Advertisement

Gene Therapy for X-Linked Myotubular Myopathy

  • Jean-Baptiste DupontEmail author
  • Michael W. Lawlor
  • Martin K. Childers
Chapter

Abstract

X-linked myotubular myopathy (XLMTM) emerges from mutations in the MTM1 gene and affects around 1 in 50,000 live-born male infants. This congenital myopathy has currently no treatment and leads to a severe impairment of motor skills and ventilation and premature death. In this chapter, we synthetize the results of gene therapy studies using recombinant adeno-associated vectors in preclinical models of X-linked myotubular myopathy. Over the past few years, the field has rapidly moved from myotubularin-deficient mice to dogs and has now begun the first clinical gene therapy trial for XLMTM. In both mice and dogs, a single intravenous injection of adeno-associated vector leads to a complete rescue of key pathological phenotypes, including motor and respiratory functions, and life expectancy. Despite the treatment being well tolerated in both animal models, we also interrogated some of the issues commonly encountered in gene therapy studies, notably immune responses against the vector capsid or the transgene product, genotoxicity, and off-target effects.

Keywords

XLMTM MTM1 Myotubularin Gene therapy Adeno-associated virus rAAV 

References

  1. 1.
    Kumar SR, Markusic DM, Biswas M, High KA, Herzog RW (2016) Clinical development of gene therapy: results and lessons from recent successes. Mol Ther Methods Clin Dev 3:16034CrossRefGoogle Scholar
  2. 2.
    Pacak CA, Conlon T, Mah CS, Byrne BJ (2008) Relative persistence of AAV serotype 1 vector genomes in dystrophic muscle. Genet Vaccines Ther 6:14CrossRefGoogle Scholar
  3. 3.
    Le Hir M, Goyenvalle A, Peccate C, Précigout G, Davies KE, Voit T, Garcia L, Lorain S (2013) AAV genome loss from dystrophic mouse muscles during AAV-U7 snRNA-mediated exon-skipping therapy. Mol Ther 21:1551–1558CrossRefGoogle Scholar
  4. 4.
    Dupont J-B, Tournaire B, Georger C et al (2015) Short-lived recombinant adeno-associated virus transgene expression in dystrophic muscle is associated with oxidative damage to transgene mRNA. Mol Ther Methods Clin Dev 2:15010CrossRefGoogle Scholar
  5. 5.
    Buj-Bello A, Fougerousse F, Schwab Y et al (2008) AAV-mediated intramuscular delivery of myotubularin corrects the myotubular myopathy phenotype in targeted murine muscle and suggests a function in plasma membrane homeostasis. Hum Mol Genet 17:2132–2143CrossRefGoogle Scholar
  6. 6.
    Childers MK, Joubert R, Poulard K et al (2014) Gene therapy prolongs survival and restores function in murine and canine models of myotubular myopathy. Sci Transl Med 6:220ra10CrossRefGoogle Scholar
  7. 7.
    Laporte J, Hu LJ, Kretz C, Mandel JL, Kioschis P, Coy JF, Klauck SM, Poustka A, Dahl N (1996) A gene mutated in X-linked myotubular myopathy defines a new putative tyrosine phosphatase family conserved in yeast. Nat Genet 13:175–182CrossRefGoogle Scholar
  8. 8.
    Wallgren-Pettersson C, Clarke A, Samson F, Fardeau M, Dubowitz V, Moser H, Grimm T, Barohn RJ, Barth PG (1995) The myotubular myopathies: differential diagnosis of the X linked recessive, autosomal dominant, and autosomal recessive forms and present state of DNA studies. J Med Genet 32:673–679CrossRefGoogle Scholar
  9. 9.
    Jungbluth H, Wallgren-Pettersson C, Laporte J (2008) Centronuclear (myotubular) myopathy. Orphanet J Rare Dis 3:26CrossRefGoogle Scholar
  10. 10.
    Robinson FL, Dixon JE (2006) Myotubularin phosphatases: policing 3-phosphoinositides. Trends Cell Biol 16:403–412CrossRefGoogle Scholar
  11. 11.
    Lawlor MW, Beggs AH, Buj-Bello A et al (2016) Skeletal muscle pathology in X-linked myotubular myopathy: review with cross-species comparisons. J Neuropathol Exp Neurol 75:102–110CrossRefGoogle Scholar
  12. 12.
    Shichiji M, Biancalana V, Fardeau M, Hogrel J-Y, Osawa M, Laporte J, Romero NB (2013) Extensive morphological and immunohistochemical characterization in myotubular myopathy. Brain Behav 3:476–486CrossRefGoogle Scholar
  13. 13.
    Lawlor MW, Alexander MS, Viola MG et al (2012) Myotubularin-deficient myoblasts display increased apoptosis, delayed proliferation, and poor cell engraftment. Am J Pathol 181:961–968CrossRefGoogle Scholar
  14. 14.
    Dowling JJ, Joubert R, Low SE et al (2012) Myotubular myopathy and the neuromuscular junction: a novel therapeutic approach from mouse models. Dis Model Mech 5:852–859CrossRefGoogle Scholar
  15. 15.
    Dowling JJ, Vreede AP, Low SE, Gibbs EM, Kuwada JY, Bonnemann CG, Feldman EL (2009) Loss of myotubularin function results in T-tubule disorganization in zebrafish and human myotubular myopathy. PLoS Genet 5:e1000372CrossRefGoogle Scholar
  16. 16.
    Al-Qusairi L, Weiss N, Toussaint A et al (2009) T-tubule disorganization and defective excitation-contraction coupling in muscle fibers lacking myotubularin lipid phosphatase. Proc Natl Acad Sci U S A 106:18763–18768CrossRefGoogle Scholar
  17. 17.
    Lawlor MW, Armstrong D, Viola MG et al (2013) Enzyme replacement therapy rescues weakness and improves muscle pathology in mice with X-linked myotubular myopathy. Hum Mol Genet 22:1525–1538CrossRefGoogle Scholar
  18. 18.
    Lawlor MW, Read BP, Edelstein R et al (2011) Inhibition of activin receptor type IIB increases strength and lifespan in myotubularin-deficient mice. Am J Pathol 178:784–793CrossRefGoogle Scholar
  19. 19.
    Lawlor MW, Viola MG, Meng H et al (2014) Differential muscle hypertrophy is associated with satellite cell numbers and Akt pathway activation following activin type IIB receptor inhibition in Mtm1 p.R69C mice. Am J Pathol 184:1831–1842CrossRefGoogle Scholar
  20. 20.
    Razidlo GL, Katafiasz D, Taylor GS (2011) Myotubularin regulates Akt-dependent survival signaling via phosphatidylinositol 3-phosphate. J Biol Chem 286:20005–20019CrossRefGoogle Scholar
  21. 21.
    Fetalvero KM, Yu Y, Goetschkes M et al (2013) Defective autophagy and mTORC1 signaling in myotubularin null mice. Mol Cell Biol 33:98–110CrossRefGoogle Scholar
  22. 22.
    Al-Qusairi L, Prokic I, Amoasii L, Kretz C, Messaddeq N, Mandel J-L, Laporte J (2013) Lack of myotubularin (MTM1) leads to muscle hypotrophy through unbalanced regulation of the autophagy and ubiquitin-proteasome pathways. FASEB J 27:3384–3394CrossRefGoogle Scholar
  23. 23.
    Sabha N, Volpatti JR, Gonorazky H et al (2016) PIK3C2B inhibition improves function and prolongs survival in myotubular myopathy animal models. J Clin Invest 126:3613–3625CrossRefGoogle Scholar
  24. 24.
    Wang D, Zhong L, Nahid MA, Gao G (2014) The potential of adeno-associated viral vectors for gene delivery to muscle tissue. Expert Opin Drug Deliv 11:345–364CrossRefGoogle Scholar
  25. 25.
    Atchison RW, Casto BC, Hammon WM (1965) Adenovirus-associated defective virus particles. Science 149:754–756CrossRefGoogle Scholar
  26. 26.
    Hastie E, Samulski RJ (2015) Recombinant adeno-associated virus vectors in the treatment of rare diseases. Expert Opin Orphan Drugs 3:675–689CrossRefGoogle Scholar
  27. 27.
    Ylä-Herttuala S (2012) Endgame: glybera finally recommended for approval as the first gene therapy drug in the European union. Mol Ther 20:1831–1832CrossRefGoogle Scholar
  28. 28.
    Agbandje-McKenna M, Kleinschmidt J (2011) AAV capsid structure and cell interactions. Methods Mol Biol 807:47–92CrossRefGoogle Scholar
  29. 29.
    Lisowski L, Tay SS, Alexander IE (2015) Adeno-associated virus serotypes for gene therapeutics. Curr Opin Pharmacol 24:59–67CrossRefGoogle Scholar
  30. 30.
    Odom GL, Gregorevic P, Allen JM, Chamberlain JS (2011) Gene therapy of mdx mice with large truncated dystrophins generated by recombination using rAAV6. Mol Ther 19:36–45CrossRefGoogle Scholar
  31. 31.
    Koo T, Malerba A, Athanasopoulos T, Trollet C, Boldrin L, Ferry A, Popplewell L, Foster H, Foster K, Dickson G (2011) Delivery of AAV2/9-microdystrophin genes incorporating helix 1 of the coiled-coil motif in the C-terminal domain of dystrophin improves muscle pathology and restores the level of α1-syntrophin and α-dystrobrevin in skeletal muscles of mdx mice. Hum Gene Ther 22:1379–1388CrossRefGoogle Scholar
  32. 32.
    Le Guiner C, Montus M, Servais L et al (2014) Forelimb treatment in a large cohort of dystrophic dogs supports delivery of a recombinant AAV for exon skipping in Duchenne patients. Mol Ther 22:1923–1935CrossRefGoogle Scholar
  33. 33.
    Xu L, Lu PJ, Wang C-H, Keramaris E, Qiao C, Xiao B, Blake DJ, Xiao X, Lu QL (2013) Adeno-associated virus 9 mediated FKRP gene therapy restores functional glycosylation of α-dystroglycan and improves muscle functions. Mol Ther 21:1832–1840CrossRefGoogle Scholar
  34. 34.
    Pozsgai ER, Griffin DA, Heller KN, Mendell JR, Rodino-Klapac LR (2016) β-Sarcoglycan gene transfer decreases fibrosis and restores force in LGMD2E mice. Gene Ther 23:57–66CrossRefGoogle Scholar
  35. 35.
    Benkhelifa-Ziyyat S, Besse A, Roda M, Duque S, Astord S, Carcenac R, Marais T, Barkats M (2013) Intramuscular scAAV9-SMN injection mediates widespread gene delivery to the spinal cord and decreases disease severity in SMA mice. Mol Ther 21:282–290CrossRefGoogle Scholar
  36. 36.
    Meyer K, Ferraiuolo L, Schmelzer L et al (2015) Improving single injection CSF delivery of AAV9-mediated gene therapy for SMA: a dose-response study in mice and nonhuman primates. Mol Ther 23:477–487CrossRefGoogle Scholar
  37. 37.
    Qiu K, Falk DJ, Reier PJ, Byrne BJ, Fuller DD (2012) Spinal delivery of AAV vector restores enzyme activity and increases ventilation in Pompe mice. Mol Ther 20:21–27CrossRefGoogle Scholar
  38. 38.
    Buj-Bello A, Laugel V, Messaddeq N, Zahreddine H, Laporte J, Pellissier J-F, Mandel J-L (2002) The lipid phosphatase myotubularin is essential for skeletal muscle maintenance but not for myogenesis in mice. Proc Natl Acad Sci U S A 99:15060–15065CrossRefGoogle Scholar
  39. 39.
    Amoasii L, Bertazzi DL, Tronchère H et al (2012) Phosphatase-dead myotubularin ameliorates X-linked centronuclear myopathy phenotypes in mice. PLoS Genet 8:e1002965CrossRefGoogle Scholar
  40. 40.
    Beggs AH, Böhm J, Snead E et al (2010) MTM1 mutation associated with X-linked myotubular myopathy in Labrador Retrievers. Proc Natl Acad Sci U S A 107:14697–14702CrossRefGoogle Scholar
  41. 41.
    Goddard MA, Mack DL, Czerniecki SM, Kelly VE, Snyder JM, Grange RW, Lawlor MW, Smith BK, Beggs AH, Childers MK (2015) Muscle pathology, limb strength, walking gait, respiratory function and neurological impairment establish disease progression in the p.N155K canine model of X-linked myotubular myopathy. Ann Transl Med 3:262PubMedPubMedCentralGoogle Scholar
  42. 42.
    Grange RW, Doering J, Mitchell E, Holder MN, Guan X, Goddard M, Tegeler C, Beggs AH, Childers MK (2012) Muscle function in a canine model of X-linked myotubular myopathy. Muscle Nerve 46:588–591CrossRefGoogle Scholar
  43. 43.
    Snyder JM, Meisner A, Mack D, Goddard M, Coulter IT, Grange R, Childers MK (2015) Validity of a neurological scoring system for canine X-linked myotubular myopathy. Hum Gene Ther Clin Dev 26:131–137CrossRefGoogle Scholar
  44. 44.
    Su LT, Gopal K, Wang Z et al (2005) Uniform scale-independent gene transfer to striated muscle after transvenular extravasation of vector. Circulation 112:1780–1788CrossRefGoogle Scholar
  45. 45.
    Toromanoff A, Chérel Y, Guilbaud M et al (2008) Safety and efficacy of regional intravenous (r.i.) versus intramuscular (i.m.) delivery of rAAV1 and rAAV8 to nonhuman primate skeletal muscle. Mol Ther 16:1291–1299CrossRefGoogle Scholar
  46. 46.
    Mack DL, Poulard K, Goddard MA et al (2017) Systemic AAV8-mediated gene therapy drives whole-body correction of myotubular myopathy in dogs. Mol Ther 25(4):839–854.  https://doi.org/10.1016/j.ymthe.2017.02.004 CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Hacein-Bey-Abina S, von Kalle C, Schmidt M et al (2003) A serious adverse event after successful gene therapy for X-linked severe combined immunodeficiency. N Engl J Med 348:255–256CrossRefGoogle Scholar
  48. 48.
    Raper SE, Chirmule N, Lee FS, Wivel NA, Bagg A, Gao G, Wilson JM, Batshaw ML (2003) Fatal systemic inflammatory response syndrome in a ornithine transcarbamylase deficient patient following adenoviral gene transfer. Mol Genet Metab 80:148–158CrossRefGoogle Scholar
  49. 49.
    Manno CS, Pierce GF, Arruda VR et al (2006) Successful transduction of liver in hemophilia by AAV-factor IX and limitations imposed by the host immune response. Nat Med 12:342–347CrossRefGoogle Scholar
  50. 50.
    Haurigot V, Mingozzi F, Buchlis G et al (2010) Safety of AAV factor IX peripheral transvenular gene delivery to muscle in hemophilia B dogs. Mol Ther 18:1318–1329CrossRefGoogle Scholar
  51. 51.
    Nathwani AC, Reiss UM, Tuddenham EGD et al (2014) Long-term safety and efficacy of factor IX gene therapy in hemophilia B. N Engl J Med 371:1994–2004CrossRefGoogle Scholar
  52. 52.
    Mendell JR, Campbell K, Rodino-Klapac L et al (2010) Dystrophin immunity in Duchenne’s muscular dystrophy. N Engl J Med 363:1429–1437CrossRefGoogle Scholar
  53. 53.
    Elverman M, Goddard MA, Mack D et al (2017) Long-term effects of systemic gene therapy in a canine model of myotubular myopathy. Muscle Nerve 56(5):943–953.  https://doi.org/10.1002/mus.25658 CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Chandler RJ, LaFave MC, Varshney GK et al (2015) Vector design influences hepatic genotoxicity after adeno-associated virus gene therapy. J Clin Invest 125:870–880CrossRefGoogle Scholar
  55. 55.
    Vincent-Lacaze N, Snyder RO, Gluzman R, Bohl D, Lagarde C, Danos O (1999) Structure of adeno-associated virus vector DNA following transduction of the skeletal muscle. J Virol 73:1949–1955PubMedPubMedCentralGoogle Scholar
  56. 56.
    Penaud-Budloo M, Le Guiner C, Nowrouzi A et al (2008) Adeno-associated virus vector genomes persist as episomal chromatin in primate muscle. J Virol 82:7875–7885CrossRefGoogle Scholar
  57. 57.
    Nowrouzi A, Penaud-Budloo M, Kaeppel C, Appelt U, Le Guiner C, Moullier P, von Kalle C, Snyder RO, Schmidt M (2012) Integration frequency and intermolecular recombination of rAAV vectors in non-human primate skeletal muscle and liver. Mol Ther 20:1177–1186CrossRefGoogle Scholar
  58. 58.
    Kaeppel C, Beattie SG, Fronza R et al (2013) A largely random AAV integration profile after LPLD gene therapy. Nat Med 19:889–891CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Jean-Baptiste Dupont
    • 1
    Email author
  • Michael W. Lawlor
    • 2
  • Martin K. Childers
    • 1
  1. 1.Institute for Stem Cell and Regenerative Medicine, University of WashingtonSeattleUSA
  2. 2.Division of Pediatric Pathology, Department of Pathology and Laboratory MedicineMedical College of WisconsinMilwaukeeUSA

Personalised recommendations