AAV-Mediated Exon Skipping for Duchenne Muscular Dystrophy

  • Rachid Benchaouir
  • Aurelie GoyenvalleEmail author


Antisense-mediated exon skipping is one of the most promising therapeutic approaches for the treatment of Duchenne muscular dystrophy (DMD). In the past few years, this RNA-based strategy, mostly mediated by antisense oligonucleotides (AOs), has moved toward clinical evaluation, has demonstrated encouraging results, and has led the FDA to grant accelerated approval to one of these compounds recently. However significant clinical improvement in DMD patients has not been shown thus far, and AO-mediated exon skipping still faces major hurdles such as low efficacy in targeted tissues, poor cellular uptake, and relatively rapid clearance from circulation. These properties drive the need for repeated administrations in order to achieve a therapeutic response, with the negative consequence of accumulation in tissues and associated toxicity. To overcome these limitations, small nuclear RNAs (snRNAs) have been used to shuttle the antisense sequences, offering the advantage of a correct subcellular localization with pre-mRNAs and the potential for long-term correction when introduced into viral vectors such as adeno-associated virus (AAV) vectors. In this chapter, we review the development of the AAV-snRNA-mediated splicing modulation for DMD, focusing on the advantages offered by this technology over classical AOs as well as the challenges limiting their clinical application.


Exon skipping Gene therapy Duchenne muscular dystrophy Small nuclear RNA Splicing modulation Viral vectors 



The authors have financial support from the Agence nationale de la recherche [Chair of Excellence HandiMedEx], the Institut National de la santé et la recherche médical (INSERM), the Association Monégasque contre les Myopathies (AMM), and the Duchenne Parent Project France (DPPF).


  1. 1.
    Krawczak M, Reiss J, Cooper DN (1992) The mutational spectrum of single base-pair substitutions in mRNA splice junctions of human genes: causes and consequences. Hum Genet 90:41–54CrossRefGoogle Scholar
  2. 2.
    Wang GS, Cooper TA (2007) Splicing in disease: disruption of the splicing code and the decoding machinery. Nat Rev Genet 8:749–761CrossRefGoogle Scholar
  3. 3.
    Dobrovolskaia MA, McNeil SE (2015) Immunological and hematological toxicities challenging clinical translation of nucleic acid-based therapeutics. Expert Opin Biol Ther 15:1023–1048CrossRefGoogle Scholar
  4. 4.
    Matera AG, Terns RM, Terns MP (2007) Non-coding RNAs: lessons from the small nuclear and small nucleolar RNAs. Nat Rev Mol Cell Biol 8:209–220CrossRefGoogle Scholar
  5. 5.
    Valadkhan S (2005) snRNAs as the catalysts of pre-mRNA splicing. Curr Opin Chem Biol 9:603–608CrossRefGoogle Scholar
  6. 6.
    Pellizzoni L, Yong J, Dreyfuss G (2002) Essential role for the SMN complex in the specificity of snRNP assembly. Science 298:1775–1779CrossRefGoogle Scholar
  7. 7.
    Pillai RS, Grimmler M, Meister G, Will CL, Luhrmann R, Fischer U et al (2003) Unique Sm core structure of U7 snRNPs: assembly by a specialized SMN complex and the role of a new component, Lsm11, in histone RNA processing. Genes Dev 17:2321–2333CrossRefGoogle Scholar
  8. 8.
    Grimm C, Stefanovic B, Schumperli D (1993) The low abundance of U7 snRNA is partly determined by its Sm binding site. EMBO J 12:1229–1238CrossRefGoogle Scholar
  9. 9.
    Stefanovic B, Hackl W, Luhrmann R, Schumperli D (1995) Assembly, nuclear import and function of U7 snRNPs studied by microinjection of synthetic U7 RNA into Xenopus oocytes. Nucleic Acids Res 23:3141–3151CrossRefGoogle Scholar
  10. 10.
    Gorman L, Suter D, Emerick V, Schumperli D, Kole R (1998) Stable alteration of pre-mRNA splicing patterns by modified U7 small nuclear RNAs. Proc Natl Acad Sci U S A 95:4929–4934CrossRefGoogle Scholar
  11. 11.
    Vacek M, Sazani P, Kole R (2003) Antisense-mediated redirection of mRNA splicing. Cell Mol Life Sci 60:825–833CrossRefGoogle Scholar
  12. 12.
    Suter D, Tomasini R, Reber U, Gorman L, Kole R, Schumperli D (1999) Double-target antisense U7 snRNAs promote efficient skipping of an aberrant exon in three human beta-thalassemic mutations. Hum Mol Genet 8:2415–2423CrossRefGoogle Scholar
  13. 13.
    Gorman L, Mercatante DR, Kole R (2000) Restoration of correct splicing of thalassemic beta-globin pre-mRNA by modified U1 snRNAs. J Biol Chem 275:35914–35919CrossRefGoogle Scholar
  14. 14.
    Schumperli D, Pillai RS (2004) The special Sm core structure of the U7 snRNP: far-reaching significance of a small nuclear ribonucleoprotein. Cell Mol Life Sci 61:2560–2570CrossRefGoogle Scholar
  15. 15.
    Monaco AP, Bertelson CJ, Liechti-Gallati S, Moser H, Kunkel LM (1988) An explanation for the phenotypic differences between patients bearing partial deletions of the DMD locus. Genomics 2:90–95CrossRefGoogle Scholar
  16. 16.
    Koenig M, Beggs AH, Moyer M, Scherpf S, Heindrich K, Bettecken T et al (1989) The molecular basis for Duchenne versus Becker muscular dystrophy: correlation of severity with type of deletion. Am J Hum Genet 45:498–506PubMedPubMedCentralGoogle Scholar
  17. 17.
    Pramono ZA, Takeshima Y, Alimsardjono H, Ishii A, Takeda S, Matsuo M (1996) Induction of exon skipping of the dystrophin transcript in lymphoblastoid cells by transfecting an antisense oligodeoxynucleotide complementary to an exon recognition sequence. Biochem Biophys Res Commun 226:445–449CrossRefGoogle Scholar
  18. 18.
    Dunckley MG, Manoharan M, Villiet P, Eperon IC, Dickson G (1998) Modification of splicing in the dystrophin gene in cultured Mdx muscle cells by antisense oligoribonucleotides. Hum Mol Genet 7:1083–1090CrossRefGoogle Scholar
  19. 19.
    Mann CJ, Honeyman K, Cheng AJ, Ly T, Lloyd F, Fletcher S et al (2001) Antisense-induced exon skipping and synthesis of dystrophin in the mdx mouse. Proc Natl Acad Sci U S A 98:42–47CrossRefGoogle Scholar
  20. 20.
    Goyenvalle A, Griffith G, Babbs A, El Andaloussi S, Ezzat K, Avril A et al (2015) Functional correction in mouse models of muscular dystrophy using exon-skipping tricyclo-DNA oligomers. Nat Med 21:270–275CrossRefGoogle Scholar
  21. 21.
    De Angelis FG, Sthandier O, Berarducci B, Toso S, Galluzzi G, Ricci E et al (2002) Chimeric snRNA molecules carrying antisense sequences against the splice junctions of exon 51 of the dystrophin pre-mRNA induce exon skipping and restoration of a dystrophin synthesis in Delta 48-50 DMD cells. Proc Natl Acad Sci U S A 99:9456–9461CrossRefGoogle Scholar
  22. 22.
    Brun C, Suter D, Pauli C, Dunant P, Lochmuller H, Burgunder JM et al (2003) U7 snRNAs induce correction of mutated dystrophin pre-mRNA by exon skipping. Cell Mol Life Sci 60:557–566CrossRefGoogle Scholar
  23. 23.
    Denti MA, Rosa A, D’Antona G, Sthandier O, De Angelis FG, Nicoletti C et al (2006) Chimeric adeno-associated virus/antisense U1 small nuclear RNA effectively rescues dystrophin synthesis and muscle function by local treatment of mdx mice. Hum Gene Ther 17:565–574CrossRefGoogle Scholar
  24. 24.
    Goyenvalle A, Vulin A, Fougerousse F, Leturcq F, Kaplan JC, Garcia L et al (2004) Rescue of dystrophic muscle through U7 snRNA-mediated exon skipping. Science 306:1796–1799CrossRefGoogle Scholar
  25. 25.
    Denti MA, Rosa A, D’Antona G, Sthandier O, De Angelis FG, Nicoletti C et al (2006) Body-wide gene therapy of Duchenne muscular dystrophy in the mdx mouse model. Proc Natl Acad Sci U S A 103:3758–3763CrossRefGoogle Scholar
  26. 26.
    Denti MA, Incitti T, Sthandier O, Nicoletti C, De Angelis FG, Rizzuto E et al (2008) Long-term benefit of adeno-associated virus/antisense-mediated exon skipping in dystrophic mice. Hum Gene Ther 19:601–608CrossRefGoogle Scholar
  27. 27.
    Goyenvalle A, Babbs A, Wright J, Wilkins V, Powell D, Garcia L et al (2012) Rescue of severely affected dystrophin/utrophin-deficient mice through scAAV-U7snRNA-mediated exon skipping. Hum Mol Genet 21(11):2559–2571CrossRefGoogle Scholar
  28. 28.
    Valentine BA, Winand NJ, Pradhan D, Moise NS, de Lahunta A, Kornegay JN et al (1992) Canine X-linked muscular dystrophy as an animal model of Duchenne muscular dystrophy: a review. Am J Med Genet 42:352–356CrossRefGoogle Scholar
  29. 29.
    Vulin A, Barthelemy I, Goyenvalle A, Thibaud JL, Beley C, Griffith G et al (2012) Muscle function recovery in golden retriever muscular dystrophy after AAV1-U7 exon skipping. Mol Ther 20:2120–2133CrossRefGoogle Scholar
  30. 30.
    Le Guiner C, Montus M, Servais L, Cherel Y, Francois V, Thibaud JL et al (2014) Forelimb treatment in a large cohort of dystrophic dogs supports delivery of a recombinant AAV for exon skipping in Duchenne patients. Mol Ther 22:1923–1935CrossRefGoogle Scholar
  31. 31.
    Bish LT, Sleeper MM, Forbes SC, Wang B, Reynolds C, Singletary GE et al (2012) Long-term restoration of cardiac dystrophin expression in golden retriever muscular dystrophy following rAAV6-mediated exon skipping. Mol Ther 20:580–589CrossRefGoogle Scholar
  32. 32.
    Villemaire J, Dion I, Elela SA, Chabot B (2003) Reprogramming alternative pre-messenger RNA splicing through the use of protein-binding antisense oligonucleotides. J Biol Chem 278:50031–50039CrossRefGoogle Scholar
  33. 33.
    Goyenvalle A, Babbs A, van Ommen GJ, Garcia L, Davies KE (2009) Enhanced exon-skipping induced by U7 snRNA carrying a splicing silencer sequence: promising tool for DMD therapy. Mol Ther 17:1234–1240CrossRefGoogle Scholar
  34. 34.
    Zincarelli C, Soltys S, Rengo G, Koch WJ, Rabinowitz JE (2010) Comparative cardiac gene delivery of adeno-associated virus serotypes 1-9 reveals that AAV6 mediates the most efficient transduction in mouse heart. Clin Transl Sci 3:81–89CrossRefGoogle Scholar
  35. 35.
    Bish LT, Morine K, Sleeper MM, Sanmiguel J, Wu D, Gao G et al (2008) Adeno-associated virus (AAV) serotype 9 provides global cardiac gene transfer superior to AAV1, AAV6, AAV7, and AAV8 in the mouse and rat. Hum Gene Ther 19:1359–1368CrossRefGoogle Scholar
  36. 36.
    Deverman BE, Pravdo PL, Simpson BP, Kumar SR, Chan KY, Banerjee A et al (2016) Cre-dependent selection yields AAV variants for widespread gene transfer to the adult brain. Nat Biotechnol 34:204–209CrossRefGoogle Scholar
  37. 37.
    Meyer K, Marquis J, Trub J, Nlend Nlend R, Verp S, Ruepp MD et al (2009) Rescue of a severe mouse model for spinal muscular atrophy by U7 snRNA-mediated splicing modulation. Hum Mol Genet 18:546–555CrossRefGoogle Scholar
  38. 38.
    Mendell JR, Campbell K, Rodino-Klapac L, Sahenk Z, Shilling C, Lewis S et al (2010) Dystrophin immunity in Duchenne’s muscular dystrophy. N Engl J Med 363:1429–1437CrossRefGoogle Scholar
  39. 39.
    Beroud C, Tuffery-Giraud S, Matsuo M, Hamroun D, Humbertclaude V, Monnier N et al (2007) Multiexon skipping leading to an artificial DMD protein lacking amino acids from exons 45 through 55 could rescue up to 63% of patients with Duchenne muscular dystrophy. Hum Mutat 28:196–202CrossRefGoogle Scholar
  40. 40.
    Anthony K, Cirak S, Torelli S, Tasca G, Feng L, Arechavala-Gomeza V et al (2011) Dystrophin quantification and clinical correlations in Becker muscular dystrophy: implications for clinical trials. Brain 134:3547–3559CrossRefGoogle Scholar
  41. 41.
    van Vliet L, de Winter CL, van Deutekom JC, van Ommen GJ, Aartsma-Rus A (2008) Assessment of the feasibility of exon 45-55 multiexon skipping for Duchenne muscular dystrophy. BMC Med Genet 9:105CrossRefGoogle Scholar
  42. 42.
    Goyenvalle A, Wright J, Babbs A, Wilkins V, Garcia L, Davies KE (2012) Engineering multiple U7snRNA constructs to induce single and multiexon-skipping for Duchenne muscular dystrophy. Mol Ther 20:1212–1221CrossRefGoogle Scholar
  43. 43.
    Urabe M, Ding C, Kotin RM (2002) Insect cells as a factory to produce adeno-associated virus type 2 vectors. Hum Gene Ther 13:1935–1943CrossRefGoogle Scholar
  44. 44.
    Buclez PO, Dias Florencio G, Relizani K, Beley C, Garcia L, Benchaouir R (2016) Rapid, scalable, and low-cost purification of recombinant adeno-associated virus produced by baculovirus expression vector system. Mol Ther Methods Clin Dev 3:16035CrossRefGoogle Scholar
  45. 45.
    Gaudet D, Methot J, Dery S, Brisson D, Essiembre C, Tremblay G et al (2013) Efficacy and long-term safety of alipogene tiparvovec (AAV1-LPLS447X) gene therapy for lipoprotein lipase deficiency: an open-label trial. Gene Ther 20:361–369CrossRefGoogle Scholar
  46. 46.
    Salmon F, Grosios K, Petry H (2014) Safety profile of recombinant adeno-associated viral vectors: focus on alipogene tiparvovec (Glybera(R)). Expert Rev Clin Pharmacol 7:53–65CrossRefGoogle Scholar
  47. 47.
    Kotterman MA, Schaffer DV (2014) Engineering adeno-associated viruses for clinical gene therapy. Nat Rev Genet 15:445–451CrossRefGoogle Scholar
  48. 48.
    Mingozzi F, High KA (2011) Therapeutic in vivo gene transfer for genetic disease using AAV: progress and challenges. Nat Rev Genet 12:341–355CrossRefGoogle Scholar
  49. 49.
    Boutin S, Monteilhet V, Veron P, Leborgne C, Benveniste O, Montus MF et al (2010) Prevalence of serum IgG and neutralizing factors against adeno-associated virus (AAV) types 1, 2, 5, 6, 8, and 9 in the healthy population: implications for gene therapy using AAV vectors. Hum Gene Ther 21:704–712CrossRefGoogle Scholar
  50. 50.
    Selot RS, Hareendran S, Jayandharan GR (2014) Developing immunologically inert adeno-associated virus (AAV) vectors for gene therapy: possibilities and limitations. Curr Pharm Biotechnol 14:1072–1082CrossRefGoogle Scholar
  51. 51.
    Drouin LM, Agbandje-McKenna M (2013) Adeno-associated virus structural biology as a tool in vector development. Futur Virol 8:1183–1199CrossRefGoogle Scholar
  52. 52.
    Bowles DE, McPhee SW, Li C, Gray SJ, Samulski JJ, Camp AS et al (2012) Phase 1 gene therapy for Duchenne muscular dystrophy using a translational optimized AAV vector. Mol Ther 20:443–455CrossRefGoogle Scholar
  53. 53.
    Yang L, Jiang J, Drouin LM, Agbandje-McKenna M, Chen C, Qiao C et al (2009) A myocardium tropic adeno-associated virus (AAV) evolved by DNA shuffling and in vivo selection. Proc Natl Acad Sci U S A 106:3946–3951CrossRefGoogle Scholar
  54. 54.
    Pulicherla N, Shen S, Yadav S, Debbink K, Govindasamy L, Agbandje-McKenna M et al (2011) Engineering liver-detargeted AAV9 vectors for cardiac and musculoskeletal gene transfer. Mol Ther 19:1070–1078CrossRefGoogle Scholar
  55. 55.
    Le Hir M, Goyenvalle A, Peccate C, Precigout G, Davies KE, Voit T et al (2013) AAV genome loss from dystrophic mouse muscles during AAV-U7 snRNA-mediated exon-skipping therapy. Mol Ther 21:1551–1558CrossRefGoogle Scholar
  56. 56.
    Wang Z, Kuhr CS, Allen JM, Blankinship M, Gregorevic P, Chamberlain JS et al (2007) Sustained AAV-mediated dystrophin expression in a canine model of Duchenne muscular dystrophy with a brief course of immunosuppression. Mol Ther 15:1160–1166CrossRefGoogle Scholar
  57. 57.
    Shin JH, Yue Y, Srivastava A, Smith B, Lai Y, Duan D (2012) A simplified immune suppression scheme leads to persistent micro-dystrophin expression in Duchenne muscular dystrophy dogs. Hum Gene Ther 23:202–209CrossRefGoogle Scholar
  58. 58.
    Lorain S, Gross DA, Goyenvalle A, Danos O, Davoust J, Garcia L (2008) Transient immunomodulation allows repeated injections of AAV1 and correction of muscular dystrophy in multiple muscles. Mol Ther 16:541–547CrossRefGoogle Scholar
  59. 59.
    Peccate C, Mollard A, Le Hir M, Julien L, McClorey G, Jarmin S et al (2016) Antisense pre-treatment increases gene therapy efficacy in dystrophic muscles. Hum Mol Genet 25:3555–3563CrossRefGoogle Scholar
  60. 60.
    Incitti T, De Angelis FG, Cazzella V, Sthandier O, Pinnaro C, Legnini I et al (2010) Exon skipping and Duchenne muscular dystrophy therapy: selection of the most active U1 snRNA antisense able to induce dystrophin exon 51 skipping. Mol Ther 18:1675–1682CrossRefGoogle Scholar
  61. 61.
    Benchaouir R, Meregalli M, Farini A, D’Antona G, Belicchi M, Goyenvalle A et al (2007) Restoration of human dystrophin following transplantation of exon-skipping-engineered DMD patient stem cells into dystrophic mice. Cell Stem Cell 1:646–657CrossRefGoogle Scholar
  62. 62.
    Bish LT, Sleeper MM, Forbes SC, Morine KJ, Reynolds C, Singletary GE et al (2011) Long-term systemic myostatin inhibition via liver-targeted gene transfer in golden retriever muscular dystrophy. Hum Gene Ther 22:1499–1509CrossRefGoogle Scholar
  63. 63.
    Eckenfelder A, Tordo J, Babbs A, Davies KE, Goyenvalle A, Danos O (2012) The cellular processing capacity limits the amounts of chimeric U7 snRNA available for antisense delivery. Mol Ther Nucleic Acids 1:e31CrossRefGoogle Scholar
  64. 64.
    Gentil C, Le Guiner C, Falcone S, Hogrel JY, Peccate C, Lorain S et al (2016) Dystrophin threshold level necessary for normalization of neuronal nitric oxide synthase, inducible nitric oxide synthase, and ryanodine receptor-calcium release channel type 1 nitrosylation in golden retriever muscular dystrophy dystrophinopathy. Hum Gene Ther 27:712–726CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Université de Versailles St Quentin en Yvelines, U1179 INSERM/UVSQ, UFR des Sciences de la SantéMontigny-le-BretonneuxFrance
  2. 2.LIA BAHN, Centre Scientifique de MonacoMonacoMonaco
  3. 3.SQY Therapeutics, UFR des Sciences de la SantéMontigny-le-BretonneuxFrance

Personalised recommendations