, Clement N, Porvasnik S, Fiske L, Struck M, Ramirez HE, Jordan J, Andrutis K, Chou JY, Byrne BJ, Mah CS (2010) Adeno-associated virus-mediated correction of a canine model of glycogen storage disease type Ia. Hum Gene Ther 21(7):903–910. CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Todd AG, McElroy JA, Grange RW, Fuller DD, Walter GA, Byrne BJ, Falk DJ (2015) Correcting neuromuscular deficits with gene therapy in Pompe disease. Ann Neurol 78(2):222–234. CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Raben N, Plotz P, Byrne BJ (2002) Acid alpha-glucosidase deficiency (glycogenosis type II, Pompe disease). Curr Mol Med 2(2):145–166CrossRefGoogle Scholar
  14. 14.
    Byrne BJ, Falk DJ, Pacak CA, Nayak S, Herzog RW, Elder ME, Collins SW, Conlon TJ, Clement N, Cleaver BD, Cloutier DA, Porvasnik SL, Islam S, Elmallah MK, Martin A, Smith BK, Fuller DD, Lawson LA, Mah CS (2011) Pompe disease gene therapy. Hum Mol Genet 20(R1):R61–R68. CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Byrne BJ, Kishnani PS, Case LE, Merlini L, Muller-Felber W, Prasad S, van der Ploeg A (2011) Pompe disease: design, methodology, and early findings from the Pompe Registry. Mol Genet Metab 103(1):1–11. CrossRefPubMedGoogle Scholar
  16. 16.
    Kishnani PS, Hwu WL, Mandel H, Nicolino M, Yong F, Corzo D, Infantile-Onset Pompe Disease Natural History Study G (2006) A retrospective, multinational, multicenter study on the natural history of infantile-onset Pompe disease. J Pediatr 148(5):671–676. CrossRefPubMedGoogle Scholar
  17. 17.
    Falk DJ, Mah CS, Soustek MS, Lee KZ, Elmallah MK, Cloutier DA, Fuller DD, Byrne BJ (2013) Intrapleural administration of AAV9 improves neural and cardiorespiratory function in Pompe disease. Mol Ther 21(9):1661–1667. CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Ponce E, Witte DP, Hirschhorn R, Huie ML, Grabowski GA (1999) Murine acid alpha-glucosidase: cell-specific mRNA differential expression during development and maturation. Am J Pathol 154(4):1089–1096CrossRefGoogle Scholar
  19. 19.
    Hirschhorn R, Reuser AJJ (2001) Glycogen storage disease type II: acid à-glucosidase (acid maltase) deficiency. In: Scriver C, Beaudet AL, Sly WS, Valle D (eds) The metabolic and molecular basis for inherited disease, vol 8. McGraw-Hill, New York, pp 3389–3419Google Scholar
  20. 20.
    Falk DJ, Soustek MS, Todd AG, Mah CS, Cloutier DA, Kelley JS, Clement N, Fuller DD, Byrne BJ (2015) Comparative impact of AAV and enzyme replacement therapy on respiratory and cardiac function in adult Pompe mice. Mol Ther Methods Clin Dev 2:15007. CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Doerfler PA, Todd AG, Clement N, Falk DJ, Nayak S, Herzog RW, Byrne BJ (2016) Copackaged AAV9 vectors promote simultaneous immune tolerance and phenotypic correction of Pompe disease. Hum Gene Ther 27(1):43–59. CrossRefPubMedGoogle Scholar
  22. 22.
    Forbes GB (1953) Glycogen storage disease; report of a case with abnormal glycogen structure in liver and skeletal muscle. J Pediatr 42(6):645–653CrossRefGoogle Scholar
  23. 23.
    Kishnani PS, Austin SL, Arn P, Bali DS, Boney A, Case LE, Chung WK, Desai DM, El-Gharbawy A, Haller R, Smit GP, Smith AD, Hobson-Webb LD, Wechsler SB, Weinstein DA, Watson MS, ACMG (2010) Glycogen storage disease type III diagnosis and management guidelines. Genet Med 12(7):446–463. CrossRefPubMedGoogle Scholar
  24. 24.
    Van Hoof F, Hers HG (1967) The subgroups of type 3 glycogenosis. Eur J Biochem 2(3):265–270CrossRefGoogle Scholar
  25. 25.
    Yi H, Thurberg BL, Curtis S, Austin S, Fyfe J, Koeberl DD, Kishnani PS, Sun B (2012) Characterization of a canine model of glycogen storage disease type IIIa. Dis Model Mech 5(6):804–811. CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Liu KM, Wu JY, Chen YT (2014) Mouse model of glycogen storage disease type III. Mol Genet Metab 111(4):467–476. CrossRefPubMedGoogle Scholar
  27. 27.
    Gregory BL, Shelton GD, Bali DS, Chen YT, Fyfe JC (2007) Glycogen storage disease type IIIa in curly-coated retrievers. J Vet Intern Med 21(1):40–46CrossRefGoogle Scholar
  28. 28.
    Sentner CP, Hoogeveen IJ, Weinstein DA, Santer R, Murphy E, McKiernan PJ, Steuerwald U, Beauchamp NJ, Taybert J, Laforet P, Petit FM, Hubert A, Labrune P, Smit GP, Derks TG (2016) Glycogen storage disease type III: diagnosis, genotype, management, clinical course and outcome. J Inherit Metab Dis 39(5):697–704. CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Brooks ED, Yi H, Austin SL, Thurberg BL, Young SP, Fyfe JC, Kishnani PS, Sun B (2016) Natural progression of canine glycogen storage disease type IIIa. Comp Med 66(1):41–51PubMedPubMedCentralGoogle Scholar
  30. 30.
    Brooks ED, Koeberl DD (2015) Large animal models and new therapies for glycogen storage disease. J Inherit Metab Dis 38(3):505–509. CrossRefPubMedGoogle Scholar
  31. 31.
    Momoi T, Sano H, Yamanaka C, Sasaki H, Mikawa H (1992) Glycogen storage disease type III with muscle involvement: reappraisal of phenotypic variability and prognosis. Am J Med Genet 42(5):696–699. CrossRefPubMedGoogle Scholar
  32. 32.
    Lucchiari S, Santoro D, Pagliarani S, Comi GP (2007) Clinical, biochemical and genetic features of glycogen debranching enzyme deficiency. Acta Myol 26(1):72–74PubMedPubMedCentralGoogle Scholar
  33. 33.
    Derks TG, Smit GP (2015) Dietary management in glycogen storage disease type III: what is the evidence? J Inherit Metab Dis 38(3):545–550. CrossRefPubMedGoogle Scholar
  34. 34.
    Chen Y, Kishnani PS, Koeberl DD (2009) Glycogen storage diseases. McGraw-Hill, New YorkGoogle Scholar
  35. 35.
    Demo E, Frush D, Gottfried M, Koepke J, Boney A, Bali D, Chen YT, Kishnani PS (2007) Glycogen storage disease type III-hepatocellular carcinoma a long-term complication? J Hepatol 46(3):492–498. CrossRefPubMedGoogle Scholar
  36. 36.
    Cosme A, Montalvo I, Sanchez J, Ojeda E, Torrado J, Zapata E, Bujanda L, Gutierrez A, Arenas I (2005) Type III glycogen storage disease associated with hepatocellular carcinoma. Gastroenterol Hepatol 28(10):622–625CrossRefGoogle Scholar
  37. 37.
    Coleman RA, Winter HS, Wolf B, Chen YT (1992) Glycogen debranching enzyme deficiency: long-term study of serum enzyme activities and clinical features. J Inherit Metab Dis 15(6):869–881CrossRefGoogle Scholar
  38. 38.
    Talente GM, Coleman RA, Alter C, Baker L, Brown BI, Cannon RA, Chen YT, Crigler JF Jr, Ferreira P, Haworth JC, Herman GE, Issenman RM, Keating JP, Linde R, Roe TF, Senior B, Wolfsdorf JI (1994) Glycogen storage disease in adults. Ann Intern Med 120(3):218–226CrossRefGoogle Scholar
  39. 39.
    Austin SL, Proia AD, Spencer-Manzon MJ, Butany J, Wechsler SB, Kishnani PS (2012) Cardiac pathology in glycogen storage disease type III. JIMD Rep 6:65–72. CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Valayannopoulos V, Bajolle F, Arnoux JB, Dubois S, Sannier N, Baussan C, Petit F, Labrune P, Rabier D, Ottolenghi C, Vassault A, Broissand C, Bonnet D, de Lonlay P (2011) Successful treatment of severe cardiomyopathy in glycogen storage disease type III With D,L-3-hydroxybutyrate, ketogenic and high-protein diet. Pediatr Res 70(6):638–641. CrossRefPubMedGoogle Scholar
  41. 41.
    Pagliarani S, Lucchiari S, Ulzi G, Violano R, Ripolone M, Bordoni A, Nizzardo M, Gatti S, Corti S, Moggio M, Bresolin N, Comi GP (2014) Glycogen storage disease type III: a novel Agl knockout mouse model. Biochim Biophys Acta 1842(11):2318–2328. CrossRefPubMedGoogle Scholar
  42. 42.
    Horvath JJ, Austin SL, Jones HN, Drake EJ, Case LE, Soher BJ, Bashir MR, Kishnani PS (2012) Bulbar muscle weakness and fatty lingual infiltration in glycogen storage disorder type IIIa. Mol Genet Metab 107(3):496–500. CrossRefPubMedGoogle Scholar
  43. 43.
    Lucia A, Nogales-Gadea G, Perez M, Martin MA, Andreu AL, Arenas J (2008) McArdle disease: what do neurologists need to know? Nat Clin Pract Neurol 4(10):568–577. CrossRefPubMedGoogle Scholar
  44. 44.
    Nogales-Gadea G, Pinos T, Lucia A, Arenas J, Camara Y, Brull A, de Luna N, Martin MA, Garcia-Arumi E, Marti R, Andreu AL (2012) Knock-in mice for the R50X mutation in the PYGM gene present with McArdle disease. Brain 135(Pt 7):2048–2057. CrossRefPubMedGoogle Scholar
  45. 45.
    Ortenblad N, Westerblad H, Nielsen J (2013) Muscle glycogen stores and fatigue. J Physiol 591(18):4405–4413. CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Andreu AL, Nogales-Gadea G, Cassandrini D, Arenas J, Bruno C (2007) McArdle disease: molecular genetic update. Acta Myol 26(1):53–57PubMedPubMedCentralGoogle Scholar
  47. 47.
    Vissing J, Haller RG (2003) The effect of oral sucrose on exercise tolerance in patients with McArdle’s disease. N Engl J Med 349(26):2503–2509. CrossRefPubMedGoogle Scholar
  48. 48.
    Tsujino S, Shanske S, Valberg SJ, Cardinet GH, Smith BP, DiMauro S (1996) Cloning of bovine muscle glycogen phosphorylase cDNA and identification of a mutation in cattle with myophosphorylase deficiency, an animal model for McArdle's disease. Neuromuscul Disord 6(1):19–26CrossRefGoogle Scholar
  49. 49.
    Tan P, Allen JG, Wilton SD, Akkari PA, Huxtable CR, Laing NG (1997) A splice-site mutation causing ovine McArdle’s disease. Neuromuscul Disord 7(5):336–342CrossRefGoogle Scholar
  50. 50.
    Tsujino S, Shanske S, Goto Y, Nonaka I, DiMauro S (1994) Two mutations, one novel and one frequently observed, in Japanese patients with McArdle’s disease. Hum Mol Genet 3(6):1005–1006CrossRefGoogle Scholar
  51. 51.
    Burke J, Hwang P, Anderson L, Lebo R, Gorin F, Fletterick R (1987) Intron/exon structure of the human gene for the muscle isozyme of glycogen phosphorylase. Proteins 2(3):177–187. CrossRefPubMedGoogle Scholar
  52. 52.
    Brull A, de Luna N, Blanco-Grau A, Lucia A, Martin MA, Arenas J, Marti R, Andreu AL, Pinos T (2015) Phenotype consequences of myophosphorylase dysfunction: insights from the McArdle mouse model. J Physiol 593(12):2693–2706. CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Garton FC, North KN, Koch LG, Britton SL, Nogales-Gadea G, Lucia A (2016) Rodent models for resolving extremes of exercise and health. Physiol Genomics 48(2):82–92. CrossRefPubMedGoogle Scholar
  54. 54.
    Howell JM, Walker KR, Davies L, Dunton E, Everaardt A, Laing N, Karpati G (2008) Adenovirus and adeno-associated virus-mediated delivery of human myophosphorylase cDNA and LacZ cDNA to muscle in the ovine model of McArdle’s disease: expression and re-expression of glycogen phosphorylase. Neuromuscul Disord 18(3):248–258. CrossRefPubMedGoogle Scholar
  55. 55.
    Davison JE, Rahman S (2017) Recognition, investigation and management of mitochondrial disease. Arch Dis Child 102(11):1082–1090. CrossRefPubMedGoogle Scholar
  56. 56.
    Thorburn DR (2004) Mitochondrial disorders: prevalence, myths and advances. J Inherit Metab Dis 27(3):349–362. CrossRefPubMedGoogle Scholar
  57. 57.
    Vafai SB, Mootha VK (2012) Mitochondrial disorders as windows into an ancient organelle. Nature 491(7424):374–383. CrossRefPubMedGoogle Scholar
  58. 58.
    Nunnari J, Suomalainen A (2012) Mitochondria: in sickness and in health. Cell 148(6):1145–1159. CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Chinnery PF (1993) Mitochondrial Disorders Overview. In: Adam MP, Ardinger HH, Pagon RA et al (eds) GeneReviews((R)). University of Washington, SeattleGoogle Scholar
  60. 60.
    Suomalainen A, Battersby BJ (2017) Mitochondrial diseases: the contribution of organelle stress responses to pathology. Nat Rev Mol Cell Biol 19(2):77–92. CrossRefPubMedGoogle Scholar
  61. 61.
    Enns GM (2017) Pediatric mitochondrial diseases and the heart. Curr Opin Pediatr 29(5):541–551. CrossRefPubMedGoogle Scholar
  62. 62.
    Xu Y, Kelley RI, Blanck TJ, Schlame M (2003) Remodeling of cardiolipin by phospholipid transacylation. J Biol Chem 278(51):51380–51385. CrossRefPubMedGoogle Scholar
  63. 63.
    Schlame M, Rua D, Greenberg ML (2000) The biosynthesis and functional role of cardiolipin. Prog Lipid Res 39(3):257–288CrossRefGoogle Scholar
  64. 64.
    Thompson WR, DeCroes B, McClellan R, Rubens J, Vaz FM, Kristaponis K, Avramopoulos D, Vernon HJ (2016) New targets for monitoring and therapy in Barth syndrome. Genet Med 18(10):1001–1010. CrossRefPubMedGoogle Scholar
  65. 65.
    Barth PG, Scholte HR, Berden JA, Van der Klei-Van Moorsel JM, Luyt-Houwen IE, Van’t Veer-Korthof ET, Van der Harten JJ, Sobotka-Plojhar MA (1983) An X-linked mitochondrial disease affecting cardiac muscle, skeletal muscle and neutrophil leucocytes. J Neurol Sci 62(1-3):327–355Google Scholar
  66. 66.
    Spencer CT, Byrne BJ, Bryant RM, Margossian R, Maisenbacher M, Breitenger P, Benni PB, Redfearn S, Marcus E, Cade WT (2011) Impaired cardiac reserve and severely diminished skeletal muscle O(2) utilization mediate exercise intolerance in Barth syndrome. Am J Physiol Heart Circ Physiol 301(5):H2122–H2129. CrossRefPubMedGoogle Scholar
  67. 67.
    Barth PG, Valianpour F, Bowen VM, Lam J, Duran M, Vaz FM, Wanders RJ (2004) X-linked cardioskeletal myopathy and neutropenia (Barth syndrome): an update. Am J Med Genet A 126A(4):349–354. CrossRefPubMedGoogle Scholar
  68. 68.
    Soustek MS, Falk DJ, Mah CS, Toth MJ, Schlame M, Lewin AS, Byrne BJ (2011) Characterization of a transgenic short hairpin RNA-induced murine model of Tafazzin deficiency. Hum Gene Ther 22(7):865–871. CrossRefPubMedGoogle Scholar
  69. 69.
    Suzuki-Hatano SRS, Saha MRM, Gosiker B, Soustek MJM, Kang P, Cade W, Byrne BPC (2017) Pre-clinical development of AAV mediated TAZ gene delivery to treat Barth syndrome. 20th ASGCT Annual Meeting, Washington, DC, May 2017. vol 5, Supplement 1. Molecular Therapy, p 29Google Scholar
  70. 70.
    Strawser C, Schadt K, Hauser L, McCormick A, Wells M, Larkindale J, Lin H, Lynch DR (2017) Pharmacological therapeutics in Friedreich ataxia: the present state. Expert Rev Neurother 17(9):895–907. CrossRefPubMedGoogle Scholar
  71. 71.
    Strawser CJ, Schadt KA, Lynch DR (2014) Therapeutic approaches for the treatment of Friedreich’s ataxia. Expert Rev Neurother 14(8):949–957. CrossRefPubMedGoogle Scholar
  72. 72.
    Patel M, Isaacs CJ, Seyer L, Brigatti K, Gelbard S, Strawser C, Foerster D, Shinnick J, Schadt K, Yiu EM, Delatycki MB, Perlman S, Wilmot GR, Zesiewicz T, Mathews K, Gomez CM, Yoon G, Subramony SH, Brocht A, Farmer J, Lynch DR (2016) Progression of Friedreich ataxia: quantitative characterization over 5 years. Ann Clin Transl Neurol 3(9):684–694. CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Bidichandani SI, Delatycki MB (1993) Friedreich ataxia. In: Adam MP, Ardinger HH, Pagon RA et al (eds) GeneReviews((R)). University of Washington, SeattleGoogle Scholar
  74. 74.
    Bidichandani SI, Delatycki MB (2017) Friedreich’s Ataxia. GeneReviews In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJH, Stephens K, Amemiya A, (eds) GeneReviews®[Internet]. Seattle (WA): University of Washington, Seattle; 1993–2018. 1998 Dec 18 [updated 2017 Jun 1]. PMID: 20301458Google Scholar
  75. 75.
    Perdomini M, Hick A, Puccio H, Pook MA (2013) Animal and cellular models of Friedreich ataxia. J Neurochem 126(Suppl 1):65–79. CrossRefPubMedGoogle Scholar
  76. 76.
    Miranda CJ, Santos MM, Ohshima K, Tessaro M, Sequeiros J, Pandolfo M (2004) Frataxin overexpressing mice. FEBS Lett 572(1-3):281–288. CrossRefPubMedGoogle Scholar
  77. 77.
    Al-Mahdawi S, Pinto RM, Ismail O, Varshney D, Lymperi S, Sandi C, Trabzuni D, Pook M (2008) The Friedreich ataxia GAA repeat expansion mutation induces comparable epigenetic changes in human and transgenic mouse brain and heart tissues. Hum Mol Genet 17(5):735–746. CrossRefPubMedGoogle Scholar
  78. 78.
    Al-Mahdawi S, Pinto RM, Ruddle P, Carroll C, Webster Z, Pook M (2004) GAA repeat instability in Friedreich ataxia YAC transgenic mice. Genomics 84(2):301–310. CrossRefPubMedGoogle Scholar
  79. 79.
    Al-Mahdawi S, Pinto RM, Varshney D, Lawrence L, Lowrie MB, Hughes S, Webster Z, Blake J, Cooper JM, King R, Pook MA (2006) GAA repeat expansion mutation mouse models of Friedreich ataxia exhibit oxidative stress leading to progressive neuronal and cardiac pathology. Genomics 88(5):580–590. CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Puccio H (2007) Conditional mouse models for Friedreich ataxia, a neurodegenerative disorder associating cardiomyopathy. Handb Exp Pharmacol 178:365–375. CrossRefGoogle Scholar
  81. 81.
    Puccio H, Simon D, Cossee M, Criqui-Filipe P, Tiziano F, Melki J, Hindelang C, Matyas R, Rustin P, Koenig M (2001) Mouse models for Friedreich ataxia exhibit cardiomyopathy, sensory nerve defect and Fe-S enzyme deficiency followed by intramitochondrial iron deposits. Nat Genet 27(2):181–186. CrossRefPubMedGoogle Scholar
  82. 82.
    Simon D, Seznec H, Gansmuller A, Carelle N, Weber P, Metzger D, Rustin P, Koenig M, Puccio H (2004) Friedreich ataxia mouse models with progressive cerebellar and sensory ataxia reveal autophagic neurodegeneration in dorsal root ganglia. J Neurosci 24(8):1987–1995. CrossRefPubMedGoogle Scholar
  83. 83.
    Chandran V, Gao K, Swarup V, Versano R, Dong H, Jordan MC, Geschwind DH (2017) Inducible and reversible phenotypes in a novel mouse model of Friedreich’s Ataxia. elife 6:e30054. CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Perdomini M, Belbellaa B, Monassier L, Reutenauer L, Messaddeq N, Cartier N, Crystal RG, Aubourg P, Puccio H (2014) Prevention and reversal of severe mitochondrial cardiomyopathy by gene therapy in a mouse model of Friedreich’s ataxia. Nat Med 20(5):542–547. CrossRefPubMedGoogle Scholar
  85. 85.
    Gerard C, Xiao X, Filali M, Coulombe Z, Arsenault M, Couet J, Li J, Drolet MC, Chapdelaine P, Chikh A, Tremblay JP (2014) An AAV9 coding for frataxin clearly improved the symptoms and prolonged the life of Friedreich ataxia mouse models. Mol Ther Methods Clin Dev 1:14044. CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Khonsari H, Schneider M, Al-Mahdawi S, Chianea YG, Themis M, Parris C, Pook MA, Themis M (2016) Lentivirus-meditated frataxin gene delivery reverses genome instability in Friedreich ataxia patient and mouse model fibroblasts. Gene Ther 23(12):846–856. CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Ouellet DL, Cherif K, Rousseau J, Tremblay JP (2017) Deletion of the GAA repeats from the human frataxin gene using the CRISPR-Cas9 system in YG8R-derived cells and mouse models of Friedreich ataxia. Gene Ther 24(5):265–274. CrossRefPubMedGoogle Scholar
  88. 88.
    Nair JTM, Boothe M, Meyer BPSY, Subramony S, Corti MBB (2017) Gene therapy correction of Frataxin deficiency in a novel mouse model of Friedrich’s ataxia. 20th ASGCT Annual Meeting, Washington, DC, May 2017. vol 5, Supplement 1. Molecular Therapy, p 317Google Scholar
  89. 89.
    Bennett MJ, Rinaldo P, Strauss AW (2000) Inborn errors of mitochondrial fatty acid oxidation. Crit Rev Clin Lab Sci 37(1):1–44. CrossRefPubMedGoogle Scholar
  90. 90.
    Vianey-Liaud C, Divry P, Gregersen N, Mathieu M (1987) The inborn errors of mitochondrial fatty acid oxidation. J Inherit Metab Dis 10(Suppl 1):159–200CrossRefGoogle Scholar
  91. 91.
    Leslie ND, Valencia CA, Strauss AW, Connor JA, Zhang K (1993) Very long-chain acyl-coenzyme a dehydrogenase deficiency. In: Adam MP, Ardinger HH, Pagon RA et al (eds) GeneReviews((R)). University of Washington, SeattleGoogle Scholar
  92. 92.
    Merritt JL, Matern D, Vockley J, Daniels J, Nguyen TV, Schowalter DB (2006) In vitro characterization and in vivo expression of human very-long chain acyl-CoA dehydrogenase. Mol Genet Metab 88(4):351–358. CrossRefPubMedGoogle Scholar
  93. 93.
    Merritt JL, Nguyen T, Daniels J, Matern D, Schowalter DB (2009) Biochemical correction of very long-chain acyl-CoA dehydrogenase deficiency following adeno-associated virus gene therapy. Mol Ther 17(3):425–429. CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Keeler AM, Conlon T, Walter G, Zeng H, Shaffer SA, Dungtao F, Erger K, Cossette T, Tang Q, Mueller C, Flotte TR (2012) Long-term correction of very long-chain acyl-coA dehydrogenase deficiency in mice using AAV9 gene therapy. Mol Ther 20(6):1131–1138. CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Stephanie Salabarria
    • 1
  • Barry J. Byrne
    • 1
    • 2
  • Cristina Liberati
    • 1
  • Manuela Corti
    • 1
    • 2
    Email author
  1. 1.Department of PediatricsCollege of Medicine, University of FloridaGainesvilleUSA
  2. 2.Powell Gene Therapy Center, University of FloridaGainesvilleUSA

Personalised recommendations