Advertisement

Large-Scale Clinical Manufacturing of AAV Vectors for Systemic Muscle Gene Therapy

  • Nathalie ClémentEmail author
Chapter

Abstract

Gene therapy targeting the muscle using adeno-associated vectors (AAV) has a long track record starting from the first vector design in the 1980s until today where systemic delivery to the muscle mass has become perhaps one of the most sought-after therapy designs. The unparalleled efficacy of AAV vectors to deliver robust and long-term expression of the desired therapeutic gene into the different muscle cell types remains one of the top assets of this viral drug. However, it also created one of its biggest challenges: manufacturing recombinant AAV stocks to scale sufficient to fulfill the needs of preclinical studies and phase I to III clinical trials. Ultimately, commercial manufacturing remains a major hurdle, if not a roadblock, toward its full implementation for clinical uses in humans. Nevertheless, robust processes have recently emerged to produce phase I- to III-enabling, clinical-grade AAV drugs and present with promising paths toward commercial use.

Keywords

AAV Gene therapy Manufacturing Clinical 

References

  1. 1.
    Wang D, Zhong L, Nahid MA, Gao G (2014) The potential of adeno-associated viral vectors for gene delivery to muscle tissue. Expert Opin Drug Deliv 11(3):345–364.  https://doi.org/10.1517/17425247.2014.871258 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Clement N, Grieger JC (2016) Manufacturing of recombinant adeno-associated viral vectors for clinical trials. Mol Ther Methods Clin Dev 3:16002.  https://doi.org/10.1038/mtm.2016.2 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Dutheil N, Shi F, Dupressoir T, Linden RM (2000) Adeno-associated virus site-specifically integrates into a muscle-specific DNA region. Proc Natl Acad Sci U S A 97(9):4862–4866.  https://doi.org/10.1073/pnas.080079397 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Henckaerts E, Dutheil N, Zeltner N, Kattman S, Kohlbrenner E, Ward P, Clement N, Rebollo P, Kennedy M, Keller GM, Linden RM (2009) Site-specific integration of adeno-associated virus involves partial duplication of the target locus. Proc Natl Acad Sci U S A 106(18):7571–7576.  https://doi.org/10.1073/pnas.0806821106 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Fang H, Lai NC, Gao MH, Miyanohara A, Roth DM, Tang T, Hammond HK (2012) Comparison of adeno-associated virus serotypes and delivery methods for cardiac gene transfer. Hum Gene Ther Methods 23(4):234–241.  https://doi.org/10.1089/hgtb.2012.105 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Davidoff AM, Ng CY, Zhou J, Spence Y, Nathwani AC (2003) Sex significantly influences transduction of murine liver by recombinant adeno-associated viral vectors through an androgen-dependent pathway. Blood 102(2):480–488.  https://doi.org/10.1182/blood-2002-09-2889 CrossRefPubMedGoogle Scholar
  7. 7.
    Vercauteren K, Hoffman BE, Zolotukhin I, Keeler GD, Xiao JW, Basner-Tschakarjan E, High KA, Ertl HC, Rice CM, Srivastava A, de Jong YP, Herzog RW (2016) Superior in vivo transduction of human hepatocytes using engineered AAV3 capsid. Mol Ther 24(6):1042–1049.  https://doi.org/10.1038/mt.2016.61 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Mendell JR, Rodino-Klapac LR, Rosales XQ, Coley BD, Galloway G, Lewis S, Malik V, Shilling C, Byrne BJ, Conlon T, Campbell KJ, Bremer WG, Taylor LE, Flanigan KM, Gastier-Foster JM, Astbury C, Kota J, Sahenk Z, Walker CM, Clark KR (2010) Sustained alpha-sarcoglycan gene expression after gene transfer in limb-girdle muscular dystrophy, type 2D. Ann Neurol 68(5):629–638.  https://doi.org/10.1002/ana.22251 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Smith BK, Collins SW, Conlon TJ, Mah CS, Lawson LA, Martin AD, Fuller DD, Cleaver BD, Clement N, Phillips D, Islam S, Dobjia N, Byrne BJ (2013) Phase I/II trial of adeno-associated virus-mediated alpha-glucosidase gene therapy to the diaphragm for chronic respiratory failure in Pompe disease: initial safety and ventilatory outcomes. Hum Gene Ther 24(6):630–640.  https://doi.org/10.1089/hum.2012.250 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Byrne PI, Collins S, Mah CC, Smith B, Conlon T, Martin SD, Corti M, Cleaver B, Islam S, Lawson LA (2014) Phase I/II trial of diaphragm delivery of recombinant adeno-associated virus acid alpha-glucosidase (rAAaV1-CMV-GAA) gene vector in patients with Pompe disease. Hum Gene Ther Clin Dev 25(3):134–163.  https://doi.org/10.1089/humc.2014.2514 CrossRefPubMedGoogle Scholar
  11. 11.
    Wang Z, Ma HI, Li J, Sun L, Zhang J, Xiao X (2003) Rapid and highly efficient transduction by double-stranded adeno-associated virus vectors in vitro and in vivo. Gene Ther 10(26):2105–2111.  https://doi.org/10.1038/sj.gt.3302133 CrossRefPubMedGoogle Scholar
  12. 12.
    Clement N (2016) AAV vector and gene therapy: en route for the American dream? Cell Gene Therapy Insights 2(5):513–519.  https://doi.org/10.18609/cgti.2016.066 CrossRefGoogle Scholar
  13. 13.
    Brantly ML, Spencer LT, Humphries M, Conlon TJ, Spencer CT, Poirier A, Garlington W, Baker D, Song S, Berns KI, Muzyczka N, Snyder RO, Byrne BJ, Flotte TR (2006) Phase I trial of intramuscular injection of a recombinant adeno-associated virus serotype 2 alphal-antitrypsin (AAT) vector in AAT-deficient adults. Hum Gene Ther 17(12):1177–1186.  https://doi.org/10.1089/hum.2006.17.1177 CrossRefPubMedGoogle Scholar
  14. 14.
    Mendell JR, Sahenk Z, Malik V, Gomez AM, Flanigan KM, Lowes LP, Alfano LN, Berry K, Meadows E, Lewis S, Braun L, Shontz K, Rouhana M, Clark KR, Rosales XQ, Al-Zaidy S, Govoni A, Rodino-Klapac LR, Hogan MJ, Kaspar BK (2015) A phase 1/2a follistatin gene therapy trial for Becker muscular dystrophy. Mol Ther 23(1):192–201.  https://doi.org/10.1038/mt.2014.200 CrossRefPubMedGoogle Scholar
  15. 15.
    Mendell JR, Rodino-Klapac L, Sahenk Z, Malik V, Kaspar BK, Walker CM, Clark KR (2012) Gene therapy for muscular dystrophy: lessons learned and path forward. Neurosci Lett 527(2):90–99.  https://doi.org/10.1016/j.neulet.2012.04.078 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Brantly ML, Chulay JD, Wang L, Mueller C, Humphries M, Spencer LT, Rouhani F, Conlon TJ, Calcedo R, Betts MR, Spencer C, Byrne BJ, Wilson JM, Flotte TR (2009) Sustained transgene expression despite T lymphocyte responses in a clinical trial of rAAV1-AAT gene therapy. Proc Natl Acad Sci U S A 106(38):16363–16368.  https://doi.org/10.1073/pnas.0904514106 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Clement N, Byrne BJ (2011) Current manufacturing methods for clinical production of recombinant adeno-associated vectors. In: Cucchiarini MMH (ed) Regenerative therapy for the musculoskeletal system using recombinant adeno-associated viral vectors. Research Signpost, Germany, pp 23–42Google Scholar
  18. 18.
    Allay JA, Sleep S, Long S, Tillman DM, Clark R, Carney G, Fagone P, McIntosh JH, Nienhuis AW, Davidoff AM, Nathwani AC, Gray JT (2011) Good manufacturing practice production of self-complementary serotype 8 adeno-associated viral vector for a hemophilia B clinical trial. Hum Gene Ther 22(5):595–604.  https://doi.org/10.1089/hum.2010.202 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Potter M, Lins B, Mietzsch M, Heilbronn R, Van Vliet K, Chipman P, Agbandje-McKenna M, Cleaver BD, Clement N, Byrne BJ, Zolotukhin S (2014) A simplified purification protocol for recombinant adeno-associated virus vectors. Mol Ther Methods Clin Dev 1:14034.  https://doi.org/10.1038/mtm.2014.34 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Kotin RM (2011) Large-scale recombinant adeno-associated virus production. Hum Mol Genet 20(R1):R2–R6.  https://doi.org/10.1093/hmg/ddr141 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Wright JF (2011) Adeno-associated viral vector manufacturing: keeping pace with accelerating clinical development. Hum Gene Ther 22(8):913–914.  https://doi.org/10.1089/hum.2011.2514 CrossRefPubMedGoogle Scholar
  22. 22.
    van der Loo JC, Wright JF (2016) Progress and challenges in viral vector manufacturing. Hum Mol Genet 25(R1):R42–R52.  https://doi.org/10.1093/hmg/ddv451 CrossRefPubMedGoogle Scholar
  23. 23.
    Grieger JC, Samulski RJ (2012) Adeno-associated virus vectorology, manufacturing, and clinical applications. Methods Enzymol 507:229–254.  https://doi.org/10.1016/B978-0-12-386509-0.00012-0 CrossRefPubMedGoogle Scholar
  24. 24.
    Merten O-W (2016) AAV vector production: state of the art developments and remaining challenges. Cell Gene Ther Insights 2(5):521–551.  https://doi.org/10.18609/cgti.2016.067 CrossRefGoogle Scholar
  25. 25.
    Wright JF, Wellman J, High KA (2010) Manufacturing and regulatory strategies for clinical AAV2-hRPE65. Curr Gene Ther 10(5):341–349CrossRefGoogle Scholar
  26. 26.
    Kotin RM, Snyder RO (2017) Manufacturing clinical grade recombinant Adeno-associated virus using invertebrate cell lines. Hum Gene Ther 28(4):350–360.  https://doi.org/10.1089/hum.2017.042 CrossRefPubMedGoogle Scholar
  27. 27.
    Grimm D, Kleinschmidt JA (1999) Progress in adeno-associated virus type 2 vector production: promises and prospects for clinical use. Hum Gene Ther 10(15):2445–2450.  https://doi.org/10.1089/10430349950016799 CrossRefPubMedGoogle Scholar
  28. 28.
    Zolotukhin S, Potter M, Zolotukhin I, Sakai Y, Loiler S, Fraites TJ Jr, Chiodo VA, Phillipsberg T, Muzyczka N, Hauswirth WW, Flotte TR, Byrne BJ, Snyder RO (2002) Production and purification of serotype 1, 2, and 5 recombinant adeno-associated viral vectors. Methods 28(2):158–167CrossRefGoogle Scholar
  29. 29.
    Grimm D, Kern A, Rittner K, Kleinschmidt JA (1998) Novel tools for production and purification of recombinant adenoassociated virus vectors. Hum Gene Ther 9(18):2745–2760.  https://doi.org/10.1089/hum.1998.9.18-2745 CrossRefPubMedGoogle Scholar
  30. 30.
    Grieger JC, Soltys SM, Samulski RJ (2016) Production of recombinant Adeno-associated virus vectors using suspension HEK293 cells and continuous harvest of vector from the culture media for GMP FIX and FLT1 clinical vector. Mol Ther 24(2):287–297.  https://doi.org/10.1038/mt.2015.187 CrossRefPubMedGoogle Scholar
  31. 31.
    Smith BK, Martin AD, Lawson LA, Vernot V, Marcus J, Islam S, Shafi N, Corti M, Collins SW, Byrne BJ (2017) Inspiratory muscle conditioning exercise and diaphragm gene therapy in Pompe disease: clinical evidence of respiratory plasticity. Exp Neurol 287(Pt 2):216–224.  https://doi.org/10.1016/j.expneurol.2016.07.013 CrossRefPubMedGoogle Scholar
  32. 32.
    Gene transfer clinical trial for spinal muscular atrophy type 1, NTC02122952 (2014)Google Scholar
  33. 33.
    Flotte TR, Brantly ML, Spencer LT, Byrne BJ, Spencer CT, Baker DJ, Humphries M (2004) Phase I trial of intramuscular injection of a recombinant adeno-associated virus alpha 1-antitrypsin (rAAV2-CB-hAAT) gene vector to AAT-deficient adults. Hum Gene Ther 15(1):93–128.  https://doi.org/10.1089/10430340460732490 CrossRefPubMedGoogle Scholar
  34. 34.
    Adamson-Small L, Potter M, Falk DJ, Cleaver B, Byrne BJ, Clement N (2016) A scalable method for the production of high-titer and high-quality adeno-associated type 9 vectors using the HSV platform. Mol Ther Methods Clin Dev 3:16031.  https://doi.org/10.1038/mtm.2016.31 CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Liu XL, Clark KR, Johnson PR (1999) Production of recombinant adeno-associated virus vectors using a packaging cell line and a hybrid recombinant adenovirus. Gene Ther 6(2):293–299.  https://doi.org/10.1038/sj.gt.3300807 CrossRefPubMedGoogle Scholar
  36. 36.
    Gao GP, Qu G, Faust LZ, Engdahl RK, Xiao W, Hughes JV, Zoltick PW, Wilson JM (1998) High-titer adeno-associated viral vectors from a rep/cap cell line and hybrid shuttle virus. Hum Gene Ther 9(16):2353–2362.  https://doi.org/10.1089/hum.1998.9.16-2353 CrossRefPubMedGoogle Scholar
  37. 37.
    Clark KR (2002) Recent advances in recombinant adeno-associated virus vector production. Kidney Int 61(1 Suppl):S9–S15.  https://doi.org/10.1046/j.1523-1755.2002.0610s1009.x CrossRefPubMedGoogle Scholar
  38. 38.
    Zhang H, Xie J, Xie Q, Wilson JM, Gao G (2009) Adenovirus-adeno-associated virus hybrid for large-scale recombinant adeno-associated virus production. Hum Gene Ther 20(9):922–929.  https://doi.org/10.1089/hum.2009.125 CrossRefPubMedGoogle Scholar
  39. 39.
    Thorne BA, Takeya RK, Peluso RW (2009) Manufacturing recombinant adeno-associated viral vectors from producer cell clones. Hum Gene Ther 20(7):707–714.  https://doi.org/10.1089/hum.2009.070 CrossRefPubMedGoogle Scholar
  40. 40.
    Flotte TR, Trapnell BC, Humphries M, Carey B, Calcedo R, Rouhani F, Campbell-Thompson M, Yachnis AT, Sandhaus RA, McElvaney NG, Mueller C, Messina LM, Wilson JM, Brantly M, Knop DR, Ye GJ, Chulay JD (2011) Phase 2 clinical trial of a recombinant adeno-associated viral vector expressing alpha1-antitrypsin: interim results. Hum Gene Ther 22(10):1239–1247.  https://doi.org/10.1089/hum.2011.053 CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Chulay JD, Ye GJ, Thomas DL, Knop DR, Benson JM, Hutt JA, Wang G, Humphries M, Flotte TR (2011) Preclinical evaluation of a recombinant adeno-associated virus vector expressing human alpha-1 antitrypsin made using a recombinant herpes simplex virus production method. Hum Gene Ther 22(2):155–165.  https://doi.org/10.1089/hum.2010.118 CrossRefPubMedGoogle Scholar
  42. 42.
    Mueller C, Gernoux G, Gruntman AM, Borel F, Reeves EP, Calcedo R, Rouhani FN, Yachnis A, Humphries M, Campbell-Thompson M, Messina L, Chulay JD, Trapnell B, Wilson JM, McElvaney NG, Flotte TR (2017) 5 year expression and neutrophil defect repair after gene therapy in Alpha-1 antitrypsin deficiency. Mol Ther 25(6):1387–1394.  https://doi.org/10.1016/j.ymthe.2017.03.029 CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Corporation AGT (2015) Safety and efficacy if rAAV-hRS1 in patients with X-linked Retinoschisis, NTC02416622. clinicaltrialsgovGoogle Scholar
  44. 44.
    Corporation AGT (2016) Safety and efficacy trial of AAV gene therapy in patients with CNGB3 achromatopsia, NTC02935517. clinicaltrialsgovGoogle Scholar
  45. 45.
    Ye GJ, Budzynski E, Sonnentag P, Miller PE, Sharma AK, Ver Hoeve JN, Howard K, Knop DR, Neuringer M, McGill T, Stoddard J, Chulay JD (2015) Safety and biodistribution evaluation in Cynomolgus macaques of rAAV2tYF-CB-hRS1, a recombinant Adeno-associated virus vector expressing Retinoschisin. Hum Gene Ther Clin Dev 26(3):165–176.  https://doi.org/10.1089/humc.2015.076 CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Ye GJ, Budzynski E, Sonnentag P, Nork TM, Miller PE, Sharma AK, Ver Hoeve JN, Smith L, Arndt T, Calcedo R, Gaskin C, Robinson P, Knop DR, Hauswirth WW, Chulay JD (2016) Safety and biodistribution evaluation in Cynomolgus macaques of rAAV2tYF-PR1.7-hCNGB3, a recombinant AAV vector for treatment of Achromatopsia. Hum Gene Ther Clin Dev 27(1):37–48.  https://doi.org/10.1089/hum.2015.164 CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Adamson-Small L, Potter M, Byrne BJ, Clement N (2017) Sodium chloride enhances recombinant Adeno-associated virus production in a serum-free suspension manufacturing platform using the herpes simplex virus system. Hum Gene Ther Methods 28(1):1–14.  https://doi.org/10.1089/hgtb.2016.151 CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Thomas DL, Wang L, Niamke J, Liu J, Kang W, Scotti MM, Ye GJ, Veres G, Knop DR (2009) Scalable recombinant adeno-associated virus production using recombinant herpes simplex virus type 1 coinfection of suspension-adapted mammalian cells. Hum Gene Ther 20(8):861–870.  https://doi.org/10.1089/hum.2009.004 CrossRefPubMedGoogle Scholar
  49. 49.
    Clement N, Knop DR, Byrne BJ (2009) Large-scale adeno-associated viral vector production using a herpesvirus-based system enables manufacturing for clinical studies. Hum Gene Ther 20(8):796–806.  https://doi.org/10.1089/hum.2009.094 CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Knop DR, Harrell H (2007) Bioreactor production of recombinant herpes simplex virus vectors. Biotechnol Prog 23(3):715–721.  https://doi.org/10.1021/bp060373p CrossRefPubMedGoogle Scholar
  51. 51.
    Booth MJ, Mistry A, Li X, Thrasher A, Coffin RS (2004) Transfection-free and scalable recombinant AAV vector production using HSV/AAV hybrids. Gene Ther 11(10):829–837.  https://doi.org/10.1038/sj.gt.3302226 CrossRefPubMedGoogle Scholar
  52. 52.
    Ye GJ, Conlon T, Erger K, Sonnentag P, Sharma AK, Howard K, Knop DR, Chulay JD (2015) Safety and biodistribution evaluation of rAAV2tYF-CB-hRS1, a recombinant Adeno-associated virus vector expressing Retinoschisin, in RS1-deficient mice. Hum Gene Ther Clin Dev 26(3):177–184.  https://doi.org/10.1089/humc.2015.077 CrossRefPubMedGoogle Scholar
  53. 53.
    Ye GJ, Budzynski E, Sonnentag P, Nork TM, Miller PE, McPherson L, Ver Hoeve JN, Smith L, Arndt T, Mandapati S, Robinson P, Calcedo R, Knop DR, Hauswirth WW, Chulay JD (2016) Safety and biodistribution evaluation in CNGB3-deficient mice of rAAV2tYF-PR1.7-hCNGB3, a recombinant AAV vector for treatment of Achromatopsia. Hum Gene Ther Clin Dev 27(1):27–36.  https://doi.org/10.1089/hum.2015.163 CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Ye GJ, Budzynski E, Sonnentag P, Nork TM, Miller PE, Sharma AK, Ver Hoeve JN, Smith LM, Arndt T, Calcedo R, Gaskin C, Robinson PM, Knop DR, Hauswirth WW, Chulay JD (2016) Safety and biodistribution evaluation in Cynomolgus macaques of rAAV2tYF-PR1.7-hCNGB3, a recombinant AAV vector for treatment of Achromatopsia. Hum Gene Ther Clin Dev 27(1):37–48.  https://doi.org/10.1089/humc.2015.164 CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Urabe M, Ding C, Kotin RM (2002) Insect cells as a factory to produce adeno-associated virus type 2 vectors. Hum Gene Ther 13(16):1935–1943.  https://doi.org/10.1089/10430340260355347 CrossRefPubMedGoogle Scholar
  56. 56.
    Yla-Herttuala S (2012) Endgame: glybera finally recommended for approval as the first gene therapy drug in the European union. Mol Ther 20(10):1831–1832.  https://doi.org/10.1038/mt.2012.194 CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Carpentier AC, Frisch F, Labbe SM, Gagnon R, de Wal J, Greentree S, Petry H, Twisk J, Brisson D, Gaudet D (2012) Effect of alipogene tiparvovec (AAV1-LPL(S447X)) on postprandial chylomicron metabolism in lipoprotein lipase-deficient patients. J Clin Endocrinol Metab 97(5):1635–1644.  https://doi.org/10.1210/jc.2011-3002 CrossRefPubMedGoogle Scholar
  58. 58.
    Gaudet D, Methot J, Dery S, Brisson D, Essiembre C, Tremblay G, Tremblay K, de Wal J, Twisk J, van den Bulk N, Sier-Ferreira V, van Deventer S (2013) Efficacy and long-term safety of alipogene tiparvovec (AAV1-LPLS447X) gene therapy for lipoprotein lipase deficiency: an open-label trial. Gene Ther 20(4):361–369.  https://doi.org/10.1038/gt.2012.43 CrossRefPubMedGoogle Scholar
  59. 59.
    Stroes ES, Nierman MC, Meulenberg JJ, Franssen R, Twisk J, Henny CP, Maas MM, Zwinderman AH, Ross C, Aronica E, High KA, Levi MM, Hayden MR, Kastelein JJ, Kuivenhoven JA (2008) Intramuscular administration of AAV1-lipoprotein lipase S447X lowers triglycerides in lipoprotein lipase-deficient patients. Arterioscler Thromb Vasc Biol 28(12):2303–2304.  https://doi.org/10.1161/ATVBAHA.108.175620 CrossRefPubMedGoogle Scholar
  60. 60.
    Regalado A (2016) The world’s most expensive medicine us a bust. MIT Technology ReviewGoogle Scholar
  61. 61.
    Kohlbrenner E, Aslanidi G, Nash K, Shklyaev S, Campbell-Thompson M, Byrne BJ, Snyder RO, Muzyczka N, Warrington KH Jr, Zolotukhin S (2005) Successful production of pseudotyped rAAV vectors using a modified baculovirus expression system. Mol Ther 12(6):1217–1225.  https://doi.org/10.1016/j.ymthe.2005.08.018 CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Aslanidi G, Lamb K, Zolotukhin S (2009) An inducible system for highly efficient production of recombinant adeno-associated virus (rAAV) vectors in insect Sf9 cells. Proc Natl Acad Sci U S A 106(13):5059–5064.  https://doi.org/10.1073/pnas.0810614106 CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Mietzsch M, Grasse S, Zurawski C, Weger S, Bennett A, Agbandje-McKenna M, Muzyczka N, Zolotukhin S, Heilbronn R (2014) OneBac: platform for scalable and high-titer production of adeno-associated virus serotype 1-12 vectors for gene therapy. Hum Gene Ther 25(3):212–222.  https://doi.org/10.1089/hum.2013.184 CrossRefPubMedGoogle Scholar
  64. 64.
    Smith RH, Levy JR, Kotin RM (2009) A simplified baculovirus-AAV expression vector system coupled with one-step affinity purification yields high-titer rAAV stocks from insect cells. Mol Ther 17(11):1888–1896.  https://doi.org/10.1038/mt.2009.128 CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Chen H (2008) Intron splicing-mediated expression of AAV rep and cap genes and production of AAV vectors in insect cells. Mol Ther 16(5):924–930.  https://doi.org/10.1038/mt.2008.35 CrossRefPubMedGoogle Scholar
  66. 66.
    Chen YH, Harvey BK, Hoffman AF, Wang Y, Chiang YH, Lupica CR (2008) MPTP-induced deficits in striatal synaptic plasticity are prevented by glial cell line-derived neurotrophic factor expressed via an adeno-associated viral vector. FASEB J 22(1):261–275.  https://doi.org/10.1096/fj.07-8797com CrossRefPubMedGoogle Scholar
  67. 67.
    Virag T, Cecchini S, Kotin RM (2009) Producing recombinant adeno-associated virus in foster cells: overcoming production limitations using a baculovirus-insect cell expression strategy. Hum Gene Ther 20(8):807–817.  https://doi.org/10.1089/hum.2009.092 CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Cecchini S, Virag T, Kotin RM (2011) Reproducible high yields of recombinant adeno-associated virus produced using invertebrate cells in 0.02- to 200-liter cultures. Hum Gene Ther 22(8):1021–1030.  https://doi.org/10.1089/hum.2010.250 CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Clasen R, Hermans P, Parra S, Terova O, Soltys S (2016) Innovative downstream putification solutions for viral vectors: enabling platform approaches to advance gene therapies. BioProcessing Int 14(9)Google Scholar
  70. 70.
    Wright JF, Zelenaia O (2011) Vector characterization methods for quality control testing of recombinant adeno-associated viruses. Methods Mol Biol 737:247–278.  https://doi.org/10.1007/978-1-61779-095-9_11 CrossRefPubMedGoogle Scholar
  71. 71.
    Wright JF (2008) Manufacturing and characterizing AAV-based vectors for use in clinical studies. Gene Ther 15(11):840–848.  https://doi.org/10.1038/gt.2008.65 CrossRefPubMedGoogle Scholar
  72. 72.
    Wright JF (2014) Product-related impurities in clinical-grade recombinant AAV vectors: characterization and risk assessment. Biomedicine 2(1):80–97.  https://doi.org/10.3390/biomedicines2010080 CrossRefGoogle Scholar
  73. 73.
    Ye GJ, Scotti MM, Thomas DL, Wang L, Knop DR, Chulay JD (2014) Herpes simplex virus clearance during purification of a recombinant adeno-associated virus serotype 1 vector. Hum Gene Ther Clin Dev 25(4):212–217.  https://doi.org/10.1089/humc.2014.060 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Pediatrics, Powell Gene Therapy CenterUniversity of FloridaGainesvilleUSA

Personalised recommendations