RNAi Therapy for Dominant Muscular Dystrophies and Other Myopathies

  • Scott Q. HarperEmail author


Historically, the muscle gene therapy field has been primarily focused on replacing defective or missing genes underlying recessive disorders and has matured to the point where several gene replacement strategies have now been tested or are underway in human clinical trials. Unfortunately, gene replacement strategies are not indicated for treating dominant diseases, where reduction or elimination of an abnormal allele would be needed, and as a result, gene therapies for dominant muscular dystrophies have lagged behind. Importantly, the emergence of RNA interference (RNAi) as a gene-silencing tool provided a means to begin closing this development gap. In the first edition of this chapter of Muscle Gene Therapy, we discussed the prospects of combining RNAi and gene therapy to treat dominant muscle diseases, but proof of concept for its practical usage had not been demonstrated at the time. Here, in this second edition, we update our current understanding of the mechanisms underlying RNAi, compile several preclinical examples of RNAi-based gene therapies for muscle diseases, and discuss current prospects for translating these strategies toward the clinic.


RNA interference RNAi Dominant myopathy Gene silencing microRNA miRNA Short hairpin RNA shRNAs Small inhibitory RNA siRNAs 


  1. 1.
    INSERM FMoHa (2017) Prevalence of rare diseases: bibliographic data. Orphanet report. Available from: Cited 2008
  2. 2.
    National Institutes of Health Office of Rare Diseases Research (2009) Rare diseases and related terms. Available from:
  3. 3.
    Mendell JR et al (2012) Evidence-based path to newborn screening for Duchenne muscular dystrophy. Ann Neurol 71(3):304–313PubMedGoogle Scholar
  4. 4.
    Harper PS (1989) Myotonic dystrophy, 2nd edn. W.B. Saunders, LondonGoogle Scholar
  5. 5.
    Flanigan KM et al (2001) Genetic characterization of a large, historically significant Utah kindred with facioscapulohumeral dystrophy. Neuromuscul Disord 11(6–7):525–529PubMedGoogle Scholar
  6. 6.
    Tawil R, Van Der Maarel SM (2006) Facioscapulohumeral muscular dystrophy. Muscle Nerve 34(1):1–15PubMedGoogle Scholar
  7. 7.
    Deenen JC et al (2014) Population-based incidence and prevalence of facioscapulohumeral dystrophy. Neurology 83(12):1056–1059PubMedPubMedCentralGoogle Scholar
  8. 8.
    Fire A et al (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391(6669):806–811PubMedGoogle Scholar
  9. 9.
    Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116(2):281–297PubMedGoogle Scholar
  10. 10.
    Elbashir SM et al (2001) Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411(6836):494–498PubMedGoogle Scholar
  11. 11.
    Elbashir SM, Lendeckel W, Tuschl T (2001) RNA interference is mediated by 21- and 22-nucleotide RNAs. Genes Dev 15(2):188–200PubMedPubMedCentralGoogle Scholar
  12. 12.
    Lai EC (2002) Micro RNAs are complementary to 3’ UTR sequence motifs that mediate negative post-transcriptional regulation. Nat Genet 30(4):363–364PubMedGoogle Scholar
  13. 13.
    Lagos-Quintana M et al (2001) Identification of novel genes coding for small expressed RNAs. Science 294(5543):853–858PubMedGoogle Scholar
  14. 14.
    Lagos-Quintana M et al (2003) New microRNAs from mouse and human. RNA 9(2):175–179PubMedPubMedCentralGoogle Scholar
  15. 15.
    Molnar A et al (2009) Highly specific gene silencing by artificial microRNAs in the unicellular alga Chlamydomonas reinhardtii. Plant J 58(1):165–174PubMedGoogle Scholar
  16. 16.
    Molnar A et al (2007) miRNAs control gene expression in the single-cell alga Chlamydomonas reinhardtii. Nature 447(7148):1126–1129PubMedGoogle Scholar
  17. 17.
    Zeng Y, Cai X, Cullen BR (2005) Use of RNA polymerase II to transcribe artificial microRNAs. Methods Enzymol 392:371–380PubMedGoogle Scholar
  18. 18.
    Boudreau RL, Martins I, Davidson BL (2009) Artificial microRNAs as siRNA shuttles: improved safety as compared to shRNAs in vitro and in vivo. Mol Ther 17(1):169–175PubMedGoogle Scholar
  19. 19.
    Lagos-Quintana M et al (2002) Identification of tissue-specific microRNAs from mouse. Curr Biol 12(9):735–739PubMedGoogle Scholar
  20. 20.
    Borchert GM, Lanier W, Davidson BL (2006) RNA polymerase III transcribes human microRNAs. Nat Struct Mol Biol 13(12):1097–1101PubMedGoogle Scholar
  21. 21.
    Cai X, Hagedorn CH, Cullen BR (2004) Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs. RNA 10(12):1957–1966PubMedPubMedCentralGoogle Scholar
  22. 22.
    Lee Y et al (2004) MicroRNA genes are transcribed by RNA polymerase II. EMBO J 23(20):4051–4060PubMedPubMedCentralGoogle Scholar
  23. 23.
    Gregory RI et al (2004) The microprocessor complex mediates the genesis of microRNAs. Nature 432(7014):235–240PubMedGoogle Scholar
  24. 24.
    Han J et al (2004) The Drosha-DGCR8 complex in primary microRNA processing. Genes Dev 18(24):3016–3027PubMedPubMedCentralGoogle Scholar
  25. 25.
    Landthaler M, Yalcin A, Tuschl T (2004) The human DiGeorge syndrome critical region gene 8 and its D. melanogaster homolog are required for miRNA biogenesis. Curr Biol 14(23):2162–2167PubMedGoogle Scholar
  26. 26.
    Lee Y et al (2003) The nuclear RNase III Drosha initiates microRNA processing. Nature 425(6956):415–419PubMedGoogle Scholar
  27. 27.
    Han J et al (2006) Molecular basis for the recognition of primary microRNAs by the Drosha-DGCR8 complex. Cell 125(5):887–901PubMedGoogle Scholar
  28. 28.
    Zeng Y, Cullen BR (2004) Structural requirements for pre-microRNA binding and nuclear export by Exportin 5. Nucleic Acids Res 32(16):4776–4785PubMedPubMedCentralGoogle Scholar
  29. 29.
    Provost P et al (2002) Ribonuclease activity and RNA binding of recombinant human Dicer. EMBO J 21(21):5864–5874PubMedPubMedCentralGoogle Scholar
  30. 30.
    Zhang H et al (2002) Human Dicer preferentially cleaves dsRNAs at their termini without a requirement for ATP. EMBO J 21(21):5875–5885PubMedPubMedCentralGoogle Scholar
  31. 31.
    Zhang H et al (2004) Single processing center models for human Dicer and bacterial RNase III. Cell 118(1):57–68PubMedGoogle Scholar
  32. 32.
    Chendrimada TP et al (2005) TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing. Nature 436(7051):740–744PubMedPubMedCentralGoogle Scholar
  33. 33.
    Forstemann K et al (2005) Normal microRNA maturation and germ-line stem cell maintenance requires loquacious, a double-stranded RNA-binding domain protein. PLoS Biol 3(7):e236PubMedPubMedCentralGoogle Scholar
  34. 34.
    Matranga C et al (2005) Passenger-strand cleavage facilitates assembly of siRNA into Ago2-containing RNAi enzyme complexes. Cell 123(4):607–620PubMedGoogle Scholar
  35. 35.
    Ro S et al (2007) Tissue-dependent paired expression of miRNAs. Nucleic Acids Res 35(17):5944–5953PubMedPubMedCentralGoogle Scholar
  36. 36.
    Lewis BP, Burge CB, Bartel DP (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120(1):15–20PubMedGoogle Scholar
  37. 37.
    Rose SD et al (2005) Functional polarity is introduced by Dicer processing of short substrate RNAs. Nucleic Acids Res 33(13):4140–4156PubMedPubMedCentralGoogle Scholar
  38. 38.
    Paddison PJ et al (2002) Short hairpin RNAs (shRNAs) induce sequence-specific silencing in mammalian cells. Genes Dev 16(8):948–958PubMedPubMedCentralGoogle Scholar
  39. 39.
    Sibley CR et al (2012) The biogenesis and characterization of mammalian microRNAs of mirtron origin. Nucleic Acids Res 40(1):438–448PubMedGoogle Scholar
  40. 40.
    Harper SQ et al (2005) RNA interference improves motor and neuropathological abnormalities in a Huntington’s disease mouse model. Proc Natl Acad Sci U S A 102(16):5820–5825PubMedPubMedCentralGoogle Scholar
  41. 41.
    Xia H et al (2004) RNAi suppresses polyglutamine-induced neurodegeneration in a model of spinocerebellar ataxia. Nat Med 10(8):816–820PubMedGoogle Scholar
  42. 42.
    Grimm D et al (2006) Fatality in mice due to oversaturation of cellular microRNA/short hairpin RNA pathways. Nature 441(7092):537–541PubMedGoogle Scholar
  43. 43.
    Fechner H et al (2008) Cardiac-targeted RNA interference mediated by an AAV9 vector improves cardiac function in coxsackievirus B3 cardiomyopathy. J Mol Med 86(9):987–997PubMedGoogle Scholar
  44. 44.
    Bisset DR et al (2015) Therapeutic impact of systemic AAV-mediated RNA interference in a mouse model of myotonic dystrophy. Hum Mol Genet 24(17):4971–4983PubMedPubMedCentralGoogle Scholar
  45. 45.
    Bortolanza S et al (2011) AAV6-mediated systemic shRNA delivery reverses disease in a mouse model of facioscapulohumeral muscular dystrophy. Mol Ther 19(11):2055–2064PubMedPubMedCentralGoogle Scholar
  46. 46.
    Liu J et al (2014) RNAi-mediated gene silencing of mutant myotilin improves myopathy in LGMD1A mice. Mol Ther Nucleic Acids 3:e160PubMedPubMedCentralGoogle Scholar
  47. 47.
    Malerba A et al (2017) PABPN1 gene therapy for oculopharyngeal muscular dystrophy. Nat Commun 8:14848PubMedPubMedCentralGoogle Scholar
  48. 48.
    Wallace LM et al (2011) RNA interference improves myopathic phenotypes in mice over-expressing FSHD region gene 1 (FRG1). Mol Ther 19(11):2048–2054PubMedPubMedCentralGoogle Scholar
  49. 49.
    Wallace LM et al (2012) RNA interference inhibits DUX4-induced muscle toxicity in vivo: implications for a targeted FSHD therapy. Mol Ther 20(7):1417–1423PubMedPubMedCentralGoogle Scholar
  50. 50.
    Du G et al (2006) Design of expression vectors for RNA interference based on miRNAs and RNA splicing. FEBS J 273(23):5421–5427PubMedGoogle Scholar
  51. 51.
    Harper SQ et al (2006) Optimization of feline immunodeficiency virus vectors for RNA interference. J Virol 80(19):9371–9380PubMedPubMedCentralGoogle Scholar
  52. 52.
    Li MJ et al (2003) Inhibition of HIV-1 infection by lentiviral vectors expressing Pol III-promoted anti-HIV RNAs. Mol Ther 8(2):196–206PubMedGoogle Scholar
  53. 53.
    McBride JL et al (2008) Artificial miRNAs mitigate shRNA-mediated toxicity in the brain: implications for the therapeutic development of RNAi. Proc Natl Acad Sci U S A 105(15):5868–5873PubMedPubMedCentralGoogle Scholar
  54. 54.
    Grimm D (2011) The dose can make the poison: lessons learned from adverse in vivo toxicities caused by RNAi overexpression. Silence 2:8PubMedPubMedCentralGoogle Scholar
  55. 55.
    Mook OR et al (2009) Allele-specific cancer cell killing in vitro and in vivo targeting a single-nucleotide polymorphism in POLR2A. Cancer Gene Ther 16(6):532–538PubMedGoogle Scholar
  56. 56.
    Saydam O et al (2005) Herpes simplex virus 1 amplicon vector-mediated siRNA targeting epidermal growth factor receptor inhibits growth of human glioma cells in vivo. Mol Ther 12(5):803–812PubMedGoogle Scholar
  57. 57.
    Tacere Therapeutics, Inc. (2013–2016) Safety and efficacy study of single doses of TT-034 in patients with chronic hepatitis C. C.g. National Institutes of Health (ed).
  58. 58.
    Quinzii CM et al (2008) X-linked dominant scapuloperoneal myopathy is due to a mutation in the gene encoding four-and-a-half-LIM protein 1. Am J Hum Genet 82(1):208–213PubMedPubMedCentralGoogle Scholar
  59. 59.
    Corbett MA et al (2005) An alphaTropomyosin mutation alters dimer preference in nemaline myopathy. Ann Neurol 57(1):42–49PubMedGoogle Scholar
  60. 60.
    de Haan A et al (2002) Skeletal muscle of mice with a mutation in slow alpha-tropomyosin is weaker at lower lengths. Neuromuscul Disord 12(10):952–957PubMedGoogle Scholar
  61. 61.
    Durling HJ et al (2002) De novo missense mutation in a constitutively expressed exon of the slow alpha-tropomyosin gene TPM3 associated with an atypical, sporadic case of nemaline myopathy. Neuromuscul Disord 12(10):947–951PubMedGoogle Scholar
  62. 62.
    Ilkovski B et al (2008) Disease severity and thin filament regulation in M9R TPM3 nemaline myopathy. J Neuropathol Exp Neurol 67(9):867–877PubMedPubMedCentralGoogle Scholar
  63. 63.
    Kee AJ, Hardeman EC (2008) Tropomyosins in skeletal muscle diseases. Adv Exp Med Biol 644:143–157PubMedGoogle Scholar
  64. 64.
    Laing NG et al (1995) A mutation in the alpha tropomyosin gene TPM3 associated with autosomal dominant nemaline myopathy NEM1. Nat Genet 10(2):249PubMedGoogle Scholar
  65. 65.
    Penisson-Besnier I et al (2007) A second pedigree with autosomal dominant nemaline myopathy caused by TPM3 mutation: a clinical and pathological study. Neuromuscul Disord 17(4):330–337PubMedGoogle Scholar
  66. 66.
    Tan P et al (1999) Homozygosity for a nonsense mutation in the alpha-tropomyosin slow gene TPM3 in a patient with severe infantile nemaline myopathy. Neuromuscul Disord 9(8):573–579PubMedGoogle Scholar
  67. 67.
    Lehtokari VL et al (2008) Identification of a founder mutation in TPM3 in nemaline myopathy patients of Turkish origin. Eur J Hum Genet 16(9):1055–1061PubMedGoogle Scholar
  68. 68.
    Rethinasamy P et al (1998) Molecular and physiological effects of alpha-tropomyosin ablation in the mouse. Circ Res 82(1):116–123PubMedGoogle Scholar
  69. 69.
    Tang G (2005) siRNA and miRNA: an insight into RISCs. Trends Biochem Sci 30(2):106–114PubMedGoogle Scholar
  70. 70.
    Miller VM et al (2003) Allele-specific silencing of dominant disease genes. Proc Natl Acad Sci U S A 100(12):7195–7200PubMedPubMedCentralGoogle Scholar
  71. 71.
    Rodriguez-Lebron E, Paulson HL (2006) Allele-specific RNA interference for neurological disease. Gene Ther 13(6):576–581PubMedGoogle Scholar
  72. 72.
    Schwarz DS et al (2006) Designing siRNA that distinguish between genes that differ by a single nucleotide. PLoS Genet 2(9):e140PubMedPubMedCentralGoogle Scholar
  73. 73.
    Miller JRC et al (2017) Allele-selective suppression of mutant huntingtin in primary human blood cells. Sci Rep 7:46740PubMedPubMedCentralGoogle Scholar
  74. 74.
    McCaffrey AP et al (2002) RNA interference in adult mice. Nature 418(6893):38–39PubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of PediatricsThe Ohio State UniversityColumbusUSA
  2. 2.Center for Gene TherapyThe Research Institute at Nationwide Children’s HospitalColumbusUSA

Personalised recommendations