Advertisement

Gene Replacement Therapy for Duchenne Muscular Dystrophy

  • Katrin Hollinger
  • Julie M. Crudele
  • Jeffrey S. ChamberlainEmail author
Chapter

Abstract

Duchenne muscular dystrophy (DMD) is a fatal, X-linked disease caused by mutations in the massive dystrophin gene that lead to extremely low or non-detectable levels of dystrophin. Conversely, Becker muscular dystrophy (BMD) is a highly variable and significantly less severe disease that results from truncated or poorly expressed dystrophin variants. Based on the insights from BMD patient mutations and knowledge of the working domains of dystrophin, various miniaturized mini- and micro-dystrophin constructs have been developed for gene therapy and tested in preclinical animal models. Much of the central rod domain can be deleted with minimal loss of function, provided that spectrin-like repeats 16 and 17, which contain the neuronal nitric oxide synthase localization domain, are maintained. The N-terminal actin-binding domain and the C-terminal dystroglycan-binding domain (covering parts of “hinge 4” and the cysteine-rich domain) provide important functions and stability, while the function of the C-terminal domain appears redundant. While a range of viral vectors expressing these miniaturized genes have been utilized for DMD gene therapy, the recent focus has been on recombinant adeno-associated viral vectors (rAAV), which have now been tested extensively in mdx mouse and DMD dog models, and have own entered clinical trials. These vectors have shown significant improvement in the DMD pathology of mice and dogs, although complete correction has yet to be attained. Gene editing through exon-skipping oligonucleotides and CRISPR/Cas9 is also being developed, with varying success and a sense that both technologies are still in their infancy. While promising rAAV clinical trials have begun, there is still work to be done to advance the field of gene replacement for DMD.

Keywords

Micro-dystrophin Mini-dystrophin Dystrophin AAV Duchenne muscular dystrophy DMD BMD 

Notes

Acknowledgments

This work was supported by grants from the National Institutes of Health (HL122332 and AR065139). KH was supported by a fellowship from Solid Biosciences.

References

  1. 1.
    Eagle M, Baudouin SV, Chandler C, Giddings DR, Bullock R, Bushby K (2002) Survival in Duchenne muscular dystrophy: improvements in life expectancy since 1967 and the impact of home nocturnal ventilation. Neuromuscul Disord 12(10):926–929CrossRefGoogle Scholar
  2. 2.
    Emery AE (2002) The muscular dystrophies. Lancet 359(9307):687–695.  https://doi.org/10.1016/S0140-6736(02)07815-7 CrossRefPubMedGoogle Scholar
  3. 3.
    Roberts RG, Coffey AJ, Bobrow M, Bentley DR (1993) Exon structure of the human dystrophin gene. Genomics 16(2):536–538.  https://doi.org/10.1006/geno.1993.1225 CrossRefPubMedGoogle Scholar
  4. 4.
    Muntoni F, Torelli S, Ferlini A (2003) Dystrophin and mutations: one gene, several proteins, multiple phenotypes. Lancet Neurol 2(12):731–740CrossRefGoogle Scholar
  5. 5.
    Koenig M, Monaco AP, Kunkel LM (1988) The complete sequence of dystrophin predicts a rod-shaped cytoskeletal protein. Cell 53(2):219–228CrossRefGoogle Scholar
  6. 6.
    Corrado K, Mills PL, Chamberlain JS (1994) Deletion analysis of the dystrophin-actin binding domain. FEBS Lett 344(2–3):255–260CrossRefGoogle Scholar
  7. 7.
    Koenig M, Kunkel LM (1990) Detailed analysis of the repeat domain of dystrophin reveals four potential hinge segments that may confer flexibility. J Biol Chem 265(8):4560–4566PubMedGoogle Scholar
  8. 8.
    Cross RA, Stewart M, Kendrick-Jones J (1990) Structural predictions for the central domain of dystrophin. FEBS Lett 262(1):87–92CrossRefGoogle Scholar
  9. 9.
    Rybakova IN, Amann KJ, Ervasti JM (1996) A new model for the interaction of dystrophin with F-actin. J Cell Biol 135(3):661–672CrossRefGoogle Scholar
  10. 10.
    Amann KJ, Renley BA, Ervasti JM (1998) A cluster of basic repeats in the dystrophin rod domain binds F-actin through an electrostatic interaction. J Biol Chem 273(43):28419–28423CrossRefGoogle Scholar
  11. 11.
    Lai Y, Zhao J, Yue Y, Duan D (2013) α2 and α3 helices of dystrophin R16 and R17 frame a microdomain in the α1 helix of dystrophin R17 for neuronal NOS binding. Proc Natl Acad Sci U S A 110(2):525–530.  https://doi.org/10.1073/pnas.1211431109 CrossRefPubMedGoogle Scholar
  12. 12.
    Lai Y, Thomas GD, Yue Y, Yang HT, Li D, Long C, Judge L, Bostick B, Chamberlain JS, Terjung RL, Duan D (2009) Dystrophins carrying spectrin-like repeats 16 and 17 anchor nNOS to the sarcolemma and enhance exercise performance in a mouse model of muscular dystrophy. J Clin Invest 119(3):624–635.  https://doi.org/10.1172/JCI36612 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Ishikawa-Sakurai M, Yoshida M, Imamura M, Davies KE, Ozawa E (2004) ZZ domain is essentially required for the physiological binding of dystrophin and utrophin to beta-dystroglycan. Hum Mol Genet 13(7):693–702.  https://doi.org/10.1093/hmg/ddh087 CrossRefPubMedGoogle Scholar
  14. 14.
    Blake DJ, Tinsley JM, Davies KE, Knight AE, Winder SJ, Kendrick-Jones J (1995) Coiled-coil regions in the carboxy-terminal domains of dystrophin and related proteins: potentials for protein-protein interactions. Trends Biochem Sci 20(4):133–135CrossRefGoogle Scholar
  15. 15.
    Sadoulet-Puccio HM, Rajala M, Kunkel LM (1997) Dystrobrevin and dystrophin: an interaction through coiled-coil motifs. Proc Natl Acad Sci U S A 94(23):12413–12418CrossRefGoogle Scholar
  16. 16.
    Ervasti JM, Campbell KP (1993) A role for the dystrophin-glycoprotein complex as a transmembrane linker between laminin and actin. J Cell Biol 122(4):809–823CrossRefGoogle Scholar
  17. 17.
    Ramaswamy KS, Palmer ML, van der Meulen JH, Renoux A, Kostrominova TY, Michele DE, Faulkner JA (2011) Lateral transmission of force is impaired in skeletal muscles of dystrophic mice and very old rats. J Physiol 589(Pt5):1195–1208.  https://doi.org/10.1113/jphysiol.2010.201921 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Ervasti JM, Ohlendieck K, Kahl SD, Gaver MG, Campbell KP (1990) Deficiency of a glycoprotein component of the dystrophin complex in dystrophic muscle. Nature 345(6273):315–319CrossRefGoogle Scholar
  19. 19.
    Matsumura K, Burghes AHM, Mora M, Tome FMS, Morandi L, Cornello F, Leturcq F, Jeanpierre M, Kaplan JC, Reinert P, Fardeau M, Mendell JR, Campbell KP (1994) Immunohistochemical analysis of dystrophin-associated proteins in Becker/Duchenne muscular-dystrophy with huge in-frame deletions in the NH2-terminal and rod domains of dystrophin. J Clin Investig 93(1):99–105.  https://doi.org/10.1172/jci116989 CrossRefPubMedGoogle Scholar
  20. 20.
    England SB, Nicholson LVB, Johnson MA, Forrest SM, Love DR, Zubrzyckagaarn EE, Bulman DE, Harris JB, Davies KE (1990) Very mild muscular-dystrophy associated with the deletion of 46-percent of dystrophin. Nature 343(6254):180–182.  https://doi.org/10.1038/343180a0 CrossRefPubMedGoogle Scholar
  21. 21.
    Phelps SF, Hauser MA, Cole NM, Rafael JA, Hinkle RT, Faulkner JA, Chamberlain JS (1995) Expression of full-length and truncated dystrophin mini-genes in transgenic mdx mice. Hum Mol Genet 4(8):1251–1258CrossRefGoogle Scholar
  22. 22.
    Acsadi G, Dickson G, Love DR, Jani A, Walsh FS, Gurusinghe A, Wolff JA, Davies KE (1991) Human dystrophin expression in mdx mice after intramuscular injection of DNA constructs. Nature 352(6338):815–818CrossRefGoogle Scholar
  23. 23.
    Dunckley MG, Wells DJ, Walsh FS, Dickson G (1993) Direct retroviral-mediated transfer of a dystrophin minigene into mdx mouse muscle in vivo. Hum Mol Genet 2(6):717–723CrossRefGoogle Scholar
  24. 24.
    Vincent N, Ragot T, Gilgenkrantz H, Couton D, Chafey P, Gregoire A, Briand P, Kaplan JC, Kahn A, Perricaudet M (1993) Long-term correction of mouse dystrophic degeneration by adenovirus-mediated transfer of a minidystrophin gene. Nat Genet 5(2):130–134.  https://doi.org/10.1038/ng1093-130 CrossRefPubMedGoogle Scholar
  25. 25.
    Deconinck N, Ragot T, Marechal G, Perricaudet M, Gillis JM (1996) Functional protection of dystrophic mouse (mdx) muscles after adenovirus-mediated transfer of a dystrophin minigene. Proc Natl Acad Sci U S A 93(8):3570–3574CrossRefGoogle Scholar
  26. 26.
    Yang L, Lochmuller H, Luo J, Massie B, Nalbantoglu J, Karpati G, Petrof BJ (1998) Adenovirus-mediated dystrophin minigene transfer improves muscle strength in adult dystrophic (mdx) mice. Gene Ther 5(3):369–379CrossRefGoogle Scholar
  27. 27.
    Cox GA, Cole NM, Matsumura K, Phelps SF, Hauschka SD, Campbell KP, Faulkner JA, Chamberlain JS (1993) Overexpression of dystrophin in transgenic mdx mice eliminates dystrophic symptoms without toxicity. Nature 364(6439):725–729CrossRefGoogle Scholar
  28. 28.
    Wells DJ, Wells KE, Asante EA, Turner G, Sunada Y, Campbell KP, Walsh FS, Dickson G (1995) Expression of human full-length and minidystrophin in transgenic mdx mice: implications for gene therapy of Duchenne muscular dystrophy. Hum Mol Genet 4(8):1245–1250CrossRefGoogle Scholar
  29. 29.
    Rafael JA, Sunada Y, Cole NM, Campbell KP, Faulkner JA, Chamberlain JS (1994) Prevention of dystrophic pathology in mdx mice by a truncated dystrophin isoform. Hum Mol Genet 3(10):1725–1733CrossRefGoogle Scholar
  30. 30.
    Rafael JA, Cox GA, Corrado K, Jung D, Campbell KP, Chamberlain JS (1996) Forced expression of dystrophin deletion constructs reveals structure-function correlations. J Cell Biol 134(1):93–102CrossRefGoogle Scholar
  31. 31.
    Crawford GE, Faulkner JA, Crosbie RH, Campbell KP, Froehner SC, Chamberlain JS (2000) Assembly of the dystrophin-associated protein complex does not require the dystrophin COOH-terminal domain. J Cell Biol 150(6):1399–1410CrossRefGoogle Scholar
  32. 32.
    Harper SQ, Hauser MA, DelloRusso C, Duan D, Crawford RW, Phelps SF, Harper HA, Robinson AS, Engelhardt JF, Brooks SV, Chamberlain JS (2002) Modular flexibility of dystrophin: implications for gene therapy of Duchenne muscular dystrophy. Nat Med 8(3):253–261.  https://doi.org/10.1038/nm0302-253 CrossRefPubMedGoogle Scholar
  33. 33.
    Corrado K, Rafael JA, Mills PL, Cole NM, Faulkner JA, Wang K, Chamberlain JS (1996) Transgenic mdx mice expressing dystrophin with a deletion in the actin-binding domain display a “mild Becker” phenotype. J Cell Biol 134(4):873–884CrossRefGoogle Scholar
  34. 34.
    Beggs AH, Hoffman EP, Snyder JR, Arahata K, Specht L, Shapiro F, Angelini C, Sugita H, Kunkel LM (1991) Exploring the molecular basis for variability among patients with Becker muscular dystrophy: dystrophin gene and protein studies. Am J Hum Genet 49:54–67PubMedPubMedCentralGoogle Scholar
  35. 35.
    Wang B, Li J, Xiao X (2000) Adeno-associated virus vector carrying human minidystrophin genes effectively ameliorates muscular dystrophy in mdx mouse model. Proc Natl Acad Sci U S A 97(25):13714–13719.  https://doi.org/10.1073/pnas.240335297 CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Mendell JR, Campbell K, Rodino-Klapac L, Sahenk Z, Shilling C, Lewis S, Bowles D, Gray S, Li CW, Galloway G, Malik V, Coley B, Clark KR, Li JA, Xiao XA, Samulski J, McPhee SW, Samulski RJ, Walker CM (2010) Brief report: dystrophin immunity in Duchenne’s muscular dystrophy. New Engl J Med 363(15):1429–1437.  https://doi.org/10.1056/NEJMoa1000228 CrossRefPubMedGoogle Scholar
  37. 37.
    Mendell JR, Rodino-Klapac LR, Rosales XQ, Coley BD, Galloway G, Lewis S, Malik V, Shilling C, Byrne BJ, Conlon T, Campbell KJ, Bremer WG, Taylor LE, Flanigan KM, Gastier-Foster JM, Astbury C, Kota J, Sahenk Z, Walker CM, Clark KR (2010) Sustained alpha-sarcoglycan gene expression after gene transfer in limb-girdle muscular dystrophy, type 2D. Ann Neurol 68(5):629–638.  https://doi.org/10.1002/ana.22251 CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Mingozzi F, Maus MV, Hui DJ, Sabatino DE, Murphy SL, Rasko JEJ, Ragni MV, Manno CS, Sommer J, Jiang HY, Pierce GF, Ertl HCJ, High KA (2007) CD8+ T-cell responses to adeno-associated virus capsid in humans. Nat Med 13(4):419–422.  https://doi.org/10.1038/nm1549 CrossRefPubMedGoogle Scholar
  39. 39.
    Wang Z, Storb R, Halbert CL, Banks GB, Butts TM, Finn EE, Allen JM, Miller AD, Chamberlain JS, Tapscott SJ (2012) Successful regional delivery and long-term expression of a dystrophin gene in canine muscular dystrophy: a preclinical model for human therapies. Mol Ther 20(8):1501–1507.  https://doi.org/10.1038/mt.2012.111 CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Wang Z, Kuhr CS, Allen JM, Blankinship M, Gregorevic P, Chamberlain JS, Tapscott SJ, Storb R (2007) Sustained AAV-mediated dystrophin expression in a canine model of Duchenne muscular dystrophy with a brief course of immunosuppression. Mol Ther 15(6):1160–1166.  https://doi.org/10.1038/sj.mt.6300161 CrossRefPubMedGoogle Scholar
  41. 41.
    Le Guiner C, Servais L, Montus M, Larcher T, Fraysse B, Moullec S, Allais M, Francois V, Dutilleul M, Malerba A, Koo T, Thibaut JL, Matot B, Devaux M, Le Duff J, Deschamps JY, Barthelemy I, Blot S, Testault I, Wahbi K, Ederhy S, Martin S, Veron P, Georger C, Athanasopoulos T, Masurier C, Mingozzi F, Carlier P, Gjata B, Hogrel JY, Adjali O, Mavilio F, Voit T, Moullier P, Dickson G (2017) Long-term microdystrophin gene therapy is effective in a canine model of Duchenne muscular dystrophy. Nat Commun 8:16105.  https://doi.org/10.1038/ncomms16105 CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Banks GB, Judge LM, Allen JM, Chamberlain JS (2010) The polyproline site in hinge 2 influences the functional capacity of truncated dystrophins. PLoS Genet 6(5):e1000958.  https://doi.org/10.1371/journal.pgen.1000958 CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Yue Y, Pan X, Hakim CH, Kodippili K, Zhang K, Shin JH, Yang HT, McDonald T, Duan D (2015) Safe and bodywide muscle transduction in young adult Duchenne muscular dystrophy dogs with adeno-associated virus. Hum Mol Genet 24(20):5880–5890.  https://doi.org/10.1093/hmg/ddv310 CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Hakim CH, Wasala NB, Pan X, Kodippili K, Yue Y, Zhang K, Yao G, Haffner B, Duan SX, Ramos J, Schneider JS, Yang NN, Chamberlain JS, Duan D (2017) A five-repeat micro-dystrophin gene ameliorated dystrophic phenotype in the severe DBA/2J-mdx model of Duchenne muscular dystrophy. Mol Ther Methods Clin Dev 6:216–230.  https://doi.org/10.1016/j.omtm.2017.06.006 CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Ramos JN, Hollinger K, Bengtsson NE, Allen JM, Hauschka SD, Chamberlain JS (2019) Development of novel micro-dystrophins with enhanced functionality. Mol Ther 2019; in pressGoogle Scholar
  46. 46.
    Hakim CH, Kodippili K, Jenkins G, Hsiao TY, Pan X, Lessa TB, Leach SB, Emter C, Yue Y, Zhang K, Duan S, Yao G, Schneider JS, Yang NN, Chamberlain JS, Duan D (2017) Single systemic AAV micro-dystrophin therapy ameliorates muscular dystrophy in young adult Duchenne muscular dystrophy dogs for up to two years. Paper presented at the American Society of Gene and Cell Therapy annual meeting, Washington, DC. Mol Ther 25(5S1):192. (abstract)Google Scholar
  47. 47.
    Birch SM, Lawlor MW, Guo L, Crudele JM, Hawkins EC, Nghiem PP, Styner MA, Struharik MJ, Brown KJ, Golebiowski D, Gonzalez JP, Morris CA, Schneider JS, Chamberlain JS, Byrne BJ, Kornegay JN (2017) A blinded, placebo-controlled systemic gene therapy efficacy study in the GRMD model of Duchenne muscular dystrophy. Paper presented at the American Society of Gene and Cell Therapy annual meeting, Washington, DC. Mol Ther 25(5S1):193. (abstract)Google Scholar
  48. 48.
    Ghosh A, Yue Y, Shin JH, Duan D (2009) Systemic Trans-splicing adeno-associated viral delivery efficiently transduces the heart of adult mdx mouse, a model for duchenne muscular dystrophy. Hum Gene Ther 20(11):1319–1328.  https://doi.org/10.1089/hum.2009.058 CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Odom GL, Gregorevic P, Allen JM, Chamberlain JS (2011) Gene therapy of mdx mice with large truncated dystrophins generated by recombination using rAAV6. Mol Ther 19(1):36–45.  https://doi.org/10.1038/mt.2010.205 CrossRefPubMedGoogle Scholar
  50. 50.
    Lostal W, Kodippili K, Yue Y, Duan D (2014) Full-length dystrophin reconstitution with adeno-associated viral vectors. Hum Gene Ther 25(6):552–562.  https://doi.org/10.1089/hum.2013.210 CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Koo T, Popplewell L, Athanasopoulos T, Dickson G (2014) Triple trans-splicing adeno-associated virus vectors capable of transferring the coding sequence for full-length dystrophin protein into dystrophic mice. Hum Gene Ther 25(2):98–108.  https://doi.org/10.1089/hum.2013.164 CrossRefPubMedGoogle Scholar
  52. 52.
    Sweeney NP, Meng J, Patterson H, Morgan JE, McClure M (2017) Delivery of large transgene cassettes by foamy virus vector. Sci Rep 7(1):8085.  https://doi.org/10.1038/s41598-017-08312-3 CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Counsell JR, Asgarian Z, Meng J, Ferrer V, Vink CA, Howe SJ, Waddington SN, Thrasher AJ, Muntoni F, Morgan JE, Danos O (2017) Lentiviral vectors can be used for full-length dystrophin gene therapy. Sci Rep 7(1):79.  https://doi.org/10.1038/s41598-017-00152-5 CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    DelloRusso C, Scott J, Hartigan-O’Connor D, Salvatori G, Barjot C, Robinson AS, Crawford RW, Brooks SV, Chamberlain JS (2002) Functional correction of adult mdx mouse muscle using gutted adenoviral vectors expressing full-length dystrophin. Proc Natl Acad Sci U S A 99:12979–12984CrossRefGoogle Scholar
  55. 55.
    Le Guiner C, Montus M, Servais L, Cherel Y, Francois V, Thibaud JL, Wary C, Matot B, Larcher T, Guigand L, Dutilleul M, Domenger C, Allais M, Beuvin M, Moraux A, Le Duff J, Devaux M, Jaulin N, Guilbaud M, Latournerie V, Veron P, Boutin S, Leborgne C, Desgue D, Deschamps JY, Moullec S, Fromes Y, Vulin A, Smith RH, Laroudie N, Barnay-Toutain F, Riviere C, Bucher S, Le TH, Delaunay N, Gasmi M, Kotin RM, Bonne G, Adjali O, Masurier C, Hogrel JY, Carlier P, Moullier P, Voit T (2014) Forelimb treatment in a large cohort of dystrophic dogs supports delivery of a recombinant AAV for exon skipping in Duchenne patients. Mol Ther 22(11):1923–1935.  https://doi.org/10.1038/mt.2014.151 CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Tabebordbar M, Zhu K, Cheng JKW, Chew WL, Widrick JJ, Yan WX, Maesner C, Wu EY, Xiao R, Ran FA, Cong L, Zhang F, Vandenberghe LH, Church GM, Wagers AJ (2016) In vivo gene editing in dystrophic mouse muscle and muscle stem cells. Science 351(6271):407–411.  https://doi.org/10.1126/science.aad5177 CrossRefPubMedGoogle Scholar
  57. 57.
    Bengtsson NE, Hall JK, Odom GL, Phelps MP, Andrus CR, Hawkins RD, Hauschka SD, Chamberlain JR, Chamberlain JS (2017) Muscle-specific CRISPR/Cas9 dystrophin gene editing ameliorates pathophysiology in a mouse model for Duchenne muscular dystrophy. Nat Commun 8:14454.  https://doi.org/10.1038/ncomms14454 CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    El Refaey M, Xu L, Gao Y, Canan BD, Adesanya TA, Warner SC, Akagi K, Symer DE, Mohler PJ, Ma J, Janssen PM, Han R (2017) In vivo genome editing restores dystrophin expression and cardiac function in dystrophic mice. Circ Res 121(8):923–929.  https://doi.org/10.1161/CIRCRESAHA.117.310996 CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Bengtsson NE, Seto JT, Hall JK, Chamberlain JS, Odom GL (2016) Progress and prospects of gene therapy clinical trials for the muscular dystrophies. Hum Mol Genet 25(R1):R9–R17.  https://doi.org/10.1093/hmg/ddv420 CrossRefPubMedGoogle Scholar
  60. 60.
    Bieber S, Halldorson JB, Finn E, Ahmad S, Chamberlain JS, Odom GL (2013) Extracorporeal delivery of rAAV with metabolic exchange and oxygenation. Sci Rep 3:1538.  https://doi.org/10.1038/srep01538 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Katrin Hollinger
    • 1
  • Julie M. Crudele
    • 1
  • Jeffrey S. Chamberlain
    • 1
    Email author
  1. 1.Department of Neurology, Senator Paul D. Wellstone Muscular Dystrophy Research CenterUniversity of WashingtonSeattleUSA

Personalised recommendations