Advertisement

Genome Editing for Muscle Gene Therapy

  • Alan O’BrienEmail author
  • Ronald D. Cohn
Chapter

Abstract

Gene editing is defined as creating targeted changes in the genome using sequence-specific nucleases. The CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 (CRISPR-associated protein 9) system provides a gene editing tool that has led to significant advances in this field and the development of potentially curative strategies for a variety of disorders. Most of the research on gene therapy and gene editing for muscle disorders has focused on Duchenne muscular dystrophy (DMD), a fatal, progressive X-linked neuromuscular disorder resulting from the absence of dystrophin. The molecular aspects of DMD present challenging obstacles to gene therapy; however, the versatility of the CRISPR system is providing ingenious ways of circumventing those obstacles. In this chapter, we review gene editing tools, notably zinc-finger nucleases, transcription activator-like effector nucleases, and CRISPR. We then discuss the uses of CRISPR in muscle disorders, focusing on DMD, as well as challenges inherent to gene editing of muscle cells.

Keywords

Duchenne muscular dystrophy DMD CRISPR Gene editing 

References

  1. 1.
    Wang D, Gao G (2014) State-of-the-art human gene therapy: part II. Gene therapy strategies and clinical applications. Discov Med 18(98):151–161PubMedPubMedCentralGoogle Scholar
  2. 2.
    Kim H, Kim JS (2014) A guide to genome engineering with programmable nucleases. Nat Rev Genet 15(5):321–334.  https://doi.org/10.1038/nrg3686 CrossRefPubMedGoogle Scholar
  3. 3.
    LaFountaine JS, Fathe K, Smyth HD (2015) Delivery and therapeutic applications of gene editing technologies ZFNs, TALENs, and CRISPR/Cas9. Int J Pharm 494(1):180–194.  https://doi.org/10.1016/j.ijpharm.2015.08.029 CrossRefPubMedGoogle Scholar
  4. 4.
    Handel EM, Cathomen T (2011) Zinc-finger nuclease based genome surgery: it’s all about specificity. Curr Gene Ther 11(1):28–37CrossRefGoogle Scholar
  5. 5.
    Shim G, Kim D, Park GT, Jin H, Suh SK, Oh YK (2017) Therapeutic gene editing: delivery and regulatory perspectives. Acta Pharmacol Sin 38:738.  https://doi.org/10.1038/aps.2017.2 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Ousterout DG, Kabadi AM, Thakore PI, Perez-Pinera P, Brown MT, Majoros WH, Reddy TE, Gersbach CA (2015) Correction of dystrophin expression in cells from Duchenne muscular dystrophy patients through genomic excision of exon 51 by zinc finger nucleases. Mol Ther 23(3):523–532.  https://doi.org/10.1038/mt.2014.234 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Tebas P, Stein D, Tang WW, Frank I, Wang SQ, Lee G, Spratt SK, Surosky RT, Giedlin MA, Nichol G, Holmes MC, Gregory PD, Ando DG, Kalos M, Collman RG, Binder-Scholl G, Plesa G, Hwang WT, Levine BL, June CH (2014) Gene editing of CCR5 in autologous CD4 T cells of persons infected with HIV. N Engl J Med 370(10):901–910.  https://doi.org/10.1056/NEJMoa1300662 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Mussolino C, Cathomen T (2012) TALE nucleases: tailored genome engineering made easy. Curr Opin Biotechnol 23(5):644–650.  https://doi.org/10.1016/j.copbio.2012.01.013 CrossRefPubMedGoogle Scholar
  9. 9.
    Qasim W, Zhan H, Samarasinghe S, Adams S, Amrolia P, Stafford S, Butler K, Rivat C, Wright G, Somana K, Ghorashian S, Pinner D, Ahsan G, Gilmour K, Lucchini G, Inglott S, Mifsud W, Chiesa R, Peggs KS, Chan L, Farzeneh F, Thrasher AJ, Vora A, Pule M, Veys P (2017) Molecular remission of infant B-ALL after infusion of universal TALEN gene-edited CAR T cells. Sci Transl Med 9(374):eaaj2013.  https://doi.org/10.1126/scitranslmed.aaj2013 CrossRefPubMedGoogle Scholar
  10. 10.
    Ousterout DG, Perez-Pinera P, Thakore PI, Kabadi AM, Brown MT, Qin X, Fedrigo O, Mouly V, Tremblay JP, Gersbach CA (2013) Reading frame correction by targeted genome editing restores dystrophin expression in cells from Duchenne muscular dystrophy patients. Mol Ther 21(9):1718–1726.  https://doi.org/10.1038/mt.2013.111 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Li HL, Fujimoto N, Sasakawa N, Shirai S, Ohkame T, Sakuma T, Tanaka M, Amano N, Watanabe A, Sakurai H, Yamamoto T, Yamanaka S, Hotta A (2015) Precise correction of the dystrophin gene in Duchenne muscular dystrophy patient induced pluripotent stem cells by TALEN and CRISPR-Cas9. Stem Cell Rep 4(1):143–154.  https://doi.org/10.1016/j.stemcr.2014.10.013 CrossRefGoogle Scholar
  12. 12.
    Hsu PD, Lander ES, Zhang F (2014) Development and applications of CRISPR-Cas9 for genome engineering. Cell 157(6):1262–1278.  https://doi.org/10.1016/j.cell.2014.05.010 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Makarova KS, Haft DH, Barrangou R, Brouns SJ, Charpentier E, Horvath P, Moineau S, Mojica FJ, Wolf YI, Yakunin AF, van der Oost J, Koonin EV (2011) Evolution and classification of the CRISPR-Cas systems. Nat Rev Microbiol 9(6):467–477.  https://doi.org/10.1038/nrmicro2577 CrossRefPubMedGoogle Scholar
  14. 14.
    Jinek M, Jiang F, Taylor DW, Sternberg SH, Kaya E, Ma E, Anders C, Hauer M, Zhou K, Lin S, Kaplan M, Iavarone AT, Charpentier E, Nogales E, Doudna JA (2014) Structures of Cas9 endonucleases reveal RNA-mediated conformational activation. Science 343(6176):1247997.  https://doi.org/10.1126/science.1247997 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Hsu PD, Scott DA, Weinstein JA, Ran FA, Konermann S, Agarwala V, Li Y, Fine EJ, Wu X, Shalem O, Cradick TJ, Marraffini LA, Bao G, Zhang F (2013) DNA targeting specificity of RNA-guided Cas9 nucleases. Nat Biotechnol 31(9):827–832.  https://doi.org/10.1038/nbt.2647 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Ran FA, Cong L, Yan WX, Scott DA, Gootenberg JS, Kriz AJ, Zetsche B, Shalem O, Wu X, Makarova KS, Koonin EV, Sharp PA, Zhang F (2015) In vivo genome editing using Staphylococcus aureus Cas9. Nature 520(7546):186–191.  https://doi.org/10.1038/nature14299 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Zetsche B, Gootenberg JS, Abudayyeh OO, Slaymaker IM, Makarova KS, Essletzbichler P, Volz SE, Joung J, van der Oost J, Regev A, Koonin EV, Zhang F (2015) Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 163(3):759–771.  https://doi.org/10.1016/j.cell.2015.09.038 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Qi LS, Larson MH, Gilbert LA, Doudna JA, Weissman JS, Arkin AP, Lim WA (2013) Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 152(5):1173–1183.  https://doi.org/10.1016/j.cell.2013.02.022 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Perez-Pinera P, Ousterout DG, Brunger JM, Farin AM, Glass KA, Guilak F, Crawford GE, Hartemink AJ, Gersbach CA (2013) Synergistic and tunable human gene activation by combinations of synthetic transcription factors. Nat Methods 10(3):239–242.  https://doi.org/10.1038/nmeth.2361 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Tsai SQ, Zheng Z, Nguyen NT, Liebers M, Topkar VV, Thapar V, Wyvekens N, Khayter C, Iafrate AJ, Le LP, Aryee MJ, Joung JK (2015) GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases. Nat Biotechnol 33(2):187–197.  https://doi.org/10.1038/nbt.3117 CrossRefPubMedGoogle Scholar
  21. 21.
    Kim D, Bae S, Park J, Kim E, Kim S, Yu HR, Hwang J, Kim JI, Kim JS (2015) Digenome-seq: genome-wide profiling of CRISPR-Cas9 off-target effects in human cells. Nat Methods 12(3):237–243.  https://doi.org/10.1038/nmeth.3284 CrossRefPubMedGoogle Scholar
  22. 22.
    Rothkamm K, Kruger I, Thompson LH, Lobrich M (2003) Pathways of DNA double-strand break repair during the mammalian cell cycle. Mol Cell Biol 23(16):5706–5715CrossRefGoogle Scholar
  23. 23.
    Maggio I, Chen X, Goncalves MA (2016) The emerging role of viral vectors as vehicles for DMD gene editing. Genome Med 8(1):59.  https://doi.org/10.1186/s13073-016-0316-x CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Wang JZ, Wu P, Shi ZM, Xu YL, Liu ZJ (2017) The AAV-mediated and RNA-guided CRISPR/Cas9 system for gene therapy of DMD and BMD. Brain and Development 39:547.  https://doi.org/10.1016/j.braindev.2017.03.024 CrossRefPubMedGoogle Scholar
  25. 25.
    Falzarano MS, Scotton C, Passarelli C, Ferlini A (2015) Duchenne muscular dystrophy: from diagnosis to therapy. Molecules 20(10):18168–18184.  https://doi.org/10.3390/molecules201018168 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Lapidos KA, Kakkar R, McNally EM (2004) The dystrophin glycoprotein complex: signaling strength and integrity for the sarcolemma. Circ Res 94(8):1023–1031.  https://doi.org/10.1161/01.RES.0000126574.61061.25 CrossRefPubMedGoogle Scholar
  27. 27.
    Hotta A (2015) Genome editing gene therapy for Duchenne muscular dystrophy. J Neuromuscul Dis 2(4):343–355.  https://doi.org/10.3233/JND-150116 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Seto JT, Ramos JN, Muir L, Chamberlain JS, Odom GL (2012) Gene replacement therapies for Duchenne muscular dystrophy using adeno-associated viral vectors. Curr Gene Ther 12(3):139–151CrossRefGoogle Scholar
  29. 29.
    Robinson-Hamm JN, Gersbach CA (2016) Gene therapies that restore dystrophin expression for the treatment of Duchenne muscular dystrophy. Hum Genet 135(9):1029–1040.  https://doi.org/10.1007/s00439-016-1725-z CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Nelson CE, Hakim CH, Ousterout DG, Thakore PI, Moreb EA, Castellanos Rivera RM, Madhavan S, Pan X, Ran FA, Yan WX, Asokan A, Zhang F, Duan D, Gersbach CA (2016) In vivo genome editing improves muscle function in a mouse model of Duchenne muscular dystrophy. Science 351(6271):403–407.  https://doi.org/10.1126/science.aad5143 CrossRefPubMedGoogle Scholar
  31. 31.
    Tabebordbar M, Zhu K, Cheng JKW, Chew WL, Widrick JJ, Yan WX, Maesner C, Wu EY, Xiao R, Ran FA, Cong L, Zhang F, Vandenberghe LH, Church GM, Wagers AJ (2016) In vivo gene editing in dystrophic mouse muscle and muscle stem cells. Science 351(6271):407–411CrossRefGoogle Scholar
  32. 32.
    Long C, Amoasii L, Mireault AA, McAnally JR, Li H, Sanchez-Ortiz E, Bhattacharyya S, Shelton JM, Bassel-Duby R, Olson EN (2016) Postnatal genome editing partially restores dystrophin expression in a mouse model of muscular dystrophy. Science 351(6271):400–403CrossRefGoogle Scholar
  33. 33.
    Bengtsson NE, Hall JK, Odom GL, Phelps MP, Andrus CR, Hawkins RD, Hauschka SD, Chamberlain JR, Chamberlain JS (2017) Muscle-specific CRISPR/Cas9 dystrophin gene editing ameliorates pathophysiology in a mouse model for Duchenne muscular dystrophy. Nat Commun 8:14454.  https://doi.org/10.1038/ncomms14454 CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Zhang Y, Long C, Li H, McAnally JR, Baskin KK, Shelton JM, Bassel-Duby R, Olson EN (2017) CRISPR-Cpf1 correction of muscular dystrophy mutations in human cardiomyocytes and mice. Sci Adv 3(4):e1602814.  https://doi.org/10.1126/sciadv.1602814 CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Wojtal D, Kemaladewi DU, Malam Z, Abdullah S, Wong TW, Hyatt E, Baghestani Z, Pereira S, Stavropoulos J, Mouly V, Mamchaoui K, Muntoni F, Voit T, Gonorazky HD, Dowling JJ, Wilson MD, Mendoza-Londono R, Ivakine EA, Cohn RD (2016) Spell checking nature: versatility of CRISPR/Cas9 for developing treatments for inherited disorders. Am J Hum Genet 98(1):90–101.  https://doi.org/10.1016/j.ajhg.2015.11.012 CrossRefPubMedGoogle Scholar
  36. 36.
    Tuffery-Giraud S, Beroud C, Leturcq F, Yaou RB, Hamroun D, Michel-Calemard L, Moizard MP, Bernard R, Cossee M, Boisseau P, Blayau M, Creveaux I, Guiochon-Mantel A, de Martinville B, Philippe C, Monnier N, Bieth E, Khau Van Kien P, Desmet FO, Humbertclaude V, Kaplan JC, Chelly J, Claustres M (2009) Genotype-phenotype analysis in 2,405 patients with a dystrophinopathy using the UMD-DMD database: a model of nationwide knowledgebase. Hum Mutat 30(6):934–945.  https://doi.org/10.1002/humu.20976 CrossRefPubMedGoogle Scholar
  37. 37.
    Geranmayeh F, Clement E, Feng LH, Sewry C, Pagan J, Mein R, Abbs S, Brueton L, Childs A-M, Jungbluth H, de Goede CG, Lynch B, Lin J-P, Chow G, Sousa C, O’Mahony O, Majumdar A, Straub V, Bushby K, Muntoni F (2010) Genotype–phenotype correlation in a large population of muscular dystrophy patients with LAMA2 mutations. Neuromuscul Disord 20:241–250.  https://doi.org/10.1016/j.nmd.2010.02.001 CrossRefPubMedGoogle Scholar
  38. 38.
    Stenson PD, Mort M, Ball EV, Shaw K, Phillips AD, Cooper DN (2014) The Human Gene Mutation Database: building a comprehensive mutation repository for clinical and molecular genetics, diagnostic testing and personalized genomic medicine. Hum Genet 133:1–9.  https://doi.org/10.1007/s00439-013-1358-4 CrossRefPubMedGoogle Scholar
  39. 39.
    Sunada Y, Bernier SM, Utani A, Yamada Y, Campbell KP (1995) Identification of a novel mutant transcript of laminin α2 chain gene responsible for muscular dystrophy and dysmyelination in dy2J mice. Hum Mol Genet 4:1055–1061.  https://doi.org/10.1093/hmg/4.6.1055 CrossRefPubMedGoogle Scholar
  40. 40.
    Xu H, Wu X-R, Wewer UM, Engvall E (1994) Murine muscular dystrophy caused by a mutation in the laminin α2 (Lama2) gene. Nat Genet 8:297CrossRefGoogle Scholar
  41. 41.
    Kemaladewi DU, Maino E, Hyatt E, Hou H, Ding M, Place KM, Zhu X, Bassi P, Baghestani Z, Deshwar AG, Merico D, Xiong HY, Frey BJ, Wilson MD, Ivakine EA, Cohn RD (2017) Correction of a splicing defect in a mouse model of congenital muscular dystrophy type 1A using a homology-directed-repair-independent mechanism. Nat Med 23:984CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Division of Clinical Genetics, Department of PaediatricsUniversity of Toronto, The Hospital for Sick ChildrenTorontoCanada
  2. 2.Department of PaediatricsUniversity of Toronto, The Hospital for Sick ChildrenTorontoCanada

Personalised recommendations