Advertisement

Molecular Basis of Muscle Disease

  • Ning LiuEmail author
  • Rhonda Bassel-Duby
Chapter

Abstract

Skeletal muscle is responsible for body movement, ranging from maintaining posture to dancing to running a marathon race. The heterogeneity in size, shape, and arrangement of fibers coupled with a variety of metabolic, contractile, and endurance properties gives skeletal muscle the ability to perform a wide range of functions. Over the years, our understanding of the molecular basis of muscle formation, growth, adaptability, and disease has dramatically expanded. Much of our understanding stems from studies of the pathology of skeletal muscle. To date, 840 neuromuscular disorders have been identified and attributable to mutations in 465 different genes. More genes are expected to be discovered with the advances in molecular diagnostics and next-generation sequencing. Here we focus on congenital myopathy and muscular dystrophy to highlight our understanding of the molecular basis of skeletal muscle disease. Elucidating the molecular basis of skeletal muscle disease offers the ability to use gene therapy approaches to correct genetic mutations and ameliorate skeletal muscle disease.

Keywords

Satellite cells Nemaline myopathy Congenital myopathies Kelch proteins Muscular dystrophy Dystrophin Dystrophin-glycoprotein complex 

References

  1. 1.
    Kaplan JC, Hamroun D (2015) The 2016 version of the gene table of monogenic neuromuscular disorders (nuclear genome). Neuromuscul Disord 25(12):991–1020PubMedCrossRefGoogle Scholar
  2. 2.
    Claeys KG, Maisonobe T, Bohm J, Laporte J, Hezode M, Romero NB, Brochier G, Bitoun M, Carlier RY, Stojkovic T (2010) Phenotype of a patient with recessive centronuclear myopathy and a novel BIN1 mutation. Neurology 74(6):519–521PubMedCrossRefGoogle Scholar
  3. 3.
    Nicot AS, Toussaint A, Tosch V, Kretz C, Wallgren-Pettersson C, Iwarsson E, Kingston H, Garnier JM, Biancalana V, Oldfors A, Mandel JL, Laporte J (2007) Mutations in amphiphysin 2 (BIN1) disrupt interaction with dynamin 2 and cause autosomal recessive centronuclear myopathy. Nat Genet 39(9):1134–1139PubMedCrossRefGoogle Scholar
  4. 4.
    Schiaffino S, Reggiani C (2011) Fiber types in mammalian skeletal muscles. Physiol Rev 91(4):1447–1531PubMedCrossRefGoogle Scholar
  5. 5.
    Bassel-Duby R, Olson EN (2006) Signaling pathways in skeletal muscle remodeling. Annu Rev Biochem 75:19–37PubMedCrossRefGoogle Scholar
  6. 6.
    Schiaffino S, Gorza L, Sartore S, Saggin L, Ausoni S, Vianello M, Gundersen K, Lomo T (1989) Three myosin heavy chain isoforms in type 2 skeletal muscle fibres. J Muscle Res Cell Motil 10(3):197–205PubMedCrossRefGoogle Scholar
  7. 7.
    Harridge SD, Bottinelli R, Canepari M, Pellegrino MA, Reggiani C, Esbjornsson M, Saltin B (1996) Whole-muscle and single-fibre contractile properties and myosin heavy chain isoforms in humans. Pflugers Arch 432(5):913–920PubMedCrossRefGoogle Scholar
  8. 8.
    McComas AJ, Thomas HC (1968) Fast and slow twitch muscles in man. J Neurol Sci 7(2):301–307PubMedCrossRefGoogle Scholar
  9. 9.
    Brack AS, Rando TA (2012) Tissue-specific stem cells: lessons from the skeletal muscle satellite cell. Cell Stem Cell 10(5):504–514PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Chang NC, Rudnicki MA (2014) Satellite cells: the architects of skeletal muscle. Curr Top Dev Biol 107:161–181PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Kuang S, Charge SB, Seale P, Huh M, Rudnicki MA (2006) Distinct roles for Pax7 and Pax3 in adult regenerative myogenesis. J Cell Biol 172(1):103–113PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    von Maltzahn J, Jones AE, Parks RJ, Rudnicki MA (2013) Pax7 is critical for the normal function of satellite cells in adult skeletal muscle. Proc Natl Acad Sci U S A 110(41):16474–16479CrossRefGoogle Scholar
  13. 13.
    Lepper C, Partridge TA, Fan CM (2011) An absolute requirement for Pax7-positive satellite cells in acute injury-induced skeletal muscle regeneration. Development 138(17):3639–3646PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    McCarthy JJ, Mula J, Miyazaki M, Erfani R, Garrison K, Farooqui AB, Srikuea R, Lawson BA, Grimes B, Keller C, Van Zant G, Campbell KS, Esser KA, Dupont-Versteegden EE, Peterson CA (2011) Effective fiber hypertrophy in satellite cell-depleted skeletal muscle. Development 138(17):3657–3666PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Murphy MM, Lawson JA, Mathew SJ, Hutcheson DA, Kardon G (2011) Satellite cells, connective tissue fibroblasts and their interactions are crucial for muscle regeneration. Development 138(17):3625–3637PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Sambasivan R, Yao R, Kissenpfennig A, Van Wittenberghe L, Paldi A, Gayraud-Morel B, Guenou H, Malissen B, Tajbakhsh S, Galy A (2011) Pax7-expressing satellite cells are indispensable for adult skeletal muscle regeneration. Development 138(17):3647–3656PubMedCrossRefGoogle Scholar
  17. 17.
    North KN, Wang CH, Clarke N, Jungbluth H, Vainzof M, Dowling JJ, Amburgey K, Quijano-Roy S, Beggs AH, Sewry C, Laing NG, Bonnemann CG, International Standard of Care Committee for Congenital Myopathies (2014) Approach to the diagnosis of congenital myopathies. Neuromuscul Disord 24(2):97–116PubMedCrossRefGoogle Scholar
  18. 18.
    Ravenscroft G, Laing NG, Bonnemann CG (2015) Pathophysiological concepts in the congenital myopathies: blurring the boundaries, sharpening the focus. Brain 138(Pt 2):246–268PubMedCrossRefGoogle Scholar
  19. 19.
    Wallgren-Pettersson C, Sewry CA, Nowak KJ, Laing NG (2011) Nemaline myopathies. Semin Pediatr Neurol 18(4):230–238PubMedCrossRefGoogle Scholar
  20. 20.
    Mah JK, Joseph JT (2016) An overview of congenital myopathies. Continuum (Minneap Minn) 22(6, Muscle and Neuromuscular Junction Disorders):1932–1953Google Scholar
  21. 21.
    Lehtokari VL, Pelin K, Herczegfalvi A, Karcagi V, Pouget J, Franques J, Pellissier JF, Figarella-Branger D, von der Hagen M, Huebner A, Schoser B, Lochmuller H, Wallgren-Pettersson C (2011) Nemaline myopathy caused by mutations in the nebulin gene may present as a distal myopathy. Neuromuscul Disord 21(8):556–562PubMedCrossRefGoogle Scholar
  22. 22.
    Wallgren-Pettersson C, Pelin K, Nowak KJ, Muntoni F, Romero NB, Goebel HH, North KN, Beggs AH, Laing NG, Myopathy EICON (2004) Genotype-phenotype correlations in nemaline myopathy caused by mutations in the genes for nebulin and skeletal muscle alpha-actin. Neuromuscul Disord 14(8-9):461–470PubMedCrossRefGoogle Scholar
  23. 23.
    Labeit S, Ottenheijm CA, Granzier H (2011) Nebulin, a major player in muscle health and disease. FASEB J 25(3):822–829PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Bang ML, Li X, Littlefield R, Bremner S, Thor A, Knowlton KU, Lieber RL, Chen J (2006) Nebulin-deficient mice exhibit shorter thin filament lengths and reduced contractile function in skeletal muscle. J Cell Biol 173(6):905–916PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Li F, Buck D, De Winter J, Kolb J, Meng H, Birch C, Slater R, Escobar YN, Smith JE 3rd, Yang L, Konhilas J, Lawlor MW, Ottenheijm C, Granzier HL (2015) Nebulin deficiency in adult muscle causes sarcomere defects and muscle-type-dependent changes in trophicity: novel insights in nemaline myopathy. Hum Mol Genet 24(18):5219–5233PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Ottenheijm CA, Buck D, de Winter JM, Ferrara C, Piroddi N, Tesi C, Jasper JR, Malik FI, Meng H, Stienen GJ, Beggs AH, Labeit S, Poggesi C, Lawlor MW, Granzier H (2013) Deleting exon 55 from the nebulin gene induces severe muscle weakness in a mouse model for nemaline myopathy. Brain 136(Pt 6):1718–1731PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Witt CC, Burkart C, Labeit D, McNabb M, Wu Y, Granzier H, Labeit S (2006) Nebulin regulates thin filament length, contractility, and Z-disk structure in vivo. EMBO J 25(16):3843–3855PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Gupta VA, Beggs AH (2014) Kelch proteins: emerging roles in skeletal muscle development and diseases. Skelet Muscle 4:11PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Cenik BK, Garg A, McAnally JR, Shelton JM, Richardson JA, Bassel-Duby R, Olson EN, Liu N (2015) Severe myopathy in mice lacking the MEF2/SRF-dependent gene leiomodin-3. J Clin Invest 125(4):1569–1578PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Garg A, O’Rourke J, Long C, Doering J, Ravenscroft G, Bezprozvannaya S, Nelson BR, Beetz N, Li L, Chen S, Laing NG, Grange RW, Bassel-Duby R, Olson EN (2014) KLHL40 deficiency destabilizes thin filament proteins and promotes nemaline myopathy. J Clin Invest 124(8):3529–3539PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Ravenscroft G, Miyatake S, Lehtokari VL, Todd EJ, Vornanen P, Yau KS, Hayashi YK, Miyake N, Tsurusaki Y, Doi H, Saitsu H, Osaka H, Yamashita S, Ohya T, Sakamoto Y, Koshimizu E, Imamura S, Yamashita M, Ogata K, Shiina M, Bryson-Richardson RJ, Vaz R, Ceyhan O, Brownstein CA, Swanson LC, Monnot S, Romero NB, Amthor H, Kresoje N, Sivadorai P, Kiraly-Borri C, Haliloglu G, Talim B, Orhan D, Kale G, Charles AK, Fabian VA, Davis MR, Lammens M, Sewry CA, Manzur A, Muntoni F, Clarke NF, North KN, Bertini E, Nevo Y, Willichowski E, Silberg IE, Topaloglu H, Beggs AH, Allcock RJ, Nishino I, Wallgren-Pettersson C, Matsumoto N, Laing NG (2013) Mutations in KLHL40 are a frequent cause of severe autosomal-recessive nemaline myopathy. Am J Hum Genet 93(1):6–18PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Gupta VA, Ravenscroft G, Shaheen R, Todd EJ, Swanson LC, Shiina M, Ogata K, Hsu C, Clarke NF, Darras BT, Farrar MA, Hashem A, Manton ND, Muntoni F, North KN, Sandaradura SA, Nishino I, Hayashi YK, Sewry CA, Thompson EM, Yau KS, Brownstein CA, Yu TW, Allcock RJ, Davis MR, Wallgren-Pettersson C, Matsumoto N, Alkuraya FS, Laing NG, Beggs AH (2013) Identification of KLHL41 mutations implicates BTB-kelch-mediated ubiquitination as an alternate pathway to myofibrillar disruption in nemaline myopathy. Am J Hum Genet 93(6):1108–1117PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Ramirez-Martinez A, Cenik BK, Bezprozvannaya S, Chen B, Bassel-Duby R, Liu N, Olson EN (2017) KLHL41 stabilizes skeletal muscle sarcomeres by nonproteolytic ubiquitination. Elife 6Google Scholar
  34. 34.
    Yuen M, Sandaradura SA, Dowling JJ, Kostyukova AS, Moroz N, Quinlan KG, Lehtokari VL, Ravenscroft G, Todd EJ, Ceyhan-Birsoy O, Gokhin DS, Maluenda J, Lek M, Nolent F, Pappas CT, Novak SM, D’Amico A, Malfatti E, Thomas BP, Gabriel SB, Gupta N, Daly MJ, Ilkovski B, Houweling PJ, Davidson AE, Swanson LC, Brownstein CA, Gupta VA, Medne L, Shannon P, Martin N, Bick DP, Flisberg A, Holmberg E, Van den Bergh P, Lapunzina P, Waddell LB, Sloboda DD, Bertini E, Chitayat D, Telfer WR, Laquerriere A, Gregorio CC, Ottenheijm CA, Bonnemann CG, Pelin K, Beggs AH, Hayashi YK, Romero NB, Laing NG, Nishino I, Wallgren-Pettersson C, Melki J, Fowler VM, MacArthur DG, North KN, Clarke NF (2014) Leiomodin-3 dysfunction results in thin filament disorganization and nemaline myopathy. J Clin Invest 124(11):4693–4708PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Campellone KG, Welch MD (2010) A nucleator arms race: cellular control of actin assembly. Nat Rev Mol Cell Biol 11(4):237–251PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Chereau D, Boczkowska M, Skwarek-Maruszewska A, Fujiwara I, Hayes DB, Rebowski G, Lappalainen P, Pollard TD, Dominguez R (2008) Leiomodin is an actin filament nucleator in muscle cells. Science 320(5873):239–243PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Conley CA, Fritz-Six KL, Almenar-Queralt A, Fowler VM (2001) Leiomodins: larger members of the tropomodulin (Tmod) gene family. Genomics 73(2):127–139PubMedCrossRefGoogle Scholar
  38. 38.
    Qualmann B, Kessels MM (2009) New players in actin polymerization--WH2-domain-containing actin nucleators. Trends Cell Biol 19(6):276–285PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Tian L, Ding S, You Y, Li TR, Liu Y, Wu X, Sun L, Xu T (2015) Leiomodin-3-deficient mice display nemaline myopathy with fast-myofiber atrophy. Dis Model Mech 8(6):635–641PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Romero NB, Bitoun M (2011) Centronuclear myopathies. Semin Pediatr Neurol 18(4):250–256PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Jungbluth H, Wallgren-Pettersson C, Laporte J (2008) Centronuclear (myotubular) myopathy. Orphanet J Rare Dis 3:26PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Robinson FL, Dixon JE (2006) Myotubularin phosphatases: policing 3-phosphoinositides. Trends Cell Biol 16(8):403–412PubMedCrossRefGoogle Scholar
  43. 43.
    Biancalana V, Caron O, Gallati S, Baas F, Kress W, Novelli G, D’Apice MR, Lagier-Tourenne C, Buj-Bello A, Romero NB, Mandel JL (2003) Characterisation of mutations in 77 patients with X-linked myotubular myopathy, including a family with a very mild phenotype. Hum Genet 112(2):135–142PubMedGoogle Scholar
  44. 44.
    Herman GE, Kopacz K, Zhao W, Mills PL, Metzenberg A, Das S (2002) Characterization of mutations in fifty North American patients with X-linked myotubular myopathy. Hum Mutat 19(2):114–121PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Tsai TC, Horinouchi H, Noguchi S, Minami N, Murayama K, Hayashi YK, Nonaka I, Nishino I (2005) Characterization of MTM1 mutations in 31 Japanese families with myotubular myopathy, including a patient carrying 240 kb deletion in Xq28 without male hypogenitalism. Neuromuscul Disord 15(3):245–252PubMedCrossRefGoogle Scholar
  46. 46.
    Bitoun M, Maugenre S, Jeannet PY, Lacene E, Ferrer X, Laforet P, Martin JJ, Laporte J, Lochmuller H, Beggs AH, Fardeau M, Eymard B, Romero NB, Guicheney P (2005) Mutations in dynamin 2 cause dominant centronuclear myopathy. Nat Genet 37(11):1207–1209PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    McNiven MA (2005) Dynamin in disease. Nat Genet 37(3):215–216PubMedCrossRefGoogle Scholar
  48. 48.
    Praefcke GJ, McMahon HT (2004) The dynamin superfamily: universal membrane tubulation and fission molecules? Nat Rev Mol Cell Biol 5(2):133–147PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Peter BJ, Kent HM, Mills IG, Vallis Y, Butler PJ, Evans PR, McMahon HT (2004) BAR domains as sensors of membrane curvature: the amphiphysin BAR structure. Science 303(5657):495–499PubMedCrossRefGoogle Scholar
  50. 50.
    Wu T, Shi Z, Baumgart T (2014) Mutations in BIN1 associated with centronuclear myopathy disrupt membrane remodeling by affecting protein density and oligomerization. PLoS One 9(4):e93060PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Jungbluth H, Sewry CA, Muntoni F (2011) Core myopathies. Semin Pediatr Neurol 18(4):239–249PubMedCrossRefGoogle Scholar
  52. 52.
    Jungbluth H (2007) Central core disease. Orphanet J Rare Dis 2:25PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Maggi L, Scoto M, Cirak S, Robb SA, Klein A, Lillis S, Cullup T, Feng L, Manzur AY, Sewry CA, Abbs S, Jungbluth H, Muntoni F (2013) Congenital myopathies--clinical features and frequency of individual subtypes diagnosed over a 5-year period in the United Kingdom. Neuromuscul Disord 23(3):195–205PubMedCrossRefGoogle Scholar
  54. 54.
    Massalska D, Zimowski JG, Bijok J, Kucinska-Chahwan A, Lusakowska A, Jakiel G, Roszkowski T (2016) Prenatal diagnosis of congenital myopathies and muscular dystrophies. Clin Genet 90(3):199–210PubMedCrossRefGoogle Scholar
  55. 55.
    McNally EM, Pytel P (2007) Muscle diseases: the muscular dystrophies. Annu Rev Pathol 2:87–109PubMedCrossRefGoogle Scholar
  56. 56.
    Wallace GQ, McNally EM (2009) Mechanisms of muscle degeneration, regeneration, and repair in the muscular dystrophies. Annu Rev Physiol 71:37–57PubMedCrossRefGoogle Scholar
  57. 57.
    Guiraud S, Aartsma-Rus A, Vieira NM, Davies KE, van Ommen GJ, Kunkel LM (2015) The pathogenesis and therapy of muscular dystrophies. Annu Rev Genomics Hum Genet 16:281–308PubMedCrossRefGoogle Scholar
  58. 58.
    Hiramatsu S, Maekawa K, Hioka T, Takagaki K, Shoji K (2001) Female carrier of Duchenne muscular dystrophy presenting with secondary dilated cardiomyopathy: a case report. J Cardiol 38(1):35–40PubMedGoogle Scholar
  59. 59.
    Oldfors A, Eriksson BO, Kyllerman M, Martinsson T, Wahlstrom J (1994) Dilated cardiomyopathy and the dystrophin gene: an illustrated review. Br Heart J 72(4):344–348PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Hoffman EP, Brown RH Jr, Kunkel LM (1987) Dystrophin: the protein product of the Duchenne muscular dystrophy locus. Cell 51(6):919–928PubMedCrossRefGoogle Scholar
  61. 61.
    Koenig M, Hoffman EP, Bertelson CJ, Monaco AP, Feener C, Kunkel LM (1987) Complete cloning of the Duchenne muscular dystrophy (DMD) cDNA and preliminary genomic organization of the DMD gene in normal and affected individuals. Cell 50(3):509–517PubMedCrossRefGoogle Scholar
  62. 62.
    Gao QQ, McNally EM (2015) The dystrophin complex: structure, function, and implications for therapy. Compr Physiol 5(3):1223–1239PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Ahn AH, Kunkel LM (1993) The structural and functional diversity of dystrophin. Nat Genet 3(4):283–291PubMedCrossRefGoogle Scholar
  64. 64.
    O’Brien KF, Kunkel LM (2001) Dystrophin and muscular dystrophy: past, present, and future. Mol Genet Metab 74(1-2):75–88PubMedCrossRefGoogle Scholar
  65. 65.
    Bladen CL, Salgado D, Monges S, Foncuberta ME, Kekou K, Kosma K, Dawkins H, Lamont L, Roy AJ, Chamova T, Guergueltcheva V, Chan S, Korngut L, Campbell C, Dai Y, Wang J, Barisic N, Brabec P, Lahdetie J, Walter MC, Schreiber-Katz O, Karcagi V, Garami M, Viswanathan V, Bayat F, Buccella F, Kimura E, Koeks Z, van den Bergen JC, Rodrigues M, Roxburgh R, Lusakowska A, Kostera-Pruszczyk A, Zimowski J, Santos R, Neagu E, Artemieva S, Rasic VM, Vojinovic D, Posada M, Bloetzer C, Jeannet PY, Joncourt F, Diaz-Manera J, Gallardo E, Karaduman AA, Topaloglu H, El Sherif R, Stringer A, Shatillo AV, Martin AS, Peay HL, Bellgard MI, Kirschner J, Flanigan KM, Straub V, Bushby K, Verschuuren J, Aartsma-Rus A, Beroud C, Lochmuller H (2015) The TREAT-NMD DMD Global Database: analysis of more than 7,000 Duchenne muscular dystrophy mutations. Hum Mutat 36(4):395–402PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Koenig M, Beggs AH, Moyer M, Scherpf S, Heindrich K, Bettecken T, Meng G, Muller CR, Lindlof M, Kaariainen H, de la Chapellet A, Kiuru A, Savontaus ML, Gilgenkrantz H, Recan D, Chelly J, Kaplan JC, Covone AE, Archidiacono N, Romeo G, Liechti-Gailati S, Schneider V, Braga S, Moser H, Darras BT, Murphy P, Francke U, Chen JD, Morgan G, Denton M, Greenberg CR, Wrogemann K, Blonden LA, van Paassen MB, van Ommen GJ, Kunkel LM (1989) The molecular basis for Duchenne versus Becker muscular dystrophy: correlation of severity with type of deletion. Am J Hum Genet 45(4):498–506PubMedPubMedCentralGoogle Scholar
  67. 67.
    Liechti-Gallati S, Koenig M, Kunkel LM, Frey D, Boltshauser E, Schneider V, Braga S, Moser H (1989) Molecular deletion patterns in Duchenne and Becker type muscular dystrophy. Hum Genet 81(4):343–348PubMedCrossRefGoogle Scholar
  68. 68.
    Ozawa E, Mizuno Y, Hagiwara Y, Sasaoka T, Yoshida M (2005) Molecular and cell biology of the sarcoglycan complex. Muscle Nerve 32(5):563–576PubMedCrossRefGoogle Scholar
  69. 69.
    Monaco AP, Bertelson CJ, Liechti-Gallati S, Moser H, Kunkel LM (1988) An explanation for the phenotypic differences between patients bearing partial deletions of the DMD locus. Genomics 2(1):90–95PubMedCrossRefGoogle Scholar
  70. 70.
    Yang J, Li SY, Li YQ, Cao JQ, Feng SW, Wang YY, Zhan YX, Yu CS, Chen F, Li J, Sun XF, Zhang C (2013) MLPA-based genotype-phenotype analysis in 1053 Chinese patients with DMD/BMD. BMC Med Genet 14:29PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Nigro V, Aurino S, Piluso G (2011) Limb girdle muscular dystrophies: update on genetic diagnosis and therapeutic approaches. Curr Opin Neurol 24(5):429–436PubMedCrossRefGoogle Scholar
  72. 72.
    Pegoraro E, Hoffman EP (1993) Limb-girdle muscular dystrophy overview. In: Pagon RA, Adam MP, Ardinger HH et al (eds) GeneReviews(R). University of Washington, SeattleGoogle Scholar
  73. 73.
    Nigro V, Savarese M (2014) Genetic basis of limb-girdle muscular dystrophies: the 2014 update. Acta Myol 33(1):1–12PubMedPubMedCentralGoogle Scholar
  74. 74.
    Vainzof M, Passos-Bueno MR, Canovas M, Moreira ES, Pavanello RC, Marie SK, Anderson LV, Bonnemann CG, McNally EM, Nigro V, Kunkel LM, Zatz M (1996) The sarcoglycan complex in the six autosomal recessive limb-girdle muscular dystrophies. Hum Mol Genet 5(12):1963–1969PubMedCrossRefGoogle Scholar
  75. 75.
    Bashir R, Britton S, Strachan T, Keers S, Vafiadaki E, Lako M, Richard I, Marchand S, Bourg N, Argov Z, Sadeh M, Mahjneh I, Marconi G, Passos-Bueno MR, Moreira Ede S, Zatz M, Beckmann JS, Bushby K (1998) A gene related to Caenorhabditis elegans spermatogenesis factor fer-1 is mutated in limb-girdle muscular dystrophy type 2B. Nat Genet 20(1):37–42PubMedCrossRefGoogle Scholar
  76. 76.
    Liu J, Aoki M, Illa I, Wu C, Fardeau M, Angelini C, Serrano C, Urtizberea JA, Hentati F, Hamida MB, Bohlega S, Culper EJ, Amato AA, Bossie K, Oeltjen J, Bejaoui K, McKenna-Yasek D, Hosler BA, Schurr E, Arahata K, de Jong PJ, Brown RH Jr (1998) Dysferlin, a novel skeletal muscle gene, is mutated in Miyoshi myopathy and limb girdle muscular dystrophy. Nat Genet 20(1):31–36PubMedCrossRefGoogle Scholar
  77. 77.
    Weiler T, Bashir R, Anderson LV, Davison K, Moss JA, Britton S, Nylen E, Keers S, Vafiadaki E, Greenberg CR, Bushby CR, Wrogemann K (1999) Identical mutation in patients with limb girdle muscular dystrophy type 2B or Miyoshi myopathy suggests a role for modifier gene(s). Hum Mol Genet 8(5):871–877PubMedCrossRefGoogle Scholar
  78. 78.
    Anderson LV, Davison K, Moss JA, Young C, Cullen MJ, Walsh J, Johnson MA, Bashir R, Britton S, Keers S, Argov Z, Mahjneh I, Fougerousse F, Beckmann JS, Bushby KM (1999) Dysferlin is a plasma membrane protein and is expressed early in human development. Hum Mol Genet 8(5):855–861PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Matsuda C, Hayashi YK, Ogawa M, Aoki M, Murayama K, Nishino I, Nonaka I, Arahata K, Brown RH Jr (2001) The sarcolemmal proteins dysferlin and caveolin-3 interact in skeletal muscle. Hum Mol Genet 10(17):1761–1766PubMedCrossRefGoogle Scholar
  80. 80.
    Parton RG (1996) Caveolae and caveolins. Curr Opin Cell Biol 8(4):542–548PubMedCrossRefGoogle Scholar
  81. 81.
    Huang Y, Laval SH, van Remoortere A, Baudier J, Benaud C, Anderson LV, Straub V, Deelder A, Frants RR, den Dunnen JT, Bushby K, van der Maarel SM (2007) AHNAK, a novel component of the dysferlin protein complex, redistributes to the cytoplasm with dysferlin during skeletal muscle regeneration. FASEB J 21(3):732–742PubMedCrossRefGoogle Scholar
  82. 82.
    Huang Y, Verheesen P, Roussis A, Frankhuizen W, Ginjaar I, Haldane F, Laval S, Anderson LV, Verrips T, Frants RR, de Haard H, Bushby K, den Dunnen J, van der Maarel SM (2005) Protein studies in dysferlinopathy patients using llama-derived antibody fragments selected by phage display. Eur J Hum Genet 13(6):721–730PubMedCrossRefGoogle Scholar
  83. 83.
    Lennon NJ, Kho A, Bacskai BJ, Perlmutter SL, Hyman BT, Brown RH Jr (2003) Dysferlin interacts with annexins A1 and A2 and mediates sarcolemmal wound-healing. J Biol Chem 278(50):50466–50473PubMedCrossRefGoogle Scholar
  84. 84.
    Han R, Campbell KP (2007) Dysferlin and muscle membrane repair. Curr Opin Cell Biol 19(4):409–416PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Bonnemann CG, Wang CH, Quijano-Roy S, Deconinck N, Bertini E, Ferreiro A, Muntoni F, Sewry C, Beroud C, Mathews KD, Moore SA, Bellini J, Rutkowski A, North KN, Members of International Standard of Care Committee for Congenital Muscular Dystrophies (2014) Diagnostic approach to the congenital muscular dystrophies. Neuromuscul Disord 24(4):289–311PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Falsaperla R, Pratico AD, Ruggieri M, Parano E, Rizzo R, Corsello G, Vitaliti G, Pavone P (2016) Congenital muscular dystrophy: from muscle to brain. Ital J Pediatr 42(1):78PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Norwood FL, Harling C, Chinnery PF, Eagle M, Bushby K, Straub V (2009) Prevalence of genetic muscle disease in Northern England: in-depth analysis of a muscle clinic population. Brain 132(Pt 11):3175–3186PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Kang PB, Morrison L, Iannaccone ST, Graham RJ, Bonnemann CG, Rutkowski A, Hornyak J, Wang CH, North K, Oskoui M, Getchius TS, Cox JA, Hagen EE, Gronseth G, Griggs RC, Guideline Development Subcommittee of the American Academy of Neurology, The Practice Issues Review Panel of the American Association of Neurology, Electrodiagnostic Medicine (2015) Evidence-based guideline summary: evaluation, diagnosis, and management of congenital muscular dystrophy: Report of the Guideline Development Subcommittee of the American Academy of Neurology and the Practice Issues Review Panel of the American Association of Neuromuscular & Electrodiagnostic Medicine. Neurology 84(13):1369–1378PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Wells L (2013) The o-mannosylation pathway: glycosyltransferases and proteins implicated in congenital muscular dystrophy. J Biol Chem 288(10):6930–6935PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Barresi R, Campbell KP (2006) Dystroglycan: from biosynthesis to pathogenesis of human disease. J Cell Sci 119(Pt 2):199–207PubMedCrossRefGoogle Scholar
  91. 91.
    Dobson CM, Hempel SJ, Stalnaker SH, Stuart R, Wells L (2013) O-mannosylation and human disease. Cell Mol Life Sci 70(16):2849–2857PubMedCrossRefGoogle Scholar
  92. 92.
    Guicheney P, Vignier N, Helbling-Leclerc A, Nissinen M, Zhang X, Cruaud C, Lambert JC, Richelme C, Topaloglu H, Merlini L, Barois A, Schwartz K, Tome FM, Tryggvason K, Fardeau M (1997) Genetics of laminin alpha 2 chain (or merosin) deficient congenital muscular dystrophy: from identification of mutations to prenatal diagnosis. Neuromuscul Disord 7(3):180–186PubMedCrossRefGoogle Scholar
  93. 93.
    Pegoraro E, Marks H, Garcia CA, Crawford T, Mancias P, Connolly AM, Fanin M, Martinello F, Trevisan CP, Angelini C, Stella A, Scavina M, Munk RL, Servidei S, Bonnemann CC, Bertorini T, Acsadi G, Thompson CE, Gagnon D, Hoganson G, Carver V, Zimmerman RA, Hoffman EP (1998) Laminin alpha2 muscular dystrophy: genotype/phenotype studies of 22 patients. Neurology 51(1):101–110PubMedCrossRefGoogle Scholar
  94. 94.
    Deenen JC, Arnts H, van der Maarel SM, Padberg GW, Verschuuren JJ, Bakker E, Weinreich SS, Verbeek AL, van Engelen BG (2014) Population-based incidence and prevalence of facioscapulohumeral dystrophy. Neurology 83(12):1056–1059PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Sacconi S, Salviati L, Desnuelle C (2015) Facioscapulohumeral muscular dystrophy. Biochim Biophys Acta 1852(4):607–614PubMedCrossRefGoogle Scholar
  96. 96.
    Lek A, Rahimov F, Jones PL, Kunkel LM (2015) Emerging preclinical animal models for FSHD. Trends Mol Med 21(5):295–306PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Lemmers RJ, van der Vliet PJ, Klooster R, Sacconi S, Camano P, Dauwerse JG, Snider L, Straasheijm KR, van Ommen GJ, Padberg GW, Miller DG, Tapscott SJ, Tawil R, Frants RR, van der Maarel SM (2010) A unifying genetic model for facioscapulohumeral muscular dystrophy. Science 329(5999):1650–1653PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    van Deutekom JC, Bakker E, Lemmers RJ, van der Wielen MJ, Bik E, Hofker MH, Padberg GW, Frants RR (1996) Evidence for subtelomeric exchange of 3.3 kb tandemly repeated units between chromosomes 4q35 and 10q26: implications for genetic counselling and etiology of FSHD1. Hum Mol Genet 5(12):1997–2003PubMedCrossRefGoogle Scholar
  99. 99.
    Wijmenga C, Hewitt JE, Sandkuijl LA, Clark LN, Wright TJ, Dauwerse HG, Gruter AM, Hofker MH, Moerer P, Williamson R et al (1992) Chromosome 4q DNA rearrangements associated with facioscapulohumeral muscular dystrophy. Nat Genet 2(1):26–30PubMedCrossRefPubMedCentralGoogle Scholar
  100. 100.
    Dixit M, Ansseau E, Tassin A, Winokur S, Shi R, Qian H, Sauvage S, Matteotti C, van Acker AM, Leo O, Figlewicz D, Barro M, Laoudj-Chenivesse D, Belayew A, Coppee F, Chen YW (2007) DUX4, a candidate gene of facioscapulohumeral muscular dystrophy, encodes a transcriptional activator of PITX1. Proc Natl Acad Sci U S A 104(46):18157–18162PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Geng LN, Yao Z, Snider L, Fong AP, Cech JN, Young JM, van der Maarel SM, Ruzzo WL, Gentleman RC, Tawil R, Tapscott SJ (2012) DUX4 activates germline genes, retroelements, and immune mediators: implications for facioscapulohumeral dystrophy. Dev Cell 22(1):38–51PubMedCrossRefGoogle Scholar
  102. 102.
    Lemmers RJ, Tawil R, Petek LM, Balog J, Block GJ, Santen GW, Amell AM, van der Vliet PJ, Almomani R, Straasheijm KR, Krom YD, Klooster R, Sun Y, den Dunnen JT, Helmer Q, Donlin-Smith CM, Padberg GW, van Engelen BG, de Greef JC, Aartsma-Rus AM, Frants RR, de Visser M, Desnuelle C, Sacconi S, Filippova GN, Bakker B, Bamshad MJ, Tapscott SJ, Miller DG, van der Maarel SM (2012) Digenic inheritance of an SMCHD1 mutation and an FSHD-permissive D4Z4 allele causes facioscapulohumeral muscular dystrophy type 2. Nat Genet 44(12):1370–1374PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Udd B, Krahe R (2012) The myotonic dystrophies: molecular, clinical, and therapeutic challenges. Lancet Neurol 11(10):891–905PubMedCrossRefGoogle Scholar
  104. 104.
    Meola G, Cardani R (2015) Myotonic dystrophies: an update on clinical aspects, genetic, pathology, and molecular pathomechanisms. Biochim Biophys Acta 1852(4):594–606PubMedCrossRefGoogle Scholar
  105. 105.
    Brook JD, McCurrach ME, Harley HG, Buckler AJ, Church D, Aburatani H, Hunter K, Stanton VP, Thirion JP, Hudson T et al (1992) Molecular basis of myotonic dystrophy: expansion of a trinucleotide (CTG) repeat at the 3’ end of a transcript encoding a protein kinase family member. Cell 69(2):385PubMedCrossRefGoogle Scholar
  106. 106.
    Fu YH, Pizzuti A, Fenwick RG Jr, King J, Rajnarayan S, Dunne PW, Dubel J, Nasser GA, Ashizawa T, de Jong P et al (1992) An unstable triplet repeat in a gene related to myotonic muscular dystrophy. Science 255(5049):1256–1258PubMedCrossRefGoogle Scholar
  107. 107.
    Mahadevan M, Tsilfidis C, Sabourin L, Shutler G, Amemiya C, Jansen G, Neville C, Narang M, Barcelo J, O’Hoy K et al (1992) Myotonic dystrophy mutation: an unstable CTG repeat in the 3’ untranslated region of the gene. Science 255(5049):1253–1255PubMedCrossRefGoogle Scholar
  108. 108.
    Kanadia RN, Johnstone KA, Mankodi A, Lungu C, Thornton CA, Esson D, Timmers AM, Hauswirth WW, Swanson MS (2003) A muscleblind knockout model for myotonic dystrophy. Science 302(5652):1978–1980PubMedCrossRefGoogle Scholar
  109. 109.
    Miller JW, Urbinati CR, Teng-Umnuay P, Stenberg MG, Byrne BJ, Thornton CA, Swanson MS (2000) Recruitment of human muscleblind proteins to (CUG)(n) expansions associated with myotonic dystrophy. EMBO J 19(17):4439–4448PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Day JW, Ricker K, Jacobsen JF, Rasmussen LJ, Dick KA, Kress W, Schneider C, Koch MC, Beilman GJ, Harrison AR, Dalton JC, Ranum LP (2003) Myotonic dystrophy type 2: molecular, diagnostic and clinical spectrum. Neurology 60(4):657–664PubMedCrossRefGoogle Scholar
  111. 111.
    Liquori CL, Ricker K, Moseley ML, Jacobsen JF, Kress W, Naylor SL, Day JW, Ranum LP (2001) Myotonic dystrophy type 2 caused by a CCTG expansion in intron 1 of ZNF9. Science 293(5531):864–867PubMedCrossRefGoogle Scholar
  112. 112.
    Madej-Pilarczyk A, Kochanski A (2016) Emery-Dreifuss muscular dystrophy: the most recognizable laminopathy. Folia Neuropathol 54(1):1–8PubMedCrossRefGoogle Scholar
  113. 113.
    Bione S, Maestrini E, Rivella S, Mancini M, Regis S, Romeo G, Toniolo D (1994) Identification of a novel X-linked gene responsible for Emery-Dreifuss muscular dystrophy. Nat Genet 8(4):323–327PubMedCrossRefGoogle Scholar
  114. 114.
    Dreifuss FE, Hogan GR (1961) Survival in x-chromosomal muscular dystrophy. Neurology 11:734–737PubMedCrossRefGoogle Scholar
  115. 115.
    Bonne G, Di Barletta MR, Varnous S, Becane HM, Hammouda EH, Merlini L, Muntoni F, Greenberg CR, Gary F, Urtizberea JA, Duboc D, Fardeau M, Toniolo D, Schwartz K (1999) Mutations in the gene encoding lamin A/C cause autosomal dominant Emery-Dreifuss muscular dystrophy. Nat Genet 21(3):285–288PubMedCrossRefPubMedCentralGoogle Scholar
  116. 116.
    Segura-Totten M, Wilson KL (2004) BAF: roles in chromatin, nuclear structure and retrovirus integration. Trends Cell Biol 14(5):261–266PubMedCrossRefGoogle Scholar
  117. 117.
    Manilal S, Nguyen TM, Sewry CA, Morris GE (1996) The Emery-Dreifuss muscular dystrophy protein, emerin, is a nuclear membrane protein. Hum Mol Genet 5(6):801–808PubMedCrossRefGoogle Scholar
  118. 118.
    Puckelwartz M, McNally EM (2011) Emery-Dreifuss muscular dystrophy. Handb Clin Neurol 101:155–166PubMedCrossRefGoogle Scholar
  119. 119.
    Koch AJ, Holaska JM (2014) Emerin in health and disease. Semin Cell Dev Biol 29:95–106PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Molecular Biology, Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, Hamon Center for Regenerative Science and MedicineUniversity of Texas Southwestern Medical CenterDallasUSA

Personalised recommendations