Advertisement

Considerations on Preclinical Neuromuscular Disease Gene Therapy Studies

  • Dongsheng DuanEmail author
Chapter

Abstract

Numerous neuromuscular and non-neuromuscular diseases are amenable to gene therapy. Rigorously designed and carefully conducted preclinical studies are essential to translate these muscle gene therapies to human patients. Many general guidelines have been published in recent years on how to enhance reproducibility and improve predictive value of preclinical studies. These are excellent guidelines to follow in preclinical gene therapy studies. However, they are not tailed specifically for muscle gene therapy. In this chapter, I discuss considerations in the design of a preclinical neuromuscular disease gene therapy study based on our experience in the preclinical development of adeno-associated virus (AAV) micro-dystrophin gene therapy. I also discuss adapting the design of phase III clinical trials to animal studies to improve their reproducibility. This chapter is not intended to be all-inclusive and to cover all possible scenarios. Due to the complexity of the candidate diseases that can be treated by muscle gene therapy, it is critical to consider disease-specific issues in the design of each preclinical muscle gene therapy study.

Keywords

Preclinical study Gene therapy Muscle disease Experimental design Adeno-associated virus Animal model Dystrophin Muscular dystrophy 

Notes

Acknowledgment

Muscle gene therapy research in the Duan lab is currently supported by the National Institutes of Health (NS-90634, AR-70571, AR-69085), the Department of Defense (MD150133), Jesse’s Journey: The Foundation for Gene and Cell Therapy, Hope for Javier, Jackson Freel DMD Research Fund, Parent Project Muscular Dystrophy, and Solid Biosciences. The author thanks the Duan lab members for helpful discussion. The author thanks Drs. Jianguo (Tony) Sun and Gang (Gary) Yao for their helpful advices on the statistics section (Sect. 17.3.5). The author thanks Emily Million and John D’Alessandro for the help with proofreading the manuscript.

Disclosure

The author is a member of the scientific advisory board for Solid Biosciences and an equity holder of Solid Biosciences. The Duan lab has received research support from Solid Biosciences.

References

  1. 1.
    Stroes ES, Nierman MC, Meulenberg JJ, Franssen R, Twisk J, Henny CP, Maas MM, Zwinderman AH, Ross C, Aronica E, High KA, Levi MM, Hayden MR, Kastelein JJ, Kuivenhoven JA (2008) Intramuscular administration of AAV1-lipoprotein lipase S447X lowers triglycerides in lipoprotein lipase-deficient patients. Arterioscler Thromb Vasc Biol 28(12):2303–2304.  https://doi.org/10.1161/ATVBAHA.108.175620 PubMedGoogle Scholar
  2. 2.
    Herzog RW, Mount JD, Arruda VR, High KA, Lothrop CD Jr (2001) Muscle-directed gene transfer and transient immune suppression result in sustained partial correction of canine hemophilia B caused by a null mutation. Mol Ther 4(3):192–200PubMedGoogle Scholar
  3. 3.
    Manno CS, Chew AJ, Hutchison S, Larson PJ, Herzog RW, Arruda VR, Tai SJ, Ragni MV, Thompson A, Ozelo M, Couto LB, Leonard DG, Johnson FA, McClelland A, Scallan C, Skarsgard E, Flake AW, Kay MA, High KA, Glader B (2003) AAV-mediated factor IX gene transfer to skeletal muscle in patients with severe hemophilia B. Blood 101(8):2963–2972PubMedGoogle Scholar
  4. 4.
    Flotte TR, Trapnell BC, Humphries M, Carey B, Calcedo R, Rouhani F, Campbell-Thompson M, Yachnis AT, Sandhaus RA, McElvaney NG, Mueller C, Messina LM, Wilson JM, Brantly M, Knop DR, Ye GJ, Chulay JD (2011) Phase 2 clinical trial of a recombinant Adeno-associated virus vector expressing alpha 1 antitrypsin: interim results. Hum Gene Ther 22(10):1239–1247.  https://doi.org/10.1089/hum.2011.053 PubMedPubMedCentralGoogle Scholar
  5. 5.
    Duan D (2018) Micro-dystrophin gene therapy goes systemic in Duchenne muscular dystrophy patients. Hum Gene Ther 29(7):733–736.  https://doi.org/10.1089/hum.2018.012 PubMedGoogle Scholar
  6. 6.
    Mendell JR, Sahenk Z, Malik V, Gomez AM, Flanigan KM, Lowes LP, NA L, Berry K, Meadows E, Lewis S, Braun L, Shontz K, Rouhana M, Clark KR, Rosales XQ, Al-Zaidy S, Govoni A, Rodino-Klapac LR, Hogan MJ, Kaspar BK (2015) A phase I/IIa follistatin gene therapy trial for Becker muscular dystrophy. Mol Ther 23(1):192–201.  https://doi.org/10.1038/mt.2014.200 PubMedGoogle Scholar
  7. 7.
    Kunkel LM (2005) 2004 William Allan award address. Cloning of the DMD gene. Am J Hum Genet 76(2):205–214PubMedPubMedCentralGoogle Scholar
  8. 8.
    Gilbert R, Nalbantoglu J, Petrof BJ, Ebihara S, Guibinga GH, Tinsley JM, Kamen A, Massie B, Davies KE, Karpati G (1999) Adenovirus-mediated utrophin gene transfer mitigates the dystrophic phenotype of mdx mouse muscles. Hum Gene Ther 10(8):1299–1310PubMedGoogle Scholar
  9. 9.
    Mendell JR, Rodino-Klapac LR, Rosales-Quintero X, Kota J, Coley BD, Galloway G, Craenen JM, Lewis S, Malik V, Shilling C, Byrne BJ, Conlon T, Campbell KJ, Bremer WG, Viollet L, Walker CM, Sahenk Z, Clark KR (2009) Limb-girdle muscular dystrophy type 2D gene therapy restores alpha-sarcoglycan and associated proteins. Ann Neurol 66(3):290–297.  https://doi.org/10.1002/ana.21732 PubMedPubMedCentralGoogle Scholar
  10. 10.
    Duan D (2018) Systemic AAV micro-dystrophin gene therapy for Duchenne muscular dystrophy. Mol Ther 26(10):2337–2356.  https://doi.org/10.1016/j.ymthe.2018.07.011PubMedGoogle Scholar
  11. 11.
    Liu J, Wallace LM, Garwick-Coppens SE, Sloboda DD, Davis CS, Hakim CH, Hauser MA, Brooks SV, Mendell JR, Harper SQ (2014) RNAi-mediated gene silencing of mutant myotilin improves myopathy in LGMD1A mice. Mol Ther Nucleic Acids 3:e160.  https://doi.org/10.1038/mtna.2014.13 PubMedPubMedCentralGoogle Scholar
  12. 12.
    Zhang Y, Long C, Bassel-Duby R, Olson EN (2018) Myoediting: toward prevention of muscular dystrophy by therapeutic genome editing. Physiol Rev 98(3):1205–1240.  https://doi.org/10.1152/physrev.00046.2017 PubMedGoogle Scholar
  13. 13.
    Nelson CE, Robinson-Hamm JN, Gersbach CA (2017) Genome engineering: a new approach to gene therapy for neuromuscular disorders. Nat Rev Neurol 13(11):647–661.  https://doi.org/10.1038/nrneurol.2017.126 PubMedGoogle Scholar
  14. 14.
    Berger A, Maire S, Gaillard MC, Sahel JA, Hantraye P, Bemelmans AP (2016) mRNA trans-splicing in gene therapy for genetic diseases. Wiley Interdiscip Rev RNA 7(4):487–498.  https://doi.org/10.1002/wrna.1347 PubMedPubMedCentralGoogle Scholar
  15. 15.
    Spitali P, Aartsma-Rus A (2012) Splice modulating therapies for human disease. Cell 148(6):1085–1088.  https://doi.org/10.1016/j.cell.2012.02.014. S0092-8674(12)00214-0 [pii]PubMedGoogle Scholar
  16. 16.
    Vo AH, McNally EM (2015) Modifier genes and their effect on Duchenne muscular dystrophy. Curr Opin Neurol 28(5):528–534.  https://doi.org/10.1097/WCO.0000000000000240 PubMedPubMedCentralGoogle Scholar
  17. 17.
    Goonasekera SA, Lam CK, Millay DP, Sargent MA, Hajjar RJ, Kranias EG, Molkentin JD (2011) Mitigation of muscular dystrophy in mice by SERCA overexpression in skeletal muscle. J Clin Investig 121(3):1044–1052.  https://doi.org/10.1172/JCI43844. 43844 [pii]PubMedGoogle Scholar
  18. 18.
    Voit A, Patel V, Pachon R, Shah V, Bakhutma M, Kohlbrenner E, McArdle JJ, Dell’Italia LJ, Mendell JR, Xie LH, Hajjar RJ, Duan D, Fraidenraich D, Babu GJ (2017) Reducing sarcolipin expression mitigates Duchenne muscular dystrophy and associated cardiomyopathy in mice. Nat Commun 8(1):1068.  https://doi.org/10.1038/s41467-017-01146-7 PubMedPubMedCentralGoogle Scholar
  19. 19.
    Shin J-H, Bostick B, Yue Y, Hajjar R, Duan D (2011) SERCA2a gene transfer improves electrocardiographic performance in aged mdx mice. J Transl Med 9:132.  https://doi.org/10.1186/1479-5876-9-132. 1479-5876-9-132 [pii]PubMedPubMedCentralGoogle Scholar
  20. 20.
    Wang D, Zhong L, Nahid MA, Gao G (2014) The potential of adeno-associated viral vectors for gene delivery to muscle tissue. Expert Opin Drug Deliv 11(3):345–364.  https://doi.org/10.1517/17425247.2014.871258 PubMedPubMedCentralGoogle Scholar
  21. 21.
    Duan D (2016) Systemic delivery of adeno-associated viral vectors. Curr Opin Virol 21:16–25.  https://doi.org/10.1016/j.coviro.2016.07.006 PubMedPubMedCentralGoogle Scholar
  22. 22.
    Mendell JR, Al-Zaidy S, Shell R, Arnold WD, Rodino-Klapac LR, Prior TW, Lowes L, Alfano L, Berry K, Church K, Kissel JT, Nagendran S, L’Italien J, Sproule DM, Wells C, Cardenas JA, Heitzer MD, Kaspar A, Corcoran S, Braun L, Likhite S, Miranda C, Meyer K, Foust KD, Burghes AHM, Kaspar BK (2017) Single-dose gene-replacement therapy for spinal muscular atrophy. N Engl J Med 377(18):1713–1722.  https://doi.org/10.1056/NEJMoa1706198 PubMedGoogle Scholar
  23. 23.
    Malerba A, Klein P, Bachtarzi H, Jarmin SA, Cordova G, Ferry A, Strings V, Espinoza MP, Mamchaoui K, Blumen SC, St Guily JL, Mouly V, Graham M, Butler-Browne G, Suhy DA, Trollet C, Dickson G (2017) PABPN1 gene therapy for oculopharyngeal muscular dystrophy. Nat Commun 8:14848.  https://doi.org/10.1038/ncomms14848 PubMedPubMedCentralGoogle Scholar
  24. 24.
    FDA (2013) Guidance for industry: preclinical assessment of investigational cellular and gene therapy products. https://www.federalregister.gov/documents/2013/11/25/2013-28173/guidance-for-industry-preclinical-assessment-of-investigational-cellular-and-gene-therapy-productsGoogle Scholar
  25. 25.
    Lima BS, Videira MA (2018) Toxicology and biodistribution: the clinical value of animal biodistribution studies. Mol Ther-Meth Clin Dev 8:183–197.  https://doi.org/10.1016/j.omtm.2018.01.003 Google Scholar
  26. 26.
    Mendell JR, Lloyd-Puryear M (2013) Report of MDA muscle disease symposium on newborn screening for Duchenne muscular dystrophy. Muscle Nerve 48(1):21–26.  https://doi.org/10.1002/mus.23810 PubMedGoogle Scholar
  27. 27.
    Sicinski P, Geng Y, Ryder-Cook AS, Barnard EA, Darlison MG, Barnard PJ (1989) The molecular basis of muscular dystrophy in the mdx mouse: a point mutation. Science 244(4912):1578–1580PubMedGoogle Scholar
  28. 28.
    Cooper BJ, Winand NJ, Stedman H, Valentine BA, Hoffman EP, Kunkel LM, Scott MO, Fischbeck KH, Kornegay JN, Avery RJ et al (1988) The homologue of the Duchenne locus is defective in X-linked muscular dystrophy of dogs. Nature 334(6178):154–156PubMedGoogle Scholar
  29. 29.
    McGreevy JW, Hakim CH, McIntosh MA, Duan D (2015) Animal models of Duchenne muscular dystrophy: from basic mechanisms to gene therapy. Dis Model Mech 8(3):195–213.  https://doi.org/10.1242/dmm.018424 PubMedPubMedCentralGoogle Scholar
  30. 30.
    Sui T, Lau YS, Liu D, Liu T, Xu L, Gao Y, Lai L, Li Z, Han R (2018) A novel rabbit model of Duchenne muscular dystrophy generated by CRISPR/Cas9. Dis Model Mech 11(6):dmm032201.  https://doi.org/10.1242/dmm.032201 PubMedPubMedCentralGoogle Scholar
  31. 31.
    Veltrop M, van Vliet L, Hulsker M, Claassens J, Brouwers C, Breukel C, van der Kaa J, Linssen MM, den Dunnen JT, Verbeek S, Aartsma-Rus A, van Putten M (2018) A dystrophic Duchenne mouse model for testing human antisense oligonucleotides. PLoS One 13(2):e0193289.  https://doi.org/10.1371/journal.pone.0193289. ARTN e0193289PubMedPubMedCentralGoogle Scholar
  32. 32.
    Amoasii L, Long C, Li H, Mireault AA, Shelton JM, Sanchez-Ortiz E, McAnally JR, Bhattacharyya S, Schmidt F, Grimm D, Hauschka SD, Bassel-Duby R, Olson EN (2017) Single-cut genome editing restores dystrophin expression in a new mouse model of muscular dystrophy. Sci Transl Med 9(418):eaan8081.  https://doi.org/10.1126/scitranslmed.aan8081 PubMedPubMedCentralGoogle Scholar
  33. 33.
    Young CS, Mokhonova E, Quinonez M, Pyle AD, Spencer MJ (2017) Creation of a novel humanized dystrophic mouse model of Duchenne muscular dystrophy and application of a CRISPR/Cas9 gene editing therapy. J Neuromuscul Dis 4(2):139–145.  https://doi.org/10.3233/JND-170218 PubMedPubMedCentralGoogle Scholar
  34. 34.
    Wang B, Li J, Xiao X (2000) Adeno-associated virus vector carrying human minidystrophin genes effectively ameliorates muscular dystrophy in mdx mouse model. Proc Natl Acad Sci U S A 97(25):13714–13719PubMedPubMedCentralGoogle Scholar
  35. 35.
    Harper SQ, Hauser MA, DelloRusso C, Duan D, Crawford RW, Phelps SF, Harper HA, Robinson AS, Engelhardt JF, Brooks SV, Chamberlain JS (2002) Modular flexibility of dystrophin: implications for gene therapy of Duchenne muscular dystrophy. Nat Med 8(3):253–261PubMedGoogle Scholar
  36. 36.
    Fabb SA, Wells DJ, Serpente P, Dickson G (2002) Adeno-associated virus vector gene transfer and sarcolemmal expression of a 144 kDa micro-dystrophin effectively restores the dystrophin- associated protein complex and inhibits myofibre degeneration in nude/mdx mice. Hum Mol Genet 11(7):733–741PubMedGoogle Scholar
  37. 37.
    Yue Y, Li Z, Harper SQ, Davisson RL, Chamberlain JS, Duan D (2003) Microdystrophin gene therapy of cardiomyopathy restores dystrophin-glycoprotein complex and improves sarcolemma integrity in the mdx mouse heart. Circulation 108(13):1626–1632PubMedPubMedCentralGoogle Scholar
  38. 38.
    Liu M, Yue Y, Harper SQ, Grange RW, Chamberlain JS, Duan D (2005) Adeno-associated virus-mediated microdystrophin expression protects young mdx muscle from contraction-induced injury. Mol Ther 11(2):245–256.  https://doi.org/10.1016/j.ymthe.2004.09.013. S1525-0016(04)01461-3 [pii]PubMedPubMedCentralGoogle Scholar
  39. 39.
    Lai Y, Thomas GD, Yue Y, Yang HT, Li D, Long C, Judge L, Bostick B, Chamberlain JS, Terjung RL, Duan D (2009) Dystrophins carrying spectrin-like repeats 16 and 17 anchor nNOS to the sarcolemma and enhance exercise performance in a mouse model of muscular dystrophy. J Clin Investig 119(3):624–635.  https://doi.org/10.1172/JCI36612 PubMedGoogle Scholar
  40. 40.
    Foster H, Sharp PS, Athanasopoulos T, Trollet C, Graham IR, Foster K, Wells DJ, Dickson G (2008) Codon and mRNA sequence optimization of microdystrophin transgenes improves expression and physiological outcome in dystrophic mdx mice following AAV2/8 gene transfer. Mol Ther 16(11):1825–1832.  https://doi.org/10.1038/mt.2008.186 PubMedGoogle Scholar
  41. 41.
    Townsend D, Blankinship MJ, Allen JM, Gregorevic P, Chamberlain JS, Metzger JM (2007) Systemic administration of micro-dystrophin restores cardiac geometry and prevents dobutamine-induced cardiac pump failure. Mol Ther 15(6):1086–1092PubMedGoogle Scholar
  42. 42.
    Gregorevic P, Allen JM, Minami E, Blankinship MJ, Haraguchi M, Meuse L, Finn E, Adams ME, Froehner SC, Murry CE, Chamberlain JS (2006) rAAV6-microdystrophin preserves muscle function and extends lifespan in severely dystrophic mice. Nat Med 12(7):787–789PubMedPubMedCentralGoogle Scholar
  43. 43.
    Gregorevic P, Blankinship MJ, Allen JM, Chamberlain JS (2008) Systemic microdystrophin gene delivery improves skeletal muscle structure and function in old dystrophic mdx mice. Mol Ther 16(4):657–664.  https://doi.org/10.1038/mt.2008.28 PubMedPubMedCentralGoogle Scholar
  44. 44.
    Yue Y, Liu M, Duan D (2006) C-terminal truncated microdystrophin recruits dystrobrevin and syntrophin to the dystrophin-associated glycoprotein complex and reduces muscular dystrophy in symptomatic utrophin/dystrophin double knock-out mice. Mol Ther 14(1):79–87PubMedPubMedCentralGoogle Scholar
  45. 45.
    Wang B, Li J, Fu FH, Xiao X (2009) Systemic human minidystrophin gene transfer improves functions and life span of dystrophin and dystrophin/utrophin-deficient mice. J Orthop Res 27(4):421–426.  https://doi.org/10.1002/jor.20781 PubMedGoogle Scholar
  46. 46.
    Hakim CH, Wasala NB, Pan X, Kodippili K, Yue Y, Zhang K, Yao G, Haffner B, Duan SX, Ramos J, Schneider JS, Yang NN, Chamberlain JS, Duan D (2017) A five-repeat micro-dystrophin gene ameliorated dystrophic phenotype in the severe DBA/2J-mdx model of Duchenne muscular dystrophy. Mol Ther Methods Clin Dev 6:216–230.  https://doi.org/10.1016/j.omtm.2017.06.006 PubMedPubMedCentralGoogle Scholar
  47. 47.
    Bostick B, Yue Y, Duan D (2010) Gender influences cardiac function in the mdx model of Duchenne cardiomyopathy. Muscle Nerve 42(4):600–603.  https://doi.org/10.1002/mus.21763 PubMedPubMedCentralGoogle Scholar
  48. 48.
    Bostick B, Shin J-H, Yue Y, Duan D (2011) AAV-microdystrophin therapy improves cardiac performance in aged female mdx mice. Mol Ther 19(10):1826–1832PubMedPubMedCentralGoogle Scholar
  49. 49.
    Bostick B, Shin J-H, Yue Y, Wasala NB, Lai Y, Duan D (2012) AAV micro-dystrophin gene therapy alleviates stress-induced cardiac death but not myocardial fibrosis in >21-m-old mdx mice, an end-stage model of Duchenne muscular dystrophy cardiomyopathy. J Mol Cell Cardiol 53(2):217–222.  https://doi.org/10.1016/j.yjmcc.2012.05.002. S0022-2828(12)00179-4 [pii]PubMedPubMedCentralGoogle Scholar
  50. 50.
    Duan D (2015) Duchenne muscular dystrophy gene therapy in the canine model. Hum Gene Ther Clin Dev 26(1):57–69.  https://doi.org/10.1089/humc.2015.006 PubMedPubMedCentralGoogle Scholar
  51. 51.
    Shin J-H, Pan X, Hakim CH, Yang HT, Yue Y, Zhang K, Terjung RL, Duan D (2013) Microdystrophin ameliorates muscular dystrophy in the canine model of Duchenne muscular dystrophy. Mol Ther 21(4):750–757.  https://doi.org/10.1038/mt.2012.283 PubMedPubMedCentralGoogle Scholar
  52. 52.
    Yue Y, Pan X, Hakim CH, Kodippili K, Zhang K, Shin J-H, Yang HT, McDonald T, Duan D (2015) Safe and bodywide muscle transduction in young adult Duchenne muscular dystrophy dogs with adeno-associated virus. Hum Mol Genet 24(20):5880–5890PubMedPubMedCentralGoogle Scholar
  53. 53.
    Hakim CH, Kodippili K, Jenkins G, Yang HT, Pan X, Lessa TB, Leach SB, Emter C, Yue Y, Zhang K, Duan XS, Yao G, Schneider JS, Yang NN, Chamberlain JS, Duan D (2017) Single systemic AAV micro-dystrophin therapy ameliorates muscular dystrophy in young adult Duchenne muscular dystrophy dogs for up to two years. Mol Ther 25(S1):192–193Google Scholar
  54. 54.
    Hakim CH, Kodippili K, Jenkins G, Yang HT, Pan X, Lessa TB, Leach SB, Emter C, Yue Y, Zhang K, Duan XS, Yao G, Schneider JS, Yang NN, Chamberlain JS, Duan D (2018) AAV micro-dystrophin therapy ameliorates muscular dystrophy in young adult Duchenne muscular dystrophy dogs for up to 30 months following injection. Mol Ther 26(S1):5Google Scholar
  55. 55.
    Le Guiner C, Servais L, Montus M, Larcher T, Fraysse B, Moullec S, Allais M, Francois V, Dutilleul M, Malerba A, Koo T, Thibaut JL, Matot B, Devaux M, Le Duff J, Deschamps JY, Barthelemy I, Blot S, Testault I, Wahbi K, Ederhy S, Martin S, Veron P, Georger C, Athanasopoulos T, Masurier C, Mingozzi F, Carlier P, Gjata B, Hogrel JY, Adjali O, Mavilio F, Voit T, Moullier P, Dickson G (2017) Long-term microdystrophin gene therapy is effective in a canine model of Duchenne muscular dystrophy. Nat Commun 8:16105.  https://doi.org/10.1038/ncomms16105 PubMedPubMedCentralGoogle Scholar
  56. 56.
    Gonzalez JP, Schneider JS, Brown KJ, Golebiowski D, Shanks C, Ricotti V, Laforet G, Quiroz J, Morris CA (2018) Preclinical evaluation of SGT-001 Microdystrophin gene transfer for Duchenne muscular dystrophy. Mol Ther 26(S1):390Google Scholar
  57. 57.
    Oudet C, Hanauer A, Clemens P, Caskey T, Mandel JL (1992) Two hot spots of recombination in the DMD gene correlate with the deletion prone regions. Hum Mol Genet 1(8):599–603PubMedGoogle Scholar
  58. 58.
    ‘t Hoen PA, de Meijer EJ, Boer JM, Vossen RH, Turk R, Maatman RG, Davies KE, van Ommen GJ, van Deutekom JC, den Dunnen JT (2008) Generation and characterization of transgenic mice with the full-length human DMD gene. J Biol Chem 283(9):5899–5907.  https://doi.org/10.1074/jbc.M709410200 PubMedGoogle Scholar
  59. 59.
    Bremmer-Bout M, Aartsma-Rus A, de Meijer EJ, Kaman WE, Janson AA, Vossen RH, van Ommen GJ, den Dunnen JT, van Deutekom JC (2004) Targeted exon skipping in transgenic hDMD mice: a model for direct preclinical screening of human-specific antisense oligonucleotides. Mol Ther 10(2):232–240.  https://doi.org/10.1016/j.ymthe.2004.05.031 PubMedGoogle Scholar
  60. 60.
    Li D, Yue Y, Duan D (2010) Marginal level dystrophin expression improves clinical outcome in a strain of dystrophin/utrophin double knockout mice. PLoS One 5(12):e15286.  https://doi.org/10.1371/journal.pone.0015286 PubMedPubMedCentralGoogle Scholar
  61. 61.
    Li D, Yue Y, Duan D (2008) Preservation of muscle force in mdx3cv mice correlates with low-level expression of a near full-length dystrophin protein. Am J Pathol 172(5):1332–1341.  https://doi.org/10.2353/ajpath.2008.071042 PubMedPubMedCentralGoogle Scholar
  62. 62.
    Wasala NB, Yue Y, Vance J, Duan D (2017) Uniform low-level dystrophin expression in the heart partially preserved cardiac function in an aged mouse model of Duchenne cardiomyopathy. J Mol Cell Cardiol 102:45–52.  https://doi.org/10.1016/j.yjmcc.2016.11.011 PubMedGoogle Scholar
  63. 63.
    van Putten M, van der Pijl EM, Hulsker M, Verhaart IE, Nadarajah VD, van der Weerd L, Aartsma-Rus A (2014) Low dystrophin levels in heart can delay heart failure in mdx mice. J Mol Cell Cardiol 69:17–23.  https://doi.org/10.1016/j.yjmcc.2014.01.009 PubMedGoogle Scholar
  64. 64.
    van Putten M, Hulsker M, Young C, Nadarajah VD, Heemskerk H, van der Weerd L, t Hoen PA, van Ommen GJ, Aartsma-Rus AM (2013) Low dystrophin levels increase survival and improve muscle pathology and function in dystrophin/utrophin double-knockout mice. FASEB J 27(6):2484–2495.  https://doi.org/10.1096/fj.12-224170 PubMedPubMedCentralGoogle Scholar
  65. 65.
    van Putten M, Hulsker M, Nadarajah VD, van Heiningen SH, van Huizen E, van Iterson M, Admiraal P, Messemaker T, den Dunnen JT, t Hoen PA, Aartsma-Rus A (2012) The effects of low levels of dystrophin on mouse muscle function and pathology. PLoS One 7(2):e31937.  https://doi.org/10.1371/journal.pone.0031937 PubMedPubMedCentralGoogle Scholar
  66. 66.
    Nicholson LV, Johnson MA, Bushby KM, Gardner-Medwin D (1993) Functional significance of dystrophin positive fibres in Duchenne muscular dystrophy. Arch Dis Child 68(5):632–636PubMedPubMedCentralGoogle Scholar
  67. 67.
    Waldrop MA, Gumienny F, El Husayni S, Frank DE, Weiss RB, Flanigan KM (2018) Low-level dystrophin expression attenuating the dystrophinopathy phenotype. Neuromuscul Disord 28(2):116–121.  https://doi.org/10.1016/j.nmd.2017.11.007 PubMedGoogle Scholar
  68. 68.
    Cox GA, Cole NM, Matsumura K, Phelps SF, Hauschka SD, Campbell KP, Faulkner JA, Chamberlain JS (1993) Overexpression of dystrophin in transgenic mdx mice eliminates dystrophic symptoms without toxicity. Nature 364(6439):725–729PubMedGoogle Scholar
  69. 69.
    Yue Y, Wasala NB, Bostick B, Duan D (2016) 100-fold but not 50-fold dystrophin overexpression aggravates electrocardiographic defects in the mdx model of Duchenne muscular dystrophy. Mol Ther Methods Clin Dev 3:16045.  https://doi.org/10.1038/mtm.2016.45 PubMedPubMedCentralGoogle Scholar
  70. 70.
    Yoshiki A, Moriwaki K (2006) Mouse phenome research: implications of genetic background. ILAR J 47(2):94–102PubMedGoogle Scholar
  71. 71.
    Linder CC (2001) The influence of genetic background on spontaneous and genetically engineered mouse models of complex diseases. Lab Anim 30(5):34–39Google Scholar
  72. 72.
    Zucker I, Beery AK (2010) Males still dominate animal studies. Nature 465(7299):690.  https://doi.org/10.1038/465690a PubMedGoogle Scholar
  73. 73.
    Wald C, Wu C (2010) Biomedical research. Of mice and women: the bias in animal models. Science 327(5973):1571–1572.  https://doi.org/10.1126/science.327.5973.1571 PubMedGoogle Scholar
  74. 74.
    Leinwand LA (2003) Sex is a potent modifier of the cardiovascular system. J Clin Investig 112(3):302–307PubMedGoogle Scholar
  75. 75.
    Turner MJ, Kleeberger SR, Lightfoot JT (2005) Influence of genetic background on daily running-wheel activity differs with aging. Physiol Genomics 22(1):76–85.  https://doi.org/10.1152/physiolgenomics.00243.2004 PubMedGoogle Scholar
  76. 76.
    Glenmark B, Nilsson M, Gao H, Gustafsson JA, Dahlman-Wright K, Westerblad H (2004) Difference in skeletal muscle function in males vs. females: role of estrogen receptor-beta. Am J Phys Endocrinol Metab 287(6):E1125–E1131.  https://doi.org/10.1152/ajpendo.00098.2004. 00098.2004 [pii]Google Scholar
  77. 77.
    Meyer S, van der Meer P, van Tintelen JP, van den Berg MP (2014) Sex differences in cardiomyopathies. Eur J Heart Fail 16(3):238–247.  https://doi.org/10.1002/ejhf.15 PubMedGoogle Scholar
  78. 78.
    Pergola C, Dodt G, Rossi A, Neunhoeffer E, Lawrenz B, Northoff H, Samuelsson B, Radmark O, Sautebin L, Werz O (2008) ERK-mediated regulation of leukotriene biosynthesis by androgens: a molecular basis for gender differences in inflammation and asthma. Proc Natl Acad Sci U S A 105(50):19881–19886.  https://doi.org/10.1073/pnas.0809120105 PubMedPubMedCentralGoogle Scholar
  79. 79.
    Du XJ, Samuel CS, Gao XM, Zhao L, Parry LJ, Tregear GW (2003) Increased myocardial collagen and ventricular diastolic dysfunction in relaxin deficient mice: a gender-specific phenotype. Cardiovasc Res 57(2):395–404PubMedGoogle Scholar
  80. 80.
    Hakim CH, Duan D (2012) Gender differences in contractile and passive properties of mdx extensor digitorum longus muscle. Muscle Nerve 45(2):250–256.  https://doi.org/10.1002/mus.22275 PubMedPubMedCentralGoogle Scholar
  81. 81.
    Dane AP, Cunningham SC, Graf NS, Alexander IE (2009) Sexually dimorphic patterns of episomal rAAV genome persistence in the adult mouse liver and correlation with hepatocellular proliferation. Mol Ther 17(9):1548–1554.  https://doi.org/10.1038/mt.2009.139 PubMedPubMedCentralGoogle Scholar
  82. 82.
    Voutetakis A, Zheng C, Wang J, Goldsmith CM, Afione S, Chiorini JA, Wenk ML, Vallant M, Irwin RD, Baum BJ (2007) Gender differences in serotype 2 adeno-associated virus biodistribution after administration to rodent salivary glands. Hum Gene Ther 18(11):1109–1118.  https://doi.org/10.1089/hum.2007.072 PubMedGoogle Scholar
  83. 83.
    Chandler CH, Chari S, Dworkin I (2013) Does your gene need a background check? How genetic background impacts the analysis of mutations, genes, and evolution. Trends Genet 29(6):358–366.  https://doi.org/10.1016/j.tig.2013.01.009 PubMedPubMedCentralGoogle Scholar
  84. 84.
    Brayton CF, Treuting PM, Ward JM (2012) Pathobiology of aging mice and GEM: background strains and experimental design. Vet Pathol 49(1):85–105.  https://doi.org/10.1177/0300985811430696 PubMedGoogle Scholar
  85. 85.
    Crawley JN, Belknap JK, Collins A, Crabbe JC, Frankel W, Henderson N, Hitzemann RJ, Maxson SC, Miner LL, Silva AJ, Wehner JM, Wynshaw-Boris A, Paylor R (1997) Behavioral phenotypes of inbred mouse strains: implications and recommendations for molecular studies. Psychopharmacology 132(2):107–124PubMedGoogle Scholar
  86. 86.
    Erickson RP (1996) Mouse models of human genetic disease: which mouse is more like a man? BioEssays 18(12):993–998.  https://doi.org/10.1002/bies.950181209 PubMedGoogle Scholar
  87. 87.
    Montagutelli X (2000) Effect of the genetic background on the phenotype of mouse mutations. J Am Soc Nephrol 11(11):S101–S105PubMedGoogle Scholar
  88. 88.
    Schauwecker PE (2002) Complications associated with genetic background effects in models of experimental epilepsy. Prog Brain Res 135:139–148PubMedGoogle Scholar
  89. 89.
    Lerman I, Harrison BC, Freeman K, Hewett TE, Allen DL, Robbins J, Leinwand LA (2002) Genetic variability in forced and voluntary endurance exercise performance in seven inbred mouse strains. J Appl Physiol 92(6):2245–2255.  https://doi.org/10.1152/japplphysiol.01045.2001 PubMedGoogle Scholar
  90. 90.
    Lightfoot JT, Turner MJ, Daves M, Vordermark A, Kleeberger SR (2004) Genetic influence on daily wheel running activity level. Physiol Genomics 19(3):270–276.  https://doi.org/10.1152/physiolgenomics.00125.2004 PubMedGoogle Scholar
  91. 91.
    Xing S, Tsaih SW, Yuan R, Svenson KL, Jorgenson LM, So M, Paigen BJ, Korstanje R (2009) Genetic influence on electrocardiogram time intervals and heart rate in aging mice. Am J Physiol Heart Circ Physiol 296(6):H1907–H1913.  https://doi.org/10.1152/ajpheart.00681.2008 PubMedPubMedCentralGoogle Scholar
  92. 92.
    Kadambi VJ, Ball N, Kranias EG, Walsh RA, Hoit BD (1999) Modulation of force-frequency relation by phospholamban in genetically engineered mice. Am J Physiol-Heart Circ Physiol 276(6):H2245–H2250Google Scholar
  93. 93.
    Shusterman V, Usiene I, Harrigal C, Lee JS, Kubota T, Feldman AM, London B (2002) Strain-specific patterns of autonomic nervous system activity and heart failure susceptibility in mice. Am J Physiol-Heart Circ Physiol 282(6):H2076–H2083.  https://doi.org/10.1152/ajpheart.00917.2001 PubMedGoogle Scholar
  94. 94.
    Rodrigues M, Echigoya Y, Maruyama R, Lim KRQ, Fukada S, Yokota T (2016) Impaired regenerative capacity and lower revertant fibre expansion in dystrophin-deficient mdx muscles on DBA/2 background. Sci Rep 6:38371.  https://doi.org/10.1038/srep38371. ARTN 38371PubMedPubMedCentralGoogle Scholar
  95. 95.
    Bostick B, Yue Y, Lai Y, Long C, Li D, Duan D (2008) Adeno-associated virus serotype-9 microdystrophin gene therapy ameliorates electrocardiographic abnormalities in mdx mice. Hum Gene Ther 19(8):851–856.  https://doi.org/10.1089/hum.2008.058 PubMedPubMedCentralGoogle Scholar
  96. 96.
    Wasala NB, Lai Y, Shin J-H, Zhao J, Yue Y, Duan D (2016) Genomic removal of a therapeutic mini-dystrophin gene from adult mice elicits a Duchenne muscular dystrophy-like phenotype. Hum Mol Genet 25(13):2633–2644.  https://doi.org/10.1093/hmg/ddw123 PubMedPubMedCentralGoogle Scholar
  97. 97.
    Nance ME, Duan D (2018) Gene therapy: use of viruses as vectors. Reference module in biomedical sciences: Elsevier. https://doi.org/10.1016/B978-0-12-801238-3.95711-8Google Scholar
  98. 98.
    Ginn SL, Amaya AK, Alexander IE, Edelstein M, Abedi MR (2018) Gene therapy clinical trials worldwide to 2017: an update. J Gene Med 20(5):e3015.  https://doi.org/10.1002/jgm.3015. ARTN e3015PubMedGoogle Scholar
  99. 99.
    Duan D (2008) Myodys, a full-length dystrophin plasmid vector for Duchenne and Becker muscular dystrophy gene therapy. Curr Opin Mol Ther 10(1):86–94PubMedGoogle Scholar
  100. 100.
    Braun S (2008) Muscular gene transfer using nonviral vectors. Curr Gene Ther 8(5):391–405PubMedGoogle Scholar
  101. 101.
    Fassati A, Bresolin N (2000) Retroviral vectors for gene therapy of Duchenne muscular dystrophy. Neurol Sci 21(5):S925–S927PubMedGoogle Scholar
  102. 102.
    Karpati G, Gilbert R, Petrof BJ, Nalbantoglu J (1997) Gene therapy research for Duchenne and Becker muscular dystrophies. Curr Opin Neurol 10(5):430–435PubMedGoogle Scholar
  103. 103.
    Flotte TR, Gao GP (2017) AAV is now a medicine: we had better get this right. Hum Gene Ther 28(4):307–307.  https://doi.org/10.1089/hum.2017.29041.trf PubMedGoogle Scholar
  104. 104.
    McCarty DM (2008) Self-complementary AAV vectors; advances and applications. Mol Ther 16(10):1648–1656.  https://doi.org/10.1038/mt.2008.171. mt2008171 [pii]PubMedGoogle Scholar
  105. 105.
    McCarty DM, Fu H, Monahan PE, Toulson CE, Naik P, Samulski RJ (2003) Adeno-associated virus terminal repeat (TR) mutant generates self-complementary vectors to overcome the rate-limiting step to transduction in vivo. Gene Ther 10(26):2112–2118.  https://doi.org/10.1038/sj.gt.3302134 PubMedGoogle Scholar
  106. 106.
    Ferrari FK, Samulski T, Shenk T, Samulski RJ (1996) Second-strand synthesis is a rate-limiting step for efficient transduction by recombinant adeno-associated virus vectors. J Virol 70(5):3227–3234PubMedPubMedCentralGoogle Scholar
  107. 107.
    Fisher KJ, Gao GP, Weitzman MD, DeMatteo R, Burda JF, Wilson JM (1996) Transduction with recombinant adeno-associated virus for gene therapy is limited by leading-strand synthesis. J Virol 70(1):520–532PubMedPubMedCentralGoogle Scholar
  108. 108.
    Benkhelifa-Ziyyat S, Besse A, Roda M, Duque S, Astord S, Carcenac R, Marais T, Barkats M (2013) Intramuscular scAAV9-SMN injection mediates widespread gene delivery to the spinal cord and decreases disease severity in SMA mice. Mol Ther 21(2):282–290.  https://doi.org/10.1038/mt.2012.261 PubMedPubMedCentralGoogle Scholar
  109. 109.
    Nathwani AC, Gray JT, Ng CY, Zhou J, Spence Y, Waddington SN, Tuddenham EG, Kemball-Cook G, McIntosh J, Boon-Spijker M, Mertens K, Davidoff AM (2006) Self-complementary adeno-associated virus vectors containing a novel liver-specific human factor IX expression cassette enable highly efficient transduction of murine and nonhuman primate liver. Blood 107(7):2653–2661.  https://doi.org/10.1182/blood-2005-10-4035 PubMedPubMedCentralGoogle Scholar
  110. 110.
    Li X, Eastman EM, Schwartz RJ, Draghia-Akli R (1999) Synthetic muscle promoters: activities exceeding naturally occurring regulatory sequences. Nat Biotechnol 17(3):241–245PubMedGoogle Scholar
  111. 111.
    Jaynes JB, Chamberlain JS, Buskin JN, Johnson JE, Hauschka SD (1986) Transcriptional regulation of the muscle creatine kinase gene and regulated expression in transfected mouse myoblasts. Mol Cell Biol 6(8):2855–2864PubMedPubMedCentralGoogle Scholar
  112. 112.
    Shaul O (2017) How introns enhance gene expression. Int J Biochem Cell Biol 91(Pt B):145–155.  https://doi.org/10.1016/j.biocel.2017.06.016 PubMedGoogle Scholar
  113. 113.
    Lozier JN (2012) Gene therapy. Factor IX Padua: them that have, give. Blood 120(23):4452–4453.  https://doi.org/10.1182/blood-2012-09-452821 PubMedGoogle Scholar
  114. 114.
    Krieg AM, Yi AK, Matson S, Waldschmidt TJ, Bishop GA, Teasdale R, Koretzky GA, Klinman DM (1995) Cpg motifs in bacterial-DNA trigger direct B-cell activation. Nature 374(6522):546–549.  https://doi.org/10.1038/374546a0 PubMedGoogle Scholar
  115. 115.
    Faust SM, Bell P, Cutler BJ, Ashley SN, Zhu Y, Rabinowitz JE, Wilson JM (2013) CpG-depleted adeno-associated virus vectors evade immune detection. J Clin Investig 123(7):2994–3001.  https://doi.org/10.1172/JCI68205 PubMedGoogle Scholar
  116. 116.
    Lai Y, Zhao J, Yue Y, Duan D (2013) alpha2 and alpha3 helices of dystrophin R16 and R17 frame a microdomain in the alpha1 helix of dystrophin R17 for neuronal NOS binding. Proc Natl Acad Sci U S A 110(2):525–530.  https://doi.org/10.1073/pnas.1211431109. 1211431109 [pii]PubMedGoogle Scholar
  117. 117.
    Proudfoot N, O’Sullivan J (2002) Polyadenylation: a tail of two complexes. Curr Biol 12(24):R855–R857PubMedGoogle Scholar
  118. 118.
    Powell SK, Rivera-Soto R, Gray SJ (2015) Viral expression cassette elements to enhance transgene target specificity and expression in gene therapy. Discov Med 19(102):49–57PubMedPubMedCentralGoogle Scholar
  119. 119.
    Levitt N, Briggs D, Gil A, Proudfoot NJ (1989) Definition of an efficient synthetic poly(A) site. Genes Dev 3(7):1019–1025PubMedGoogle Scholar
  120. 120.
    Kotterman MA, Schaffer DV (2014) Engineering adeno-associated viruses for clinical gene therapy. Nat Rev Genet 15(7):445–451.  https://doi.org/10.1038/nrg3742 PubMedPubMedCentralGoogle Scholar
  121. 121.
    Qiao C, Zhang W, Yuan Z, Shin J-H, Li J, Jayandharan GR, Zhong L, Srivastava A, Xiao X, Duan D (2010) AAV6 capsid tyrosine to phenylalanine mutations improve gene transfer to skeletal muscle. Hum Gene Ther 21(10):1343–1348.  https://doi.org/10.1089/hum.2010.003 PubMedPubMedCentralGoogle Scholar
  122. 122.
    Nance ME, Duan D (2015) Perspective on adeno-associated virus (AAV) capsid modification for Duchenne muscular dystrophy gene therapy. Hum Gene Ther 26(12):786–800PubMedPubMedCentralGoogle Scholar
  123. 123.
    Asokan A, Conway JC, Phillips JL, Li C, Hegge J, Sinnott R, Yadav S, DiPrimio N, Nam HJ, Agbandje-McKenna M, McPhee S, Wolff J, Samulski RJ (2010) Reengineering a receptor footprint of adeno-associated virus enables selective and systemic gene transfer to muscle. Nat Biotechnol 28(1):79–82.  https://doi.org/10.1038/nbt.1599 PubMedGoogle Scholar
  124. 124.
    Pulicherla N, Shen S, Yadav S, Debbink K, Govindasamy L, Agbandje-McKenna M, Asokan A (2011) Engineering liver-detargeted AAV9 vectors for cardiac and musculoskeletal gene transfer. Mol Ther 19(6):1070–1078.  https://doi.org/10.1038/mt.2011.22. mt201122 [pii]PubMedPubMedCentralGoogle Scholar
  125. 125.
    Choudhury SR, Fitzpatrick Z, Harris AF, Maitland SA, Ferreira JS, Zhang Y, Ma S, Sharma RB, Gray-Edwards HL, Johnson JA, Johnson AK, Alonso LC, Punzo C, Wagner KR, Maguire CA, Kotin RM, Martin DR, Sena-Esteves M (2016) In vivo selection yields AAV-B1 capsid for central nervous system and muscle gene therapy. Mol Ther 24(7):1247–1257.  https://doi.org/10.1038/mt.2016.84 PubMedPubMedCentralGoogle Scholar
  126. 126.
    Yu CY, Yuan Z, Cao Z, Wang B, Qiao C, Li J, Xiao X (2009) A muscle-targeting peptide displayed on AAV2 improves muscle tropism on systemic delivery. Gene Ther 16(8):953–962.  https://doi.org/10.1038/gt.2009.59 PubMedPubMedCentralGoogle Scholar
  127. 127.
    Yang L, Jiang J, Drouin LM, Agbandje-McKenna M, Chen C, Qiao C, Pu D, Hu X, Wang DZ, Li J, Xiao X (2009) A myocardium tropic adeno-associated virus (AAV) evolved by DNA shuffling and in vivo selection. Proc Natl Acad Sci U S A 106(10):3946–3951.  https://doi.org/10.1073/pnas.0813207106 PubMedPubMedCentralGoogle Scholar
  128. 128.
    Paulk NK, Pekrun K, Charville GW, Maguire-Nguyen K, Wosczyna MN, Xu J, Zhang Y, Lisowski L, Yoo B, Vilches-Moure JG, Lee GK, Shrager JB, Rando TA, Kay MA (2018) Bioengineered viral platform for intramuscular passive vaccine delivery to human skeletal muscle. Mol Ther Methods Clin Dev 10:144–155.  https://doi.org/10.1016/j.omtm.2018.06.001 PubMedPubMedCentralGoogle Scholar
  129. 129.
    Weinmann J, Weis S, Sippel J, Lenter M, Lamla T, Grimm D (2018) Massively parallel in vivo characterization of >150 Adeno-Associated Viral (AAV) capsids using DNA/RNA barcoding and next-generation sequencing. Mol Ther 26(S1):319–318Google Scholar
  130. 130.
    Wang L, Bell P, Somanathan S, Wang Q, He Z, Yu H, McMenamin D, Goode T, Calcedo R, Wilson JM (2015) Comparative study of liver gene transfer with AAV vectors based on natural and engineered AAV capsids. Mol Ther 23(12):1877–1887.  https://doi.org/10.1038/mt.2015.179 PubMedPubMedCentralGoogle Scholar
  131. 131.
    Li S, Ling C, Zhong L, Li M, Su Q, He R, Tang Q, Greiner DL, Shultz LD, Brehm MA, Flotte TR, Mueller C, Srivastava A, Gao G (2015) Efficient and targeted transduction of nonhuman primate liver with systemically delivered optimized AAV3B vectors. Mol Ther 23(12):1867–1876.  https://doi.org/10.1038/mt.2015.174 PubMedPubMedCentralGoogle Scholar
  132. 132.
    Pan X, Yue Y, Zhang K, Hakim CH, Kodippili K, McDonald T, Duan D (2015) AAV-8 is more efficient than AAV-9 in transducing neonatal dog heart. Hum Gene Ther Methods 26(4):54–61PubMedPubMedCentralGoogle Scholar
  133. 133.
    Pan X, Yue Y, Zhang K, Lostal W, Shin JH, Duan D (2013) Long-term robust myocardial transduction of the dog heart from a peripheral vein by adeno-associated virus serotype-8. Hum Gene Ther 24(6):584–594.  https://doi.org/10.1089/hum.2013.044 PubMedPubMedCentralGoogle Scholar
  134. 134.
    Yue Y, Ghosh A, Long C, Bostick B, Smith BF, Kornegay JN, Duan D (2008) A single intravenous injection of adeno-associated virus serotype-9 leads to whole-body skeletal muscle transduction in dogs. Mol Ther 16(12):1944–1952.  https://doi.org/10.1038/mt.2008.207 PubMedPubMedCentralGoogle Scholar
  135. 135.
    Yuasa K, Ishii A, Miyagoe Y, Takeda S (1997) Introduction of rod-deleted dystrophin cDNA, delta DysM3, into mdx skeletal muscle using adenovirus vector. Nihon Rinsho 55(12):3148–3153PubMedGoogle Scholar
  136. 136.
    Gregorevic P, Blankinship MJ, Allen JM, Crawford RW, Meuse L, Miller DG, Russell DW, Chamberlain JS (2004) Systemic delivery of genes to striated muscles using adeno-associated viral vectors. Nat Med 10(8):828–834PubMedPubMedCentralGoogle Scholar
  137. 137.
    Wang Z, Zhu T, Qiao C, Zhou L, Wang B, Zhang J, Chen C, Li J, Xiao X (2005) Adeno-associated virus serotype 8 efficiently delivers genes to muscle and heart. Nat Biotechnol 23(3):321–328PubMedGoogle Scholar
  138. 138.
    Bostick B, Ghosh A, Yue Y, Long C, Duan D (2007) Systemic AAV-9 transduction in mice is influenced by animal age but not by the route of administration. Gene Ther 14(22):1605–1609PubMedGoogle Scholar
  139. 139.
    Kuntz N, Shieh PB, Smith B, Bonnemann CG, Dowling JJ, Lawlor MW, Muller-Felber W, Noursalehi M, Rico S, Servais L, Prasad S (2018) ASPIRO phase 1/2 gene therapy trail in X-linked myotubular myopathy (XLMTM): preliminary safety and efficacy findings. Mol Ther 26(S1):4Google Scholar
  140. 140.
    Nathwani AC, Reiss UM, Tuddenham EG, Rosales C, Chowdary P, McIntosh J, Della Peruta M, Lheriteau E, Patel N, Raj D, Riddell A, Pie J, Rangarajan S, Bevan D, Recht M, Shen YM, Halka KG, Basner-Tschakarjan E, Mingozzi F, High KA, Allay J, Kay MA, Ng CY, Zhou J, Cancio M, Morton CL, Gray JT, Srivastava D, Nienhuis AW, Davidoff AM (2014) Long-term safety and efficacy of factor IX gene therapy in hemophilia B. N Engl J Med 371(21):1994–2004.  https://doi.org/10.1056/NEJMoa1407309 PubMedPubMedCentralGoogle Scholar
  141. 141.
    Mendell JR, Campbell K, Rodino-Klapac L, Sahenk Z, Shilling C, Lewis S, Bowles D, Gray S, Li C, Galloway G, Malik V, Coley B, Clark KR, Li J, Xiao X, Samulski J, McPhee SW, Samulski RJ, Walker CM (2010) Dystrophin immunity in Duchenne’s muscular dystrophy. N Engl J Med 363(15):1429–1437.  https://doi.org/10.1056/NEJMoa1000228 PubMedPubMedCentralGoogle Scholar
  142. 142.
    Mingozzi F (2018) AAV immunogenicity: a matter of sensitivity. Mol Ther 26(10):2335–2336.  https://doi.org/10.1016/j.ymthe.2018.09.001 PubMedGoogle Scholar
  143. 143.
    Calcedo R, Franco J, Qin Q, Richardson DW, Mason JB, Boyd S, Wilson JM (2015) Preexisting neutralizing antibodies to adeno-associated virus capsids in large animals other than monkeys may confound in vivo gene therapy studies. Hum Gene Ther Methods 26(3):103–105.  https://doi.org/10.1089/hgtb.2015.082 PubMedPubMedCentralGoogle Scholar
  144. 144.
    Rapti K, Louis-Jeune V, Kohlbrenner E, Ishikawa K, Ladage D, Zolotukhin S, Hajjar RJ, Weber T (2011) Neutralizing antibodies against AAV serotypes 1, 2, 6, and 9 in sera of commonly used animal models. Mol Ther 20(1):73–83.  https://doi.org/10.1038/mt.2011.177. mt2011177 [pii]PubMedPubMedCentralGoogle Scholar
  145. 145.
    Shin J-H, Yue Y, Smith B, Duan D (2012) Humoral immunity to AAV-6, 8, and 9 in normal and dystrophic dogs. Hum Gene Ther 23(3):287–294.  https://doi.org/10.1089/hum.2011.125 PubMedGoogle Scholar
  146. 146.
    Scallan CD, Jiang H, Liu T, Patarroyo-White S, Sommer JM, Zhou S, Couto LB, Pierce GF (2006) Human immunoglobulin inhibits liver transduction by AAV vectors at low AAV2 neutralizing titers in SCID mice. Blood 107(5):1810–1817.  https://doi.org/10.1182/blood-2005-08-3229 PubMedGoogle Scholar
  147. 147.
    Jiang H, Couto LB, Patarroyo-White S, Liu T, Nagy D, Vargas JA, Zhou S, Scallan CD, Sommer J, Vijay S, Mingozzi F, High KA, Pierce GF (2006) Effects of transient immunosuppression on adenoassociated, virus-mediated, liver-directed gene transfer in rhesus macaques and implications for human gene therapy. Blood 108(10):3321–3328.  https://doi.org/10.1182/blood-2006-04-017913 PubMedPubMedCentralGoogle Scholar
  148. 148.
    Hurlbut GD, Ziegler RJ, Nietupski JB, Foley JW, Woodworth LA, Meyers E, Bercury SD, Pande NN, Souza DW, Bree MP, Lukason MJ, Marshall J, Cheng SH, Scheule RK (2010) Preexisting immunity and low expression in primates highlight translational challenges for liver-directed AAV8-mediated gene therapy. Mol Ther 18(11):1983–1994.  https://doi.org/10.1038/mt.2010.175. mt2010175 [pii]PubMedPubMedCentralGoogle Scholar
  149. 149.
    Ayuso E, Mingozzi F, Montane J, Leon X, Anguela XM, Haurigot V, Edmonson SA, Africa L, Zhou S, High KA, Bosch F, Wright JF (2010) High AAV vector purity results in serotype- and tissue-independent enhancement of transduction efficiency. Gene Ther 17(4):503–510.  https://doi.org/10.1038/gt.2009.157 PubMedGoogle Scholar
  150. 150.
    Schnodt M, Buning H (2017) Improving the quality of adeno-associated viral vector preparations: the challenge of product-related impurities. Hum Gene Ther Methods 28(3):101–108.  https://doi.org/10.1089/hgtb.2016.188 PubMedGoogle Scholar
  151. 151.
    Kotin RM (2011) Large-scale recombinant adeno-associated virus production. Hum Mol Genet 20(R1):R2–R6.  https://doi.org/10.1093/hmg/ddr141 PubMedPubMedCentralGoogle Scholar
  152. 152.
    Clement N, Grieger JC (2016) Manufacturing of recombinant adeno-associated viral vectors for clinical trials. Mol Ther Methods Clin Dev 3:16002.  https://doi.org/10.1038/mtm.2016.2 PubMedPubMedCentralGoogle Scholar
  153. 153.
    Penaud-Budloo M, Francois A, Clement N, Ayuso E (2018) Pharmacology of recombinant adeno-associated virus production. Mol Ther Methods Clin Dev 8:166–180.  https://doi.org/10.1016/j.omtm.2018.01.002 PubMedPubMedCentralGoogle Scholar
  154. 154.
    Grieger JC, Soltys SM, Samulski RJ (2016) Production of recombinant adeno-associated virus vectors using suspension HEK293 cells and continuous harvest of vector from the culture media for GMP FIX and FLT1 clinical vector. Mol Ther 24(2):287–297.  https://doi.org/10.1038/mt.2015.187 PubMedGoogle Scholar
  155. 155.
    Kotin RM, Snyder RO (2017) Manufacturing clinical grade recombinant adeno-associated virus using invertebrate cell lines. Hum Gene Ther 28(4):350–360.  https://doi.org/10.1089/hum.2017.042 PubMedGoogle Scholar
  156. 156.
    Clement N, Knop DR, Byrne BJ (2009) Large-scale adeno-associated viral vector production using a herpesvirus-based system enables manufacturing for clinical studies. Hum Gene Ther 20(8):796–806.  https://doi.org/10.1089/hum.2009.094 PubMedPubMedCentralGoogle Scholar
  157. 157.
    Lock M, Alvira M, Vandenberghe LH, Samanta A, Toelen J, Debyser Z, Wilson JM (2010) Rapid, simple, and versatile manufacturing of recombinant adeno-associated viral vectors at scale. Hum Gene Ther 21(10):1259–1271.  https://doi.org/10.1089/hum.2010.055 PubMedPubMedCentralGoogle Scholar
  158. 158.
    D’Costa S, Blouin V, Broucque F, Penaud-Budloo M, Francois A, Perez IC, Le Bec C, Moullier P, Snyder RO, Ayuso E (2016) Practical utilization of recombinant AAV vector reference standards: focus on vector genomes titration by free ITR qPCR. Mol Ther Methods Clin Dev 5:16019.  https://doi.org/10.1038/mtm.2016.19 PubMedPubMedCentralGoogle Scholar
  159. 159.
    Ayuso E, Blouin V, Lock M, McGorray S, Leon X, Alvira MR, Auricchio A, Bucher S, Chtarto A, Clark KR, Darmon C, Doria M, Fountain W, Gao GP, Gao K, Giacca M, Kleinschmidt J, Leuchs B, Melas C, Mizukami H, Muller M, Noordman Y, Bockstael O, Ozawa K, Pythoud C, Sumaroka M, Surosky R, Tenenbaum L, van der Linden I, Weins B, Wright JF, Zhang XH, Zentilin L, Bosch F, Snyder RO, Moullier P (2014) Manufacturing and characterization of a recombinant Adeno-associated virus type 8 reference standard material. Hum Gene Ther 25(11):977–987.  https://doi.org/10.1089/hum.2014.057 PubMedPubMedCentralGoogle Scholar
  160. 160.
    Moullier P, Snyder RO (2008) International efforts for recombinant adeno-associated viral vector reference standards. Mol Ther 16(7):1185–1188.  https://doi.org/10.1038/mt.2008.125 PubMedGoogle Scholar
  161. 161.
    Fagone P, Wright JF, Nathwani AC, Nienhuis AW, Davidoff AM, Gray JT (2012) Systemic errors in quantitative polymerase chain reaction titration of self-complementary adeno-associated viral vectors and improved alternative methods. Hum Gene Ther Methods 23(1):1–7.  https://doi.org/10.1089/hgtb.2011.104 PubMedGoogle Scholar
  162. 162.
    Werling NJ, Satkunanathan S, Thorpe R, Zhao Y (2015) Systematic comparison and validation of quantitative real-time PCR methods for the quantitation of adeno-associated viral products. Hum Gene Ther Methods 26(3):82–92.  https://doi.org/10.1089/hgtb.2015.013 PubMedPubMedCentralGoogle Scholar
  163. 163.
    Duan D (2011) Muscle gene therapy: methods and protocols. Methods in molecular biology, vol 709. Humana, New YorkGoogle Scholar
  164. 164.
    Kyba M (2016) Skeletal muscle regeneration in the mouse: methods and protocols. Springer Protocols, vol 1460. Humana Press, New YorkGoogle Scholar
  165. 165.
    DiMario JX (2012) Myogenesis: methods and protocols. Methods in molecular biology, vol 798. Humana Press/Springer, New YorkGoogle Scholar
  166. 166.
    Moorwood C, Liu M, Tian Z, Barton ER (2013) Isometric and eccentric force generation assessment of skeletal muscles isolated from murine models of muscular dystrophies. J Vis Exp (71):e50036.  https://doi.org/10.3791/50036
  167. 167.
    Hakim CH, Wasala NB, Duan D (2013) Evaluation of muscle function of the extensor digitorum longus muscle ex vivo and tibialis anterior muscle in situ in mice. J Vis Exp (72):e50183.  https://doi.org/10.3791/50183
  168. 168.
    Kumar A, Accorsi A, Rhee Y, Girgenrath M (2015) Do’s and don’ts in the preparation of muscle cryosections for histological analysis. J Vis Exp (99):e52793.  https://doi.org/10.3791/52793
  169. 169.
    Grieger JC, Choi VW, Samulski RJ (2006) Production and characterization of adeno-associated viral vectors. Nat Protoc 1(3):1412–1428PubMedGoogle Scholar
  170. 170.
    Duricki DA, Soleman S, Moon LD (2016) Analysis of longitudinal data from animals with missing values using SPSS. Nat Protoc 11(6):1112–1129.  https://doi.org/10.1038/nprot.2016.048 PubMedPubMedCentralGoogle Scholar
  171. 171.
    Bagasra O (2007) Protocols for the in situ PCR-amplification and detection of mRNA and DNA sequences. Nat Protoc 2(11):2782–2795.  https://doi.org/10.1038/nprot.2007.395 PubMedGoogle Scholar
  172. 172.
    Jager L, Hausl MA, Rauschhuber C, Wolf NM, Kay MA, Ehrhardt A (2009) A rapid protocol for construction and production of high-capacity adenoviral vectors. Nat Protoc 4(4):547–564.  https://doi.org/10.1038/nprot.2009.4 PubMedGoogle Scholar
  173. 173.
    Duan D, Rafael-Fortney JA, Blain A, Kass DA, McNally EM, Metzger JM, Spurney CF, Kinnett K (2016) Standard operating procedures (SOPs) for evaluating the heart in preclinical studies of Duchenne muscular dystrophy. J Cardiovasc Transl Res 9(1):85–86.  https://doi.org/10.1007/s12265-015-9669-6 PubMedGoogle Scholar
  174. 174.
    Briguet A, Courdier-Fruh I, Foster M, Meier T, Magyar JP (2004) Histological parameters for the quantitative assessment of muscular dystrophy in the mdx-mouse. Neuromuscul Disord 14(10):675–682.  https://doi.org/10.1016/j.nmd.2004.06.008 PubMedGoogle Scholar
  175. 175.
    Nagaraju K, Willmann R, Network T-N, the Wellstone Muscular Dystrophy Cooperative Research Network (2009) Developing standard procedures for murine and canine efficacy studies of DMD therapeutics: report of two expert workshops on “pre-clinical testing for Duchenne dystrophy”: Washington DC, October 27th-28th 2007 and Zurich, June 30th-July 1st 2008. Neuromuscul Disord 19(7):502–506.  https://doi.org/10.1016/j.nmd.2009.05.003 PubMedPubMedCentralGoogle Scholar
  176. 176.
    van Putten M, Aartsma-Rus A, Grounds MD, Kornegay JN, Mayhew A, Gillingwater TH, Takeda S, Ruegg MA, De Luca A, Nagaraju K, Willmann R (2018) Update on standard operating procedures in preclinical research for DMD and SMA report of TREAT-NMD Alliance workshop, Schiphol airport, 26 April 2015, the Netherlands. J Neuromuscul Dis 5(1):29–34.  https://doi.org/10.3233/JND-170288 PubMedPubMedCentralGoogle Scholar
  177. 177.
    Shin J-H, Greer B, Hakim CH, Zhou Z, Chung YC, Duan Y, He Z, Duan D (2013) Quantitative phenotyping of Duchenne muscular dystrophy dogs by comprehensive gait analysis and overnight activity monitoring. PLoS One 8(3):e59875PubMedPubMedCentralGoogle Scholar
  178. 178.
    Jenkins GJ, Hakim CH, Yang NN, Yao G, Duan D (2018) Automatic characterization of stride parameters in canines with a single wearable inertial sensor. PLoS One 13(6):e0198893.  https://doi.org/10.1371/journal.pone.0198893 PubMedPubMedCentralGoogle Scholar
  179. 179.
    Marsh AP, Eggebeen JD, Kornegay JN, Markert CD, Childers MK (2010) Kinematics of gait in golden retriever muscular dystrophy. Neuromuscul Disord 20(1):16–20.  https://doi.org/10.1016/j.nmd.2009.10.007. S0960-8966(09)00660-9 [pii]PubMedGoogle Scholar
  180. 180.
    Barthelemy I, Barrey E, Thibaud JL, Uriarte A, Voit T, Blot S, Hogrel JY (2009) Gait analysis using accelerometry in dystrophin-deficient dogs. Neuromuscul Disord 19(11):788–796.  https://doi.org/10.1016/j.nmd.2009.07.014. S0960-8966(09)00578-1 [pii]PubMedGoogle Scholar
  181. 181.
    Hakim CH, Peters AA, Feng F, Yao G, Duan D (2015) Night activity reduction is a signature physiological biomarker for Duchenne muscular dystroophy dogs. J Neuromuscul Dis 2(4):397–407.  https://doi.org/10.3233/JND-150114 PubMedPubMedCentralGoogle Scholar
  182. 182.
    Hakim CH, Mijailovic A, Lessa TB, Coates JR, Shin C, Rutkove SB, Duan D (2017) Non-invasive evaluation of muscle disease in the canine model of Duchenne muscular dystrophy by electrical impedance myography. PLoS One 12(3):e0173557.  https://doi.org/10.1371/journal.pone.0173557 PubMedPubMedCentralGoogle Scholar
  183. 183.
    Yang HT, Shin J-H, Hakim CH, Pan X, Terjung RL, Duan D (2012) Dystrophin deficiency compromises force production of the extensor carpi ulnaris muscle in the canine model of Duchenne muscular dystrophy. PLoS One 7(9):e44438PubMedPubMedCentralGoogle Scholar
  184. 184.
    Kodippili K, Hakim CH, Yang HT, Pan X, Yang NN, Laughlin MH, Terjung RL, Duan D (2018) Nitric oxide dependent attenuation of norepinephrine-induced vasoconstriction is impaired in the canine model of Duchenne muscular dystrophy. J Physiol 596(21):5199–5216.  https://doi.org/10.1113/JP275672 PubMedGoogle Scholar
  185. 185.
    Capes-Davis A, Neve RM (2016) Authentication: a standard problem or a problem of standards? PLoS Biol 14(6):e1002477.  https://doi.org/10.1371/journal.pbio.1002477 PubMedPubMedCentralGoogle Scholar
  186. 186.
    Williams M (2018) Reagent validation to facilitate experimental reproducibility. Curr Protoc Pharmacol 81(1):e40.  https://doi.org/10.1002/cpph.40 PubMedGoogle Scholar
  187. 187.
    Casadevall A, Ellis LM, Davies EW, McFall-Ngai M, Fang FC (2016) A framework for improving the quality of research in the biological sciences. MBio 7(4).  https://doi.org/10.1128/mBio.01256-16
  188. 188.
    Landis SC, Amara SG, Asadullah K, Austin CP, Blumenstein R, Bradley EW, Crystal RG, Darnell RB, Ferrante RJ, Fillit H, Finkelstein R, Fisher M, Gendelman HE, Golub RM, Goudreau JL, Gross RA, Gubitz AK, Hesterlee SE, Howells DW, Huguenard J, Kelner K, Koroshetz W, Krainc D, Lazic SE, Levine MS, Macleod MR, McCall JM, Moxley RT 3rd, Narasimhan K, Noble LJ, Perrin S, Porter JD, Steward O, Unger E, Utz U, Silberberg SD (2012) A call for transparent reporting to optimize the predictive value of preclinical research. Nature 490(7419):187–191.  https://doi.org/10.1038/nature11556 PubMedPubMedCentralGoogle Scholar
  189. 189.
    Freedman LP, Inglese J (2014) The increasing urgency for standards in basic biologic research. Cancer Res 74(15):4024–4029.  https://doi.org/10.1158/0008-5472.Can-14-0925 PubMedPubMedCentralGoogle Scholar
  190. 190.
    Kodippili K, Vince L, Shin JH, Yue Y, Morris GE, McIntosh MA, Duan D (2014) Characterization of 65 epitope-specific dystrophin monoclonal antibodies in canine and murine models of Duchenne muscular dystrophy by immunostaining and western blot. PLoS One 9(2):e88280.  https://doi.org/10.1371/journal.pone.0088280 PubMedPubMedCentralGoogle Scholar
  191. 191.
    Morris GE, Man NT, Sewry CA (2011) Monitoring Duchenne muscular dystrophy gene therapy with epitope-specific monoclonal antibodies. Methods Mol Biol 709:39–61.  https://doi.org/10.1007/978-1-61737-982-6_3 PubMedGoogle Scholar
  192. 192.
    Nguyen TM, Ginjaar IB, van Ommen GJ, Morris GE (1992) Monoclonal antibodies for dystrophin analysis. Epitope mapping and improved binding to SDS-treated muscle sections. Biochem J 288(Pt 2):663–668PubMedPubMedCentralGoogle Scholar
  193. 193.
    Uhlen M, Bandrowski A, Carr S, Edwards A, Ellenberg J, Lundberg E, Rimm DL, Rodriguez H, Hiltke T, Snyder M, Yamamoto T (2016) A proposal for validation of antibodies. Nat Methods 13(10):823–827.  https://doi.org/10.1038/Nmeth.3995 PubMedGoogle Scholar
  194. 194.
    Bordeaux J, Welsh A, Agarwal S, Killiam E, Baquero M, Hanna J, Anagnostou V, Rimm D (2010) Antibody validation. BioTechniques 48(3):197–209.  https://doi.org/10.2144/000113382 PubMedPubMedCentralGoogle Scholar
  195. 195.
    Marx V (2013) Finding the right antibody for the job. Nat Methods 10(8):703–707.  https://doi.org/10.1038/nmeth.2570 PubMedGoogle Scholar
  196. 196.
    Taussig MJ, Fonseca C, Trimmer JS (2018) Antibody validation: a view from the mountains. New Biotechnol 45:1–8.  https://doi.org/10.1016/j.nbt.2018.08.002 Google Scholar
  197. 197.
    Bradbury A, Pluckthun A (2015) Standardize antibodies used in research. Nature 518(7537):27–29.  https://doi.org/10.1038/518027a PubMedGoogle Scholar
  198. 198.
    Alm TL, von Feilitzen K, Uhlen M (2016) Antibodypedia - the Wiki of Antibodies. Poster presented at the 2016 American Society for Cell Biology (ASCB) Annual Meeting, San Francisco, CA, Dec. 3-7, 2016. https://www.ascb.org/wp-content/uploads/2016/04/2016ASCBMeeting-PosterAbstracts.pdf. urn:nbn:se:kth:diva-204763Google Scholar
  199. 199.
    Bjorling E, Uhlen M (2008) Antibodypedia, a portal for sharing antibody and antigen validation data. Mol Cell Proteomics 7(10):2028–2037.  https://doi.org/10.1074/mcp.M800264-MCP200 PubMedGoogle Scholar
  200. 200.
    Colwill K, Renewable Protein Binder Working Group, Graslund S (2011) A roadmap to generate renewable protein binders to the human proteome. Nat Methods 8(7):551–558.  https://doi.org/10.1038/nmeth.1607 PubMedGoogle Scholar
  201. 201.
    Helsby MA, Leader PM, Fenn JR, Gulsen T, Bryant C, Doughton G, Sharpe B, Whitley P, Caunt CJ, James K, Pope AD, Kelly DH, Chalmers AD (2014) CiteAb: a searchable antibody database that ranks antibodies by the number of times they have been cited. BMC Cell Biol 15:6.  https://doi.org/10.1186/1471-2121-15-6 PubMedPubMedCentralGoogle Scholar
  202. 202.
    Major SM, Nishizuka S, Morita D, Rowland R, Sunshine M, Shankavaram U, Washburn F, Asin D, Kouros-Mehr H, Kane D, Weinstein JN (2006) AbMiner: a bioinformatic resource on available monoclonal antibodies and corresponding gene identifiers for genomic, proteomic, and immunologic studies. BMC Bioinformatics 7:192.  https://doi.org/10.1186/1471-2105-7-192 PubMedPubMedCentralGoogle Scholar
  203. 203.
    Roncador G, Engel P, Maestre L, Anderson AP, Cordell JL, Cragg MS, Serbec VC, Jones M, Lisnic VJ, Kremer L, Li D, Koch-Nolte F, Pascual N, Rodriguez-Barbosa JI, Torensma R, Turley H, Pulford K, Banham AH (2016) The European antibody network’s practical guide to finding and validating suitable antibodies for research. MAbs 8(1):27–36.  https://doi.org/10.1080/19420862.2015.1100787 PubMedGoogle Scholar
  204. 204.
    Acharya P, Quinlan A, Neumeister V (2017) The ABCs of finding a good antibody: how to find a good antibody, validate it, and publish meaningful data. F1000Res 6:851.  https://doi.org/10.12688/f1000research.11774.1 PubMedPubMedCentralGoogle Scholar
  205. 205.
    Aban IB, George B (2015) Statistical considerations for preclinical studies. Exp Neurol 270:82–87.  https://doi.org/10.1016/j.expneurol.2015.02.024 PubMedPubMedCentralGoogle Scholar
  206. 206.
    Liu C, Cripe TP, Kim MO (2010) Statistical issues in longitudinal data analysis for treatment efficacy studies in the biomedical sciences. Mol Ther 18(9):1724–1730.  https://doi.org/10.1038/mt.2010.127 PubMedPubMedCentralGoogle Scholar
  207. 207.
    Dell RB, Holleran S, Ramakrishnan R (2002) Sample size determination. ILAR J 43(4):207–213PubMedPubMedCentralGoogle Scholar
  208. 208.
    Fitts DA (2011) Ethics and animal numbers: informal analyses, uncertain sample sizes, inefficient replications, and type I errors. J Am Assoc Lab Anim Sci 50(4):445–453PubMedPubMedCentralGoogle Scholar
  209. 209.
    Lenth RV (2001) Some practical guidelines for effective sample size determination. Am Stat 55(3):187–193.  https://doi.org/10.1198/000313001317098149 Google Scholar
  210. 210.
    Hardouin JB, Amri S, Feddag ML, Sebille V (2012) Towards power and sample size calculations for the comparison of two groups of patients with item response theory models. Stat Med 31(11–12):1277–1290.  https://doi.org/10.1002/sim.4387 PubMedGoogle Scholar
  211. 211.
    Whitley E, Ball J (2002) Statistics review 4: sample size calculations. Crit Care 6(4):335–341PubMedPubMedCentralGoogle Scholar
  212. 212.
    Faul F, Erdfelder E, Lang AG, Buchner A (2007) G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods 39(2):175–191PubMedGoogle Scholar
  213. 213.
    Hirst JA, Howick J, Aronson JK, Roberts N, Perera R, Koshiaris C, Heneghan C (2014) The need for randomization in animal trials: an overview of systematic reviews. PLoS One 9(6):e98856.  https://doi.org/10.1371/journal.pone.0098856 PubMedPubMedCentralGoogle Scholar
  214. 214.
    Macleod MR (2014) Design animal studies better. Nature 510(7503):35–35.  https://doi.org/10.1038/510035a PubMedGoogle Scholar
  215. 215.
    Suresh K (2011) An overview of randomization techniques: an unbiased assessment of outcome in clinical research. J Hum Reprod Sci 4(1):8–11.  https://doi.org/10.4103/0974-1208.82352 PubMedPubMedCentralGoogle Scholar
  216. 216.
    Whitley E, Ball J (2002) Statistics review 5: comparison of means. Crit Care 6(5):424–428PubMedPubMedCentralGoogle Scholar
  217. 217.
    Bewick V, Cheek L, Ball J (2004) Statistics review 9: one-way analysis of variance. Crit Care 8(2):130–136.  https://doi.org/10.1186/cc2836 PubMedPubMedCentralGoogle Scholar
  218. 218.
    Whitley E, Bai J (2002) Statistics review 6: nonparametric methods. Crit Care 6(6):509–513.  https://doi.org/10.1186/cc1820 PubMedPubMedCentralGoogle Scholar
  219. 219.
    Baker M (2016) Statisticians issue warning over misuse of P values. Nature 531(7593):151.  https://doi.org/10.1038/nature.2016.19503 PubMedGoogle Scholar
  220. 220.
    Wasserstein RL, Assoc AS (2016) ASA statement on statistical significance and P-values. Am Stat 70(2):131–133Google Scholar
  221. 221.
    Wasserstein RL, Lazar NA (2016) The ASA’s statement on p-values: context, process, and purpose. Am Stat 70(2):129–131.  https://doi.org/10.1080/00031305.2016.1154108 Google Scholar
  222. 222.
    Greenland S, Senn SJ, Rothman KJ, Carlin JB, Poole C, Goodman SN, Altman DG (2016) Statistical tests, P values, confidence intervals, and power: a guide to misinterpretations. Eur J Epidemiol 31(4):337–350.  https://doi.org/10.1007/s10654-016-0149-3 PubMedPubMedCentralGoogle Scholar
  223. 223.
    Nuzzo R (2014) Scientific method: statistical errors. Nature 506(7487):150–152.  https://doi.org/10.1038/506150a PubMedGoogle Scholar
  224. 224.
    Couzin-Frankel J (2013) When mice mislead. Science 342(6161):922–923, 925.  https://doi.org/10.1126/science.342.6161.922 PubMedGoogle Scholar
  225. 225.
    Perrin S (2014) Preclinical research: make mouse studies work. Nature 507(7493):423–425.  https://doi.org/10.1038/507423a PubMedGoogle Scholar
  226. 226.
    van der Worp HB, Howells DW, Sena ES, Porritt MJ, Rewell S, O’Collins V, Macleod MR (2010) Can animal models of disease reliably inform human studies? PLoS Med 7(3):e1000245.  https://doi.org/10.1371/journal.pmed.1000245. ARTN e1000245PubMedPubMedCentralGoogle Scholar
  227. 227.
    Hathout Y, Brody E, Clemens PR, Cripe L, DeLisle RK, Furlong P, Gordish-Dressman H, Hache L, Henricson E, Hoffman EP, Kobayashi YM, Lorts A, Mah JK, McDonald C, Mehler B, Nelson S, Nikrad M, Singer B, Steele F, Sterling D, Sweeney HL, Williams S, Gold L (2015) Large-scale serum protein biomarker discovery in Duchenne muscular dystrophy. Proc Natl Acad Sci U S A 112(23):7153–7158.  https://doi.org/10.1073/pnas.1507719112 PubMedPubMedCentralGoogle Scholar
  228. 228.
    Meltzer HY (1971) Factors affecting serum creatine phosphokinase levels in the general population: the role of race, activity and age. Clin Chim Acta 33(1):165–172PubMedGoogle Scholar
  229. 229.
    Gledhill RF, Van der Merwe CA, Greyling M, Van Niekerk MM (1988) Race-gender differences in serum creatine kinase activity: a study among South Africans. J Neurol Neurosurg Psychiatry 51(2):301–304PubMedPubMedCentralGoogle Scholar
  230. 230.
    Neal RC, Ferdinand KC, Ycas J, Miller E (2009) Relationship of ethnic origin, gender, and age to blood creatine kinase levels. Am J Med 122(1):73–78.  https://doi.org/10.1016/j.amjmed.2008.08.033 PubMedGoogle Scholar
  231. 231.
    Parasuraman S, Raveendran R, Kesavan R (2010) Blood sample collection in small laboratory animals. J Pharmacol Pharmacother 1(2):87–93.  https://doi.org/10.4103/0976-500X.72350 PubMedPubMedCentralGoogle Scholar
  232. 232.
    Baudy AR, Sali A, Jordan S, Kesari A, Johnston HK, Hoffman EP, Nagaraju K (2011) Non-invasive optical imaging of muscle pathology in mdx mice using cathepsin caged near-infrared imaging. Mol Imaging Biol 13(3):462–470.  https://doi.org/10.1007/s11307-010-0376-z PubMedGoogle Scholar
  233. 233.
    Coley WD, Bogdanik L, Vila MC, Yu Q, Van Der Meulen JH, Rayavarapu S, Novak JS, Nearing M, Quinn JL, Saunders A, Dolan C, Andrews W, Lammert C, Austin A, Partridge TA, Cox GA, Lutz C, Nagaraju K (2016) Effect of genetic background on the dystrophic phenotype in mdx mice. Hum Mol Genet 25(1):130–145.  https://doi.org/10.1093/hmg/ddv460 PubMedGoogle Scholar
  234. 234.
    de Greef JC, Hamlyn R, Jensen BS, O’Campo Landa R, Levy JR, Kobuke K, Campbell KP (2016) Collagen VI deficiency reduces muscle pathology, but does not improve muscle function, in the gamma-sarcoglycan-null mouse. Hum Mol Genet 25(7):1357–1369.  https://doi.org/10.1093/hmg/ddw018 PubMedPubMedCentralGoogle Scholar
  235. 235.
    Dirnagl U, Fisher M (2012) International, multicenter randomized preclinical trials in translational stroke research: it’s time to act. J Cereb Blood Flow Metab 32(6):933–935.  https://doi.org/10.1038/jcbfm.2012.51 PubMedPubMedCentralGoogle Scholar
  236. 236.
    Bath PM, Macleod MR, Green AR (2009) Emulating multicentre clinical stroke trials: a new paradigm for studying novel interventions in experimental models of stroke. Int J Stroke 4(6):471–479.  https://doi.org/10.1111/j.1747-4949.2009.00386.x PubMedGoogle Scholar
  237. 237.
    Llovera G, Liesz A (2016) The next step in translational research: lessons learned from the first preclinical randomized controlled trial. J Neurochem 139:271–279.  https://doi.org/10.1111/jnc.13516 PubMedGoogle Scholar
  238. 238.
    Amaro S, Llull L (2016) Preclinical randomized controlled multicenter trials in translational stroke research. Ann Transl Med 4(Suppl 1):S58.  https://doi.org/10.21037/atm.2016.10.66 PubMedPubMedCentralGoogle Scholar
  239. 239.
    Mullard A (2011) Reliability of ‘new drug target’ claims called into question. Nat Rev Drug Discov 10(9):643–644.  https://doi.org/10.1038/nrd3545. nrd3545 [pii]PubMedGoogle Scholar
  240. 240.
    Baker M (2016) Biotech giant publishes failures to confirm high-profile science. Nature 530(7589):141.  https://doi.org/10.1038/nature.2016.19269 PubMedGoogle Scholar
  241. 241.
    Aarts AA, Anderson JE, Anderson CJ, Attridge PR, Attwood A, Axt J, Babel M, Bahnik S, Baranski E, Barnett-Cowan M, Bartmess E, Beer J, Bell R, Bentley H, Beyan L, Binion G, Borsboom D, Bosch A, Bosco FA, Bowman SD, Brandt MJ, Braswell E, Brohmer H, Brown BT, Brown K, Bruning J, Calhoun-Sauls A, Callahan SP, Chagnon E, Chandler J, Chartier CR, Cheung F, Christopherson CD, Cillessen L, Clay R, Cleary H, Cloud MD, Cohn M, Cohoon J, Columbus S, Cordes A, Costantini G, Alvarez LDC, Cremata E, Crusius J, De Coster J, De Gaetano MA, Della Penna N, den Bezemer B, Deserno MK, Devitt O, Dewitte L, Dobolyi DG, Dodson GT, Donnellan MB, Donohue R, Dore RA, Dorrough A, Dreber A, Dugas M, Dunn EW, Easey K, Eboigbe S, Eggleston C, Embley J, Epskamp S, Errington TM, Estel V, Farach FJ, Feather J, Fedor A, Fernandez-Castilla B, Fiedler S, Field JG, Fitneva SA, Flagan T, Forest AL, Forsell E, Foster JD, Frank MC, Frazier RS, Fuchs H, Gable P, Galak J, Galliani EM, Gampa A, Garcia S, Gazarian D, Gilbert E, Giner-Sorolla R, Glockner A, Goellner L, Goh JX, Goldberg R, Goodbourn PT, Gordon-McKeon S, Gorges B, Gorges J, Goss J, Graham J, Grange JA, Gray J, Hartgerink C, Hartshorne J, Hasselman F, Hayes T, Heikensten E, Henninger F, Hodsoll J, Holubar T, Hoogendoorn G, Humphries DJ, Hung COY, Immelman N, Irsik VC, Jahn G, Jakel F, Jekel M, Johannesson M, Johnson LG, Johnson DJ, Johnson KM, Johnston WJ, Jonas K, Joy-Gaba JA, Kappes HB, Kelso K, Kidwell MC, Kim SK, Kirkhart M, Kleinberg B, Knezevic G, Kolorz FM, Kossakowski JJ, Krause RW, Krijnen J, Kuhlmann T, Kunkels YK, Kyc MM, Lai CK, Laique A, Lakens D, Lane KA, Lassetter B, Lazarevic LB, EP LB, Lee KJ, Lee M, Lemm K, Levitan CA, Lewis M, Lin L, Lin S, Lippold M, Loureiro D, Luteijn I, Mackinnon S, Mainard HN, Marigold DC, Martin DP, Martinez T, Masicampo EJ, Matacotta J, Mathur M, May M, Mechin N, Mehta P, Meixner J, Melinger A, Miller JK, Miller M, Moore K, Moschl M, Motyl M, Muller SM, Munafo M, Neijenhuijs KI, Nervi T, Nicolas G, Nilsonne G, Nosek BA, Nuijten MB, Olsson C, Osborne C, Ostkamp L, Pavel M, Penton-Voak IS, Perna O, Pernet C, Perugini M, Pipitone RN, Pitts M, Plessow F, Prenoveau JM, Rahal RM, Ratliff KA, Reinhard D, Renkewitz F, Ricker AA, Rigney A, Rivers AM, Roebke M, Rutchick AM, Ryan RS, Sahin O, Saide A, Sandstrom GM, Santos D, Saxe R, Schlegelmilch R, Schmidt K, Scholz S, Seibel L, Selterman DF, Shaki S, Simpson WB, Sinclair HC, Skorinko JLM, Slowik A, Snyder JS, Soderberg C, Sonnleitner C, Spencer N, Spies JR, Steegen S, Stieger S, Strohminger N, Sullivan GB, Talhelm T, Tapia M, te Dorsthorst A, Thomae M, Thomas SL, Tio P, Traets F, Tsang S, Tuerlinckx F, Turchan P, Valasek M, van ‘t Veer AE, Van Aert R, van Assen M, van Bork R, van de Ven M, van den Bergh D, van der Hulst M, van Dooren R, van Doorn J, van Renswoude DR, van Rijn H, Vanpaemel W, Echeverria AV, Vazquez M, Velez N, Vermue M, Verschoor M, Vianello M, Voracek M, Vuu G, Wagenmakers EJ, Weerdmeester J, Welsh A, Westgate EC, Wissink J, Wood M, Woods A, Wright E, Wu S, Zeelenberg M, Zuni K, Collaboration OS (2015) Estimating the reproducibility of psychological science. Science 349(6251):aac4716.  https://doi.org/10.1126/science.aac4716. ARTN aac4716Google Scholar
  242. 242.
    Prinz F, Schlange T, Asadullah K (2011) Believe it or not: how much can we rely on published data on potential drug targets? Nat Rev Drug Discov 10(9):712.  https://doi.org/10.1038/nrd3439-c1 PubMedGoogle Scholar
  243. 243.
    Boltze J, Ayata C, Wagner DC, Plesnila N (2014) Preclinical phase III trials in translational stroke research: call for collective design of framework and guidelines. Stroke 45(2):357.  https://doi.org/10.1161/STROKEAHA.113.004148 PubMedPubMedCentralGoogle Scholar
  244. 244.
    Macleod MR, O’Collins T, Howells DW, Donnan GA (2004) Pooling of animal experimental data reveals influence of study design and publication bias. Stroke 35(5):1203–1208.  https://doi.org/10.1161/01.STR.0000125719.25853.20 PubMedGoogle Scholar
  245. 245.
    Sena ES, Currie GL, McCann SK, Macleod MR, Howells DW (2014) Systematic reviews and meta-analysis of preclinical studies: why perform them and how to appraise them critically. J Cereb Blood Flow Metab 34(5):737–742.  https://doi.org/10.1038/jcbfm.2014.28 PubMedPubMedCentralGoogle Scholar
  246. 246.
    Vesterinen HM, Sena ES, Egan KJ, Hirst TC, Churolov L, Currie GL, Antonic A, Howells DW, Macleod MR (2014) Meta-analysis of data from animal studies: a practical guide. J Neurosci Methods 221:92–102.  https://doi.org/10.1016/j.jneumeth.2013.09.010 PubMedGoogle Scholar
  247. 247.
    Hooijmans CR, IntHout J, Ritskes-Hoitinga M, Rovers MM (2014) Meta-analyses of animal studies: an introduction of a valuable instrument to further improve healthcare. ILAR J 55(3):418–426.  https://doi.org/10.1093/ilar/ilu042 PubMedPubMedCentralGoogle Scholar
  248. 248.
    Normand SL (1999) Meta-analysis: formulating, evaluating, combining, and reporting. Stat Med 18(3):321–359PubMedGoogle Scholar
  249. 249.
    Esterhuizen TM, Thabane L (2016) Con: meta-analysis: some key limitations and potential solutions. Nephrol Dial Transplant 31(6):882–885.  https://doi.org/10.1093/ndt/gfw092 PubMedGoogle Scholar
  250. 250.
    Zoccali C (2016) Moderator’s view: meta-analysis: the best knowledge but not always shining gold. Nephrol Dial Transplant 31(6):886–889.  https://doi.org/10.1093/ndt/gfw093 PubMedGoogle Scholar
  251. 251.
    Llovera G, Hofmann K, Roth S, Salas-Perdomo A, Ferrer-Ferrer M, Perego C, Zanier ER, Mamrak U, Rex A, Party H, Agin V, Fauchon C, Orset C, Haelewyn B, De Simoni MG, Dirnagl U, Grittner U, Planas AM, Plesnila N, Vivien D, Liesz A (2015) Results of a preclinical randomized controlled multicenter trial (pRCT): anti-CD49d treatment for acute brain ischemia. Sci Transl Med 7(299):299ra121.  https://doi.org/10.1126/scitranslmed.aaa9853. ARTN 299ra121PubMedGoogle Scholar
  252. 252.
    Voelkl B, Vogt L, Sena ES, Wurbel H (2018) Reproducibility of preclinical animal research improves with heterogeneity of study samples. PLoS Biol 16(2):e2003693.  https://doi.org/10.1371/journal.pbio.2003693 PubMedPubMedCentralGoogle Scholar
  253. 253.
    Freedman LP, Cockburn IM, Simcoe TS (2015) The economics of reproducibility in preclinical research. PLoS Biol 13(6):e1002165.  https://doi.org/10.1371/journal.pbio.1002165 PubMedPubMedCentralGoogle Scholar
  254. 254.
    Moher D, Avey M, Antes G, Altman DG (2015) The National Institutes of Health and guidance for reporting preclinical research. BMC Med 13:34.  https://doi.org/10.1186/s12916-015-0284-9 PubMedPubMedCentralGoogle Scholar
  255. 255.
    Hsieh T, Vaickus MH, Remick DG (2018) Enhancing scientific foundations to ensure reproducibility: a new paradigm. Am J Pathol 188(1):6–10.  https://doi.org/10.1016/j.ajpath.2017.08.028 PubMedPubMedCentralGoogle Scholar
  256. 256.
    Goodman SN, Fanelli D, Ioannidis JP (2016) What does research reproducibility mean? Sci Transl Med 8(341):341ps312.  https://doi.org/10.1126/scitranslmed.aaf5027 Google Scholar
  257. 257.
    Wieschowski S, Chin WWL, Federico C, Sievers S, Kimmelman J, Strech D (2018) Preclinical efficacy studies in investigator brochures: do they enable risk-benefit assessment? PLoS Biol 16(4):e2004879.  https://doi.org/10.1371/journal.pbio.2004879 PubMedPubMedCentralGoogle Scholar
  258. 258.
    Jarvis MF, Williams M (2016) Irreproducibility in preclinical biomedical research: perceptions, uncertainties, and knowledge gaps. Trends Pharmacol Sci 37(4):290–302.  https://doi.org/10.1016/j.tips.2015.12.001 PubMedGoogle Scholar
  259. 259.
    Han S, Olonisakin TF, Pribis JP, Zupetic J, Yoon JH, Holleran KM, Jeong K, Shaikh N, Rubio DM, Lee JS (2017) A checklist is associated with increased quality of reporting preclinical biomedical research: a systematic review. PLoS One 12(9):e0183591.  https://doi.org/10.1371/journal.pone.0183591 PubMedPubMedCentralGoogle Scholar
  260. 260.
    Kilkenny C, Browne WJ, Cuthill IC, Emerson M, Altman DG (2010) Improving bioscience research reporting: the ARRIVE guidelines for reporting animal research. PLoS Biol 8(6):e1000412.  https://doi.org/10.1371/journal.pbio.1000412 PubMedPubMedCentralGoogle Scholar
  261. 261.
    Ramirez FD, Motazedian P, Jung RG, Di Santo P, MacDonald ZD, Moreland R, Simard T, Clancy AA, Russo JJ, Welch VA, Wells GA, Hibbert B (2017) Methodological rigor in preclinical cardiovascular studies: targets to enhance reproducibility and promote research translation. Circ Res 120(12):1916–1926.  https://doi.org/10.1161/CIRCRESAHA.117.310628 PubMedPubMedCentralGoogle Scholar
  262. 262.
    Gerdes AM (2015) How to improve the overall quality of cardiac morphometric data. Am J Physiol Heart Circ Physiol 309(1):H9–H14.  https://doi.org/10.1152/ajpheart.00232.2015 PubMedGoogle Scholar
  263. 263.
    Burgoon LD (2006) The need for standards, not guidelines, in biological data reporting and sharing. Nat Biotechnol 24(11):1369–1373.  https://doi.org/10.1038/nbt1106-1369 PubMedGoogle Scholar
  264. 264.
    Deutsch EW, Ball CA, Berman JJ, Bova GS, Brazma A, Bumgarner RE, Campbell D, Causton HC, Christiansen JH, Daian F, Dauga D, Davidson DR, Gimenez G, Goo YA, Grimmond S, Henrich T, Herrmann BG, Johnson MH, Korb M, Mills JC, Oudes AJ, Parkinson HE, Pascal LE, Pollet N, Quackenbush J, Ramialison M, Ringwald M, Salgado D, Sansone SA, Sherlock G, Stoeckert CJ Jr, Swedlow J, Taylor RC, Walashek L, Warford A, Wilkinson DG, Zhou Y, Zon LI, Liu AY, True LD (2008) Minimum information specification for in situ hybridization and immunohistochemistry experiments (MISFISHIE). Nat Biotechnol 26(3):305–312.  https://doi.org/10.1038/nbt1391 PubMedPubMedCentralGoogle Scholar
  265. 265.
    Taylor CF, Field D, Sansone SA, Aerts J, Apweiler R, Ashburner M, Ball CA, Binz PA, Bogue M, Booth T, Brazma A, Brinkman RR, Michael Clark A, Deutsch EW, Fiehn O, Fostel J, Ghazal P, Gibson F, Gray T, Grimes G, Hancock JM, Hardy NW, Hermjakob H, Julian RK Jr, Kane M, Kettner C, Kinsinger C, Kolker E, Kuiper M, Le Novere N, Leebens-Mack J, Lewis SE, Lord P, Mallon AM, Marthandan N, Masuya H, McNally R, Mehrle A, Morrison N, Orchard S, Quackenbush J, Reecy JM, Robertson DG, Rocca-Serra P, Rodriguez H, Rosenfelder H, Santoyo-Lopez J, Scheuermann RH, Schober D, Smith B, Snape J, Stoeckert CJ Jr, Tipton K, Sterk P, Untergasser A, Vandesompele J, Wiemann S (2008) Promoting coherent minimum reporting guidelines for biological and biomedical investigations: the MIBBI project. Nat Biotechnol 26(8):889–896.  https://doi.org/10.1038/nbt.1411 PubMedPubMedCentralGoogle Scholar
  266. 266.
    Zeiss CJ, Allore HG, Beck AP (2017) Established patterns of animal study design undermine translation of disease-modifying therapies for Parkinson’s disease. PLoS One 12(2):e0171790.  https://doi.org/10.1371/journal.pone.0171790. ARTN e0171790PubMedPubMedCentralGoogle Scholar
  267. 267.
    Bonne G, Rivier F, Hamroun D (2017) The 2018 version of the gene table of monogenic neuromuscular disorders (nuclear genome). Neuromuscul Disord 27(12):1152–1183.  https://doi.org/10.1016/j.nmd.2017.10.005 PubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Molecular Microbiology and ImmunologySchool of Medicine, University of MissouriColumbiaUSA
  2. 2.Department of NeurologySchool of Medicine, University of MissouriColumbiaUSA
  3. 3.Department of Biomedical SciencesCollege of Veterinary Medicine, University of MissouriColumbiaUSA
  4. 4.Department of BioengineeringUniversity of MissouriColumbiaUSA

Personalised recommendations