Advertisement

Gene Therapy for Oculopharyngeal Muscular Dystrophy

  • Alberto Malerba
  • Fanny Roth
  • Vanessa Strings
  • Pradeep Harish
  • David Suhy
  • Capucine Trollet
  • George DicksonEmail author
Chapter

Abstract

Oculopharyngeal muscular dystrophy (OPMD) is a rare, late-onset, autosomal-dominant disease affecting 1:100,000 individuals in Europe. OPMD is due to mutation in the N-terminal domain of exon 1 of the polyA-binding protein nuclear 1 (PABPN1). Patients with the disease express an expanded PABPN1 (expPABPN1) ranging from 11 to 18 alanines instead of the normal 10. OPMD is mainly characterized by ptosis and dysphagia, although muscles of the lower limbs can also be affected late in life. Currently, OPMD patients are referred to surgeons for a cricopharyngeal myotomy or corrective surgery to extraocular muscles to ease ptosis. Pharmacological treatments are not commercially available, but several compounds are in preclinical and clinical stages of development. A gene therapy approach designed to inhibit the expression of expPABPN1 is an appealing strategy. However, due to the type of mutation, genetic strategies to knock down expPABPN1 invariably affect the expression of wild-type PABPN1 with potential negative consequences for the treated muscles. We recently demonstrated that a dual gene therapy approach designed to inhibit mutant and wild-type endogenous PABPN1 by shRNA, in combination with expression of an RNAi-resistant sequence-optimized recombinant PABPN1 gene, substantially rescues the pathology in the A17 mouse model of OPMD. This is currently the only preclinical gene therapy study for OPMD. In this chapter, we describe this approach in a general context of other possible treatments for OPMD, and we discuss the likely future developments that may allow the translation of such an approach towards a therapeutic treatment for OPMD in humans.

Keywords

Gene therapy Oculopharyngeal muscular dystrophy Intranuclear inclusions PABPN1 OPMD 

References

  1. 1.
    Vita G, Dattola R, Santoro M, Messina C (1983) Familial oculopharyngeal muscular dystrophy with distal spread. J Neurol 230(1):57–64PubMedCrossRefGoogle Scholar
  2. 2.
    Lim CT, Chew CT, Chew SH (1992) Oculopharyngeal muscular dystrophy: a case report and a review of literature. Ann Acad Med Singap 21(3):399–403PubMedGoogle Scholar
  3. 3.
    Uyama E, Nohira O, Tome FM, Chateau D, Tokunaga M, Ando M, Maki M, Okabe T, Uchino M (1997) Oculopharyngeal muscular dystrophy in Japan. Neuromuscul Disord 7(Suppl 1):S41–S49PubMedCrossRefGoogle Scholar
  4. 4.
    Uyama E, Nohira O, Chateau D, Tokunaga M, Uchino M, Okabe T, Ando M, Tome FM (1996) Oculopharyngeal muscular dystrophy in two unrelated Japanese families. Neurology 46(3):773–778PubMedCrossRefGoogle Scholar
  5. 5.
    Teh BT, Sullivan AA, Farnebo F, Zander C, Li FY, Strachan N, Schalling M, Larsson C, Sandstrom P (1997) Oculopharyngeal muscular dystrophy (OPMD)--report and genetic studies of an Australian kindred. Clin Genet 51(1):52–55PubMedCrossRefGoogle Scholar
  6. 6.
    Fardeau M, Tome FM (1997) Oculopharyngeal muscular dystrophy in France. Neuromuscul Disord 7(Suppl 1):S30–S33PubMedCrossRefGoogle Scholar
  7. 7.
    Blumen SC, Nisipeanu P, Sadeh M, Asherov A, Blumen N, Wirguin Y, Khilkevich O, Carasso RL, Korczyn AD (1997) Epidemiology and inheritance of oculopharyngeal muscular dystrophy in Israel. Neuromuscul Disord 7(Suppl 1):S38–S40PubMedCrossRefGoogle Scholar
  8. 8.
    Medici M, Pizzarossa C, Skuk D, Yorio D, Emmanuelli G, Mesa R (1997) Oculopharyngeal muscular dystrophy in Uruguay. Neuromuscul Disord 7(Suppl 1):S50–S52PubMedCrossRefGoogle Scholar
  9. 9.
    Meola G, Sansone V, Rotondo G, Tome FM, Bouchard JP (1997) Oculopharyngeal muscular dystrophy in Italy. Neuromuscul Disord 7(Suppl 1):S53–S56PubMedCrossRefGoogle Scholar
  10. 10.
    Porschke H, Kress W, Reichmann H, Goebel HH, Grimm T (1997) Oculopharyngeal muscular dystrophy in a northern German family linked to chromosome 14q, and presenting carnitine deficiency. Neuromuscul Disord 7(Suppl 1):S57–S62PubMedCrossRefGoogle Scholar
  11. 11.
    Grewal RP, Karkera JD, Grewal RK, Detera-Wadleigh SD (1999) Mutation analysis of oculopharyngeal muscular dystrophy in Hispanic American families. Arch Neurol 56(11):1378–1381PubMedCrossRefGoogle Scholar
  12. 12.
    Becher MW, Morrison L, Davis LE, Maki WC, King MK, Bicknell JM, Reinert BL, Bartolo C, Bear DG (2001) Oculopharyngeal muscular dystrophy in Hispanic New Mexicans. JAMA 286(19):2437–2440.  https://doi.org/10.1001/jama.286.19.2437 PubMedCrossRefGoogle Scholar
  13. 13.
    Brais B, Xie YG, Sanson M, Morgan K, Weissenbach J, Korczyn AD, Blumen SC, Fardeau M, Tome FM, Bouchard JP et al (1995) The oculopharyngeal muscular dystrophy locus maps to the region of the cardiac alpha and beta myosin heavy chain genes on chromosome 14q11.2-q13. Hum Mol Genet 4(3):429–434PubMedCrossRefGoogle Scholar
  14. 14.
    Tome F, Fardeau M (1994) Oculopharyngeal muscular dystrophy. In: Engel AG, Franzini-Armstrong C (eds) Myology, vol 2. McGraw-Hil, New York, pp 1233–1245Google Scholar
  15. 15.
    Blumen SC, Nisipeanu P, Sadeh M, Asherov A, Tome FM, Korczyn AD (1993) Clinical features of oculopharyngeal muscular dystrophy among Bukhara Jews. Neuromuscul Disord 3(5–6):575–577PubMedCrossRefGoogle Scholar
  16. 16.
    Barbeau A (1966) Ocular myopathy in French Canada. A preliminary study. J Genet Hum 15(Suppl):49–55Google Scholar
  17. 17.
    Probst A, Tackmann W, Stoeckli HR, Jerusalem F, Ulrich J (1982) Evidence for a chronic axonal atrophy in oculopharyngeal “muscular dystrophy”. Acta Neuropathol 57(2–3):209–216PubMedCrossRefGoogle Scholar
  18. 18.
    Schober R, Kress W, Grahmann F, Kellermann S, Baum P, Gunzel S, Wagner A (2001) Unusual triplet expansion associated with neurogenic changes in a family with oculopharyngeal muscular dystrophy. Neuropathology 21(1):45–52PubMedCrossRefGoogle Scholar
  19. 19.
    Dubbioso R, Moretta P, Manganelli F, Fiorillo C, Iodice R, Trojano L, Santoro L (2012) Executive functions are impaired in heterozygote patients with oculopharyngeal muscular dystrophy. J Neurol 259(5):833–837.  https://doi.org/10.1007/s00415-011-6255-y PubMedCrossRefGoogle Scholar
  20. 20.
    Linoli G, Tomelleri G, Ghezzi M (1991) Oculopharyngeal muscular dystrophy. Description of a case with involvement of the central nervous system. Pathologica 83(1085):325–334PubMedGoogle Scholar
  21. 21.
    Brais B, Bouchard JP, Xie YG, Rochefort DL, Chretien N, Tome FM, Lafreniere RG, Rommens JM, Uyama E, Nohira O, Blumen S, Korczyn AD, Heutink P, Mathieu J, Duranceau A, Codere F, Fardeau M, Rouleau GA (1998) Short GCG expansions in the PABP2 gene cause oculopharyngeal muscular dystrophy. Nat Genet 18(2):164–167PubMedCrossRefGoogle Scholar
  22. 22.
    Jouan L, Rocheford D, Szuto A, Carney E, David K, Dion PA, Rouleau GA (2014) An 18 alanine repeat in a severe form of oculopharyngeal muscular dystrophy. Can J Neurol Sci 41(4):508–511PubMedCrossRefGoogle Scholar
  23. 23.
    Richard P, Trollet C, Stoijkovic T, De Becdelievre A, Perie S, Pouget J, Eymard B, neurologists CF (2017) Correlation between PABPN1 genotype and disease severity in oculopharyngeal muscular dystrophy. Neurology 88(4):359–365.  https://doi.org/10.1212/WNL.0000000000003554 PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Blumen SC, Brais B, Korczyn AD, Medinsky S, Chapman J, Asherov A, Nisipeanu P, Codere F, Bouchard JP, Fardeau M, Tome FM, Rouleau GA (1999) Homozygotes for oculopharyngeal muscular dystrophy have a severe form of the disease. Ann Neurol 46(1):115–118PubMedCrossRefGoogle Scholar
  25. 25.
    Tondo M, Gamez J, Gutierrez-Rivas E, Medel-Jimenez R, Martorell L (2012) Genotype and phenotype study of 34 Spanish patients diagnosed with oculopharyngeal muscular dystrophy. J Neurol 259(8):1546–1552.  https://doi.org/10.1007/s00415-011-6374-5 PubMedCrossRefGoogle Scholar
  26. 26.
    Shan J, Chen B, Lin P, Li D, Luo Y, Ji K, Zheng J, Yuan Y, Yan C (2014) Oculopharyngeal muscular dystrophy: phenotypic and genotypic studies in a Chinese population. NeuroMolecular Med 16(4):782–786.  https://doi.org/10.1007/s12017-014-8327-5 PubMedCrossRefGoogle Scholar
  27. 27.
    Robinson DO, Hammans SR, Read SP, Sillibourne J (2005) Oculopharyngeal muscular dystrophy (OPMD): analysis of the PABPN1 gene expansion sequence in 86 patients reveals 13 different expansion types and further evidence for unequal recombination as the mutational mechanism. Hum Genet 116(4):267–271.  https://doi.org/10.1007/s00439-004-1235-2 PubMedCrossRefGoogle Scholar
  28. 28.
    Muller T, Deschauer M, Kolbe-Fehr F, Zierz S (2006) Genetic heterogeneity in 30 German patients with oculopharyngeal muscular dystrophy. J Neurol 253(7):892–895.  https://doi.org/10.1007/s00415-006-0126-y PubMedCrossRefGoogle Scholar
  29. 29.
    Mirabella M, Silvestri G, de Rosa G, Di Giovanni S, Di Muzio A, Uncini A, Tonali P, Servidei S (2000) GCG genetic expansions in Italian patients with oculopharyngeal muscular dystrophy. Neurology 54(3):608–614PubMedCrossRefGoogle Scholar
  30. 30.
    Hill ME, Creed GA, McMullan TF, Tyers AG, Hilton-Jones D, Robinson DO, Hammans SR (2001) Oculopharyngeal muscular dystrophy: phenotypic and genotypic studies in a UK population. Brain 124(Pt 3):522–526PubMedCrossRefGoogle Scholar
  31. 31.
    Agarwal PK, Mansfield DC, Mechan D, Al-Shahi Salman R, Davenport RJ, Connor M, Metcalfe R, Petty R (2011) Delayed diagnosis of oculopharyngeal muscular dystrophy in Scotland. Br J Ophthalmol 96(2):281–283.  https://doi.org/10.1136/bjo.2010.200378 PubMedCrossRefGoogle Scholar
  32. 32.
    Banerjee A, Apponi LH, Pavlath GK, Corbett AH (2013) PABPN1: molecular function and muscle disease. FEBS J 280(17):4230–4250.  https://doi.org/10.1111/febs.12294 PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Eckmann CR, Rammelt C, Wahle E (2011) Control of poly(A) tail length. Wiley Interdiscip Rev RNA 2(3):348–361.  https://doi.org/10.1002/wrna.56 PubMedCrossRefGoogle Scholar
  34. 34.
    Apponi LH, Leung SW, Williams KR, Valentini SR, Corbett AH, Pavlath GK (2009) Loss of nuclear poly(A)-binding protein 1 (PABPN1) causes defects in myogenesis and mRNA biogenesis. Hum Mol Genet 19(6):1058–1065.  https://doi.org/10.1093/hmg/ddp569 PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Benoit B, Mitou G, Chartier A, Temme C, Zaessinger S, Wahle E, Busseau I, Simonelig M (2005) An essential cytoplasmic function for the nuclear poly(A) binding protein, PABP2, in poly(A) tail length control and early development in Drosophila. Dev Cell 9(4):511–522PubMedCrossRefGoogle Scholar
  36. 36.
    Nguyen D, Grenier St-Sauveur V, Bergeron D, Dupuis-Sandoval F, Scott MS, Bachand F (2015) A polyadenylation-dependent 3′ end maturation pathway is required for the synthesis of the human telomerase RNA. Cell Rep 13(10):2244–2257.  https://doi.org/10.1016/j.celrep.2015.11.003 PubMedCrossRefGoogle Scholar
  37. 37.
    de Klerk E, Venema A, Anvar SY, Goeman JJ, Hu O, Trollet C, Dickson G, den Dunnen JT, van der Maarel SM, Raz V, t Hoen PA (2012) Poly(A) binding protein nuclear 1 levels affect alternative polyadenylation. Nucleic acids res 40(18):9089–9101.  https://doi.org/10.1093/nar/gks655 PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Jenal M, Elkon R, Loayza-Puch F, van Haaften G, Kuhn U, Menzies FM, Vrielink JA, Bos AJ, Drost J, Rooijers K, Rubinsztein DC, Agami R (2012) The poly(a)-binding protein nuclear 1 suppresses alternative cleavage and polyadenylation sites. Cell 149(3):538–553.  https://doi.org/10.1016/j.cell.2012.03.022 PubMedCrossRefGoogle Scholar
  39. 39.
    Beaulieu YB, Kleinman CL, Landry-Voyer AM, Majewski J, Bachand F (2012) Polyadenylation-dependent control of long noncoding RNA expression by the poly(A)-binding protein nuclear 1. PLoS Genet 8(11):e1003078.  https://doi.org/10.1371/journal.pgen.1003078 PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Lemay JF, D’Amours A, Lemieux C, Lackner DH, St-Sauveur VG, Bahler J, Bachand F (2010) The nuclear poly(A)-binding protein interacts with the exosome to promote synthesis of noncoding small nucleolar RNAs. Mol Cell 37(1):34–45.  https://doi.org/10.1016/j.molcel.2009.12.019 PubMedCrossRefGoogle Scholar
  41. 41.
    Bresson SM, Conrad NK (2013) The human nuclear poly(a)-binding protein promotes RNA hyperadenylation and decay. PLoS Genet 9(10):e1003893.  https://doi.org/10.1371/journal.pgen.1003893 PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Bergeron D, Pal G, Beaulieu YB, Chabot B, Bachand F (2015) Regulated intron retention and nuclear pre-mRNA decay contribute to PABPN1 autoregulation. Mol Cell Biol 35(14):2503–2517.  https://doi.org/10.1128/MCB.00070-15 PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Muniz L, Davidson L, West S (2015) Poly(A) polymerase and the nuclear poly(A) binding protein, PABPN1, coordinate the splicing and degradation of a subset of human pre-mRNAs. Mol Cell Biol 35(13):2218–2230.  https://doi.org/10.1128/MCB.00123-15 PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Calado A, Tome FM, Brais B, Rouleau GA, Kuhn U, Wahle E, Carmo-Fonseca M (2000) Nuclear inclusions in oculopharyngeal muscular dystrophy consist of poly(A) binding protein 2 aggregates which sequester poly(A) RNA. Hum Mol Genet 9(15):2321–2328PubMedCrossRefGoogle Scholar
  45. 45.
    Chartier A, Klein P, Pierson S, Barbezier N, Gidaro T, Casas F, Carberry S, Dowling P, Maynadier L, Bellec M, Oloko M, Jardel C, Moritz B, Dickson G, Mouly V, Ohlendieck K, Butler-Browne G, Trollet C, Simonelig M (2015) Mitochondrial dysfunction reveals the role of mRNA poly(A) tail regulation in oculopharyngeal muscular dystrophy pathogenesis. PLoS Genet 11(3):e1005092.  https://doi.org/10.1371/journal.pgen.1005092 PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Gidaro T, Negroni E, Perie S, Mirabella M, Laine J, Lacau St Guily J, Butler-Browne G, Mouly V, Trollet C (2013) Atrophy, fibrosis, and increased PAX7-positive cells in pharyngeal muscles of oculopharyngeal muscular dystrophy patients. J Neuropathol Exp Neurol 72(3):234–243.  https://doi.org/10.1097/NEN.0b013e3182854c07 PubMedCrossRefGoogle Scholar
  47. 47.
    Tome FM, Fardeau M (1980) Nuclear inclusions in oculopharyngeal dystrophy. Acta Neuropathol 49(1):85–87PubMedCrossRefGoogle Scholar
  48. 48.
    Winklhofer KF, Tatzelt J, Haass C (2008) The two faces of protein misfolding: gain- and loss-of-function in neurodegenerative diseases. EMBO J 27(2):336–349.  https://doi.org/10.1038/sj.emboj.7601930 PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Eisele YS, Monteiro C, Fearns C, Encalada SE, Wiseman RL, Powers ET, Kelly JW (2015) Targeting protein aggregation for the treatment of degenerative diseases. Nat Rev Drug Discov 14(11):759–780.  https://doi.org/10.1038/nrd4593 PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Becher MW, Kotzuk JA, Davis LE, Bear DG (2000) Intranuclear inclusions in oculopharyngeal muscular dystrophy contain poly(A) binding protein 2. Ann Neurol 48(5):812–815PubMedCrossRefGoogle Scholar
  51. 51.
    Harish P, Malerba A, Dickson G, Bachtarzi H (2015) Progress on gene therapy, cell therapy, and pharmacological strategies toward the treatment of oculopharyngeal muscular dystrophy. Hum Gene Ther 26(5):286–292.  https://doi.org/10.1089/hum.2015.014 PubMedCrossRefGoogle Scholar
  52. 52.
    Trollet C, Anvar SY, Venema A, Hargreaves IP, Foster K, Vignaud A, Ferry A, Negroni E, Hourde C, Baraibar MA, t Hoen PA, Davies JE, Rubinsztein DC, Heales SJ, Mouly V, van der Maarel SM, Butler-Browne G, Raz V, Dickson G (2010) Molecular and phenotypic characterization of a mouse model of oculopharyngeal muscular dystrophy reveals severe muscular atrophy restricted to fast glycolytic fibres. Hum Mol Genet 19(11):2191–2207.  https://doi.org/10.1093/hmg/ddq098 PubMedCrossRefGoogle Scholar
  53. 53.
    Corbeil-Girard LP, Klein AF, Sasseville AM, Lavoie H, Dicaire MJ, Saint-Denis A, Page M, Duranceau A, Codere F, Bouchard JP, Karpati G, Rouleau GA, Massie B, Langelier Y, Brais B (2005) PABPN1 overexpression leads to upregulation of genes encoding nuclear proteins that are sequestered in oculopharyngeal muscular dystrophy nuclear inclusions. Neurobiol Dis 18(3):551–567PubMedCrossRefGoogle Scholar
  54. 54.
    Beard C (1978) Advancements in ptosis surgery. Clin Plast Surg 5(4):537–545PubMedGoogle Scholar
  55. 55.
    Collin JR (1988) New concepts in the management of ptosis. Eye 2(Pt 2):185–188.  https://doi.org/10.1038/eye.1988.33 PubMedCrossRefGoogle Scholar
  56. 56.
    Rodrigue D, Molgat YM (1997) Surgical correction of blepharoptosis in oculopharyngeal muscular dystrophy. Neuromuscul Disord 7(Suppl 1):S82–S84PubMedCrossRefGoogle Scholar
  57. 57.
    Trollet C, Gidaro T, Klein P, Perie S, Butler-Browne G, Lacau St Guily J (1993) Oculopharyngeal muscular dystrophy. ID: NBK1126 [bookaccession]Google Scholar
  58. 58.
    Manjaly JG, Vaughan-Shaw PG, Dale OT, Tyler S, Corlett JC, Frost RA (2012) Cricopharyngeal dilatation for the long-term treatment of dysphagia in oculopharyngeal muscular dystrophy. Dysphagia 27(2):216–220.  https://doi.org/10.1007/s00455-011-9356-y PubMedCrossRefGoogle Scholar
  59. 59.
    Perie S, Trollet C, Mouly V, Vanneaux V, Mamchaoui K, Bouazza B, Pierre Marolleau J, Laforet P, Chapon F, Eymard B, Butler-Browne G, Larghero J, St Guily JL (2013) Autologous myoblast transplantation for oculopharyngeal muscular dystrophy: a Phase I/IIa clinical study. Mol Ther.  https://doi.org/10.1038/mt.2013.155
  60. 60.
    Argov Z, Gliko-Kabir I, Brais B, Caraco Y, Megiddo D (2016) Intravenous trehalose improves dysphagia and muscle function in oculopharyngeal muscular dystrophy (OPMD): preliminary results of 24 weeks open label phase 2. Trial Neurol 86(16 Suppl S28.004)Google Scholar
  61. 61.
    Bao YP, Cook LJ, O’Donovan D, Uyama E, Rubinsztein DC (2002) Mammalian, yeast, bacterial, and chemical chaperones reduce aggregate formation and death in a cell model of oculopharyngeal muscular dystrophy. J Biol Chem 277(14):12263–12269PubMedCrossRefGoogle Scholar
  62. 62.
    Wang Q, Mosser DD, Bag J (2005) Induction of HSP70 expression and recruitment of HSC70 and HSP70 in the nucleus reduce aggregation of a polyalanine expansion mutant of PABPN1 in HeLa cells. Hum Mol Genet 14(23):3673–3684PubMedCrossRefGoogle Scholar
  63. 63.
    Barbezier N, Chartier A, Bidet Y, Buttstedt A, Voisset C, Galons H, Blondel M, Schwarz E, Simonelig M (2011) Antiprion drugs 6-aminophenanthridine and guanabenz reduce PABPN1 toxicity and aggregation in oculopharyngeal muscular dystrophy. EMBO Mol Med 3(1):35–49.  https://doi.org/10.1002/emmm.201000109 PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Ross CJ, Twisk J, Bakker AC, Miao F, Verbart D, Rip J, Godbey T, Dijkhuizen P, Hermens WT, Kastelein JJ, Kuivenhoven JA, Meulenberg JM, Hayden MR (2006) Correction of feline lipoprotein lipase deficiency with adeno-associated virus serotype 1-mediated gene transfer of the lipoprotein lipase S447X beneficial mutation. Hum Gene Ther 17(5):487–499.  https://doi.org/10.1089/hum.2006.17.487 PubMedCrossRefGoogle Scholar
  65. 65.
    Spencer HT, Riley BE, Doering CB (2016) State of the art: gene therapy of haemophilia. Haemophilia 22(Suppl 5):66–71.  https://doi.org/10.1111/hae.13011 PubMedCrossRefGoogle Scholar
  66. 66.
    DiFiglia M, Sena-Esteves M, Chase K, Sapp E, Pfister E, Sass M, Yoder J, Reeves P, Pandey RK, Rajeev KG, Manoharan M, Sah DW, Zamore PD, Aronin N (2007) Therapeutic silencing of mutant huntingtin with siRNA attenuates striatal and cortical neuropathology and behavioral deficits. Proc Natl Acad Sci U S A 104(43):17204–17209.  https://doi.org/10.1073/pnas.0708285104 PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Zimmermann TS, Karsten V, Chan A, Chiesa J, Boyce M, Bettencourt BR, Hutabarat R, Nochur S, Vaishnaw A, Gollob J (2017) Clinical proof of concept for a novel hepatocyte-targeting GalNAc-siRNA conjugate. Mol Ther 25(1):71–78.  https://doi.org/10.1016/j.ymthe.2016.10.019 PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Suhy DA, Kao SC, Mao T, Whiteley L, Denise H, Souberbielle B, Burdick AD, Hayes K, Wright JF, Lavender H, Roelvink P, Kolykhalov A, Brady K, Moschos SA, Hauck B, Zelenaia O, Zhou S, Scribner C, High KA, Renison SH, Corbau R (2012) Safe, long-term hepatic expression of anti-HCV shRNA in a nonhuman primate model. Mol Ther 20(9):1737–1749.  https://doi.org/10.1038/mt.2012.119 PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Fan HC, Ho LI, Chi CS, Chen SJ, Peng GS, Chan TM, Lin SZ, Harn HJ (2014) Polyglutamine (PolyQ) diseases: genetics to treatments. Cell Transplant 23(4–5):441–458.  https://doi.org/10.3727/096368914X678454 PubMedCrossRefGoogle Scholar
  70. 70.
    Harper SQ (2009) Progress and challenges in RNA interference therapy for Huntington disease. Arch Neurol 66(8):933–938.  https://doi.org/10.1001/archneurol.2009.180 PubMedCrossRefGoogle Scholar
  71. 71.
    Capon SJ, Baillie GJ, Bower NI, da Silva JA, Paterson S, Hogan BM, Simons C, Smith KA (2017) Utilising polymorphisms to achieve allele-specific genome editing in zebrafish. Biol Open 6(1):125–131.  https://doi.org/10.1242/bio.020974 PubMedCrossRefGoogle Scholar
  72. 72.
    Keiser MS, Kordasiewicz HB, McBride JL (2016) Gene suppression strategies for dominantly inherited neurodegenerative diseases: lessons from Huntington’s disease and spinocerebellar ataxia. Hum Mol Genet 25(R1):R53–R64.  https://doi.org/10.1093/hmg/ddv442 PubMedCrossRefGoogle Scholar
  73. 73.
    Farrar GJ, Millington-Ward S, Chadderton N, Humphries P, Kenna PF (2012) Gene-based therapies for dominantly inherited retinopathies. Gene Ther 19(2):137–144.  https://doi.org/10.1038/gt.2011.172 PubMedCrossRefGoogle Scholar
  74. 74.
    Millington-Ward S, Chadderton N, O’Reilly M, Palfi A, Goldmann T, Kilty C, Humphries M, Wolfrum U, Bennett J, Humphries P, Kenna PF, Farrar GJ (2011) Suppression and replacement gene therapy for autosomal dominant disease in a murine model of dominant retinitis pigmentosa. Mol Ther 19(4):642–649.  https://doi.org/10.1038/mt.2010.293 PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Millington-Ward S, O’Neill B, Tuohy G, Al-Jandal N, Kiang AS, Kenna PF, Palfi A, Hayden P, Mansergh F, Kennan A, Humphries P, Farrar GJ (1997) Strategems in vitro for gene therapies directed to dominant mutations. Hum Mol Genet 6(9):1415–1426PubMedCrossRefGoogle Scholar
  76. 76.
    Malerba A, Klein P, Bachtarzi H, Jarmin SA, Cordova G, Ferry A, Strings V, Polay Espinoza M, Mamchaoui K, Blumen SC, Lacau St Guily J, Mouly V, Graham M, Butler-Browne G, Suhy DA, Trollet C, Dickson G (2017) PABPN1 gene therapy for oculopharyngeal muscular dystrophy. Nat Commun 31(8):14848.  https://doi.org/10.1038/ncomms14848 CrossRefGoogle Scholar
  77. 77.
    Davies JE, Wang L, Garcia-Oroz L, Cook LJ, Vacher C, O’Donovan DG, Rubinsztein DC (2005) Doxycycline attenuates and delays toxicity of the oculopharyngeal muscular dystrophy mutation in transgenic mice. Nat Med 11(6):672–677PubMedCrossRefGoogle Scholar
  78. 78.
    McBride JL, Boudreau RL, Harper SQ, Staber PD, Monteys AM, Martins I, Gilmore BL, Burstein H, Peluso RW, Polisky B, Carter BJ, Davidson BL (2008) Artificial miRNAs mitigate shRNA-mediated toxicity in the brain: implications for the therapeutic development of RNAi. Proc Natl Acad Sci U S A 105(15):5868–5873PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Alberto Malerba
    • 1
  • Fanny Roth
    • 2
  • Vanessa Strings
    • 3
  • Pradeep Harish
    • 1
  • David Suhy
    • 3
  • Capucine Trollet
    • 2
  • George Dickson
    • 1
    Email author
  1. 1.Centres of Gene and Cell Therapy and Biomedical Sciences, School of Biological Sciences, Royal HollowayUniversity of LondonSurreyUK
  2. 2.Sorbonne Universités, UPMC Univ Paris 06, UM76, INSERM U974, Institut de MyologieParisFrance
  3. 3.Benitec BiopharmaHaywardUSA

Personalised recommendations