Advertisement

Optical Polarization Tractography Imaging of Structural Changes in the Skeletal and Cardiac Muscles of the mdx4cv Mice

  • Gang YaoEmail author
Chapter

Abstract

Optical polarization tractography (OPT) is a recently developed imaging technology that can quantitatively evaluate the three-dimensional fiber organization in tissue with microscopic resolution. In this chapter, we first introduce the basic principle and system design of this technology. We then show its applications for imaging skeletal muscle damage and heart structural remodeling in the mdx4cv mice, a mouse model for Duchenne muscular dystrophy. Because of its relatively low system cost, high imaging speed, and cellular-level resolution, OPT may become an effective tool for phenotype assessment in the research of neuromuscular diseases.

Keywords

Imaging Fiber Tractography Muscle Heart Mouse Remodel Polarization 

Notes

Acknowledgment

The results presented in this chapter were obtained in close collaboration with Dr. Dongsheng Duan. We thank Yuanbo Wang, Keqing Zhang, Chuanmao Fan, and many other students and colleagues’ valuable contributions to this project.

References

  1. 1.
    Emery AE, Muntoni F, Quinlivan RC (2015) Duchenne muscular dystrophy. Oxford University Press, OxfordCrossRefGoogle Scholar
  2. 2.
    Mah JK (2016) Current and emerging treatment strategies for Duchenne muscular dystrophy. Neuropsychiatr Dis Treat 12:1795–1807CrossRefGoogle Scholar
  3. 3.
    Faber RM, Hall JK, Chamberlain JS, Banks GB (2014) Myofiber branching rather than myofiber hyperplasia contributes to muscle hypertrophy in mdx mice. Skelet Muscle 4(1):10CrossRefGoogle Scholar
  4. 4.
    Taccardi B, Macchi E, Lux RL, Ershler PR, Spaggiari S, Baruffi S, Vyhmeister Y (1994) Effect of myocardial fiber direction on epicardial potentials. Circulation 90(6):3076–3090CrossRefGoogle Scholar
  5. 5.
    Streeter DD Jr, Spotnitz HM, Patel DP, Ross J Jr, Sonnenblick EH (1969) Fiber orientation in the canine left ventricle during diastole and systole. Circ Res 24(3):339–347CrossRefGoogle Scholar
  6. 6.
    Heusch G, Libby P, Gersh B, Yellon D, Böhm M, Lopaschuk G, Opie L (2014) Cardiovascular remodelling in coronary artery disease and heart failure. Lancet 383(9932):1933–1943CrossRefGoogle Scholar
  7. 7.
    Sosnovik D, Wang R, Dai G, Reese T, Wedeen V (2009) Diffusion MR tractography of the heart. J Cardiovasc Magn Reson 11:47CrossRefGoogle Scholar
  8. 8.
    Sosnovik DE, Mekkaoui C, Huang S, Chen HH, Dai G, Stoeck CT, Ngoy S, Guan J, Wang R, Kostis WJ, Jackowski MP, Wedeen VJ, Kozerke S, Liao R (2014) Microstructural impact of ischemia and bone marrow-derived cell therapy revealed with diffusion tensor magnetic resonance imaging tractography of the heart in vivo. Circulation 129(17):1731–1741CrossRefGoogle Scholar
  9. 9.
    Jiang Y, Pandya K, Smithies O, Hsu EW (2004) Three-dimensional diffusion tensor microscopy of fixed mouse hearts. Magn Reson Med 52(3):453–460CrossRefGoogle Scholar
  10. 10.
    Healy LJ, Jiang Y, Hsu EW (2011) Quantitative comparison of myocardial fiber structure between mice, rabbit, and sheep using diffusion tensor cardiovascular magnetic resonance. J Cardiovasc Magn Reson 13(1):74CrossRefGoogle Scholar
  11. 11.
    McGreevy JW, Hakim CH, McIntosh MA, Duan D (2015) Animal models of Duchenne muscular dystrophy: from basic mechanisms to gene therapy. Dis Model Mech 8(3):195–213CrossRefGoogle Scholar
  12. 12.
    Wang Y, Zhang K, Wasala NB, Yao X, Duan D, Yao G (2014) Histology validation of mapping depth-resolved cardiac fiber orientation in fresh mouse heart using optical polarization tractography. Biomed Opt Express 5(8):2843–2855CrossRefGoogle Scholar
  13. 13.
    Wang Y, Zhang K, Wasala NB, Duan D, Yao G (2015) Optical polarization tractography revealed significant fiber disarray in skeletal muscles of a mouse model for Duchenne muscular dystrophy. Biomed Opt Express 6(2):347–352CrossRefGoogle Scholar
  14. 14.
    Fan C, Yao G (2013) Imaging myocardial fiber orientation using polarization sensitive optical coherence tomography. Biomed Opt Express 4(3):460–465CrossRefGoogle Scholar
  15. 15.
    Wang Y, Yao G (2013) Optical tractography of the mouse heart using polarization-sensitive optical coherence tomography. Biomed Opt Express 4(11):2540–2545CrossRefGoogle Scholar
  16. 16.
    Wang Y, Zhang K, Duan D, Yao G (2017) Heart structural remodeling in a mouse model of Duchenne cardiomyopathy revealed using optical polarization tractography. Biomed Opt Express 8(3):1271–1276CrossRefGoogle Scholar
  17. 17.
    Azinfar L, Ravanfar M, Wang Y, Zhang K, Duan D, Yao G (2015) High resolution imaging of the fibrous microstructure in bovine common carotid artery using optical polarization tractography. J Biophotonics 10(2):231–241CrossRefGoogle Scholar
  18. 18.
    Yao X, Wang Y, Ravanfar M, Pfeiffer FM, Duan D, Yao G (2016) Nondestructive imaging of fiber structure in articular cartilage using optical polarization tractography. J Biomed Opt 21(11):116004CrossRefGoogle Scholar
  19. 19.
    Fan C, Yao G (2012) Full-range spectral domain Jones matrix optical coherence tomography using a single spectral camera. Opt Express 20(20):22360–22371CrossRefGoogle Scholar
  20. 20.
    Huang D, Swanson EA, Lin CP, Schuman JS, Stinson WG, Chang W, Hee MR, Flotte T, Gregory K, Puliafito CA (1991) Optical coherence tomography. Science 254(5035):1178CrossRefGoogle Scholar
  21. 21.
    Drexler W, Morgner U, Ghanta RK, Kärtner FX, Schuman JS, Fujimoto JG (2001) Ultrahigh-resolution ophthalmic optical coherence tomography. Nat Med 7(4):502–507CrossRefGoogle Scholar
  22. 22.
    Hee MR, Swanson EA, Fujimoto JG, Huang D (1992) Polarization-sensitive low-coherence reflectometer for birefringence characterization and ranging. JOSA B 9(6):903–908CrossRefGoogle Scholar
  23. 23.
    De Boer JF, Milner TE, van Gemert MJ, Nelson JS (1997) Two-dimensional birefringence imaging in biological tissue by polarization-sensitive optical coherence tomography. Opt Lett 22(12):934–936CrossRefGoogle Scholar
  24. 24.
    Makita S, Yamanari M, Yasuno Y (2010) Generalized Jones matrix optical coherence tomography: performance and local birefringence imaging. Opt Express 18(2):854–876CrossRefGoogle Scholar
  25. 25.
    Fan C, Yao G (2012) Mapping local retardance in birefringent samples using polarization sensitive optical coherence tomography. Opt Lett 37(9):1415–1417CrossRefGoogle Scholar
  26. 26.
    Fan C, Yao G (2012) Mapping local optical axis in birefringent samples using polarization-sensitive optical coherence tomography. J Biomed Opt 17(11):110501CrossRefGoogle Scholar
  27. 27.
    Fan C, Yao G (2010) Single camera spectral domain polarization-sensitive optical coherence tomography using offset B-scan modulation. Opt Express 18(7):7281–7287CrossRefGoogle Scholar
  28. 28.
    Fedorov A, Beichel R, Kalpathy-Cramer J, Finet J, Fillion-Robin J-C, Pujol S, Bauer C, Jennings D, Fennessy F, Sonka M (2012) 3D slicer as an image computing platform for the quantitative imaging network. Magn Reson Imaging 30(9):1323–1341CrossRefGoogle Scholar
  29. 29.
    Stuckey DJ, Carr CA, Camelliti P, Tyler DJ, Davies KE, Clarke K (2012) In vivo MRI characterization of progressive cardiac dysfunction in the mdx mouse model of muscular dystrophy. PLoS One 7(1):e28569CrossRefGoogle Scholar
  30. 30.
    Crisp A, Yin H, Goyenvalle A, Betts C, Moulton HM, Seow Y, Babbs A, Merritt T, Saleh AF, Gait MJ, Stuckey DJ, Clarke K, Davies KE, Wood MJ (2011) Diaphragm rescue alone prevents heart dysfunction in dystrophic mice. Hum Mol Genet 20(3):413–421CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of BioengineeringUniversity of MissouriColumbiaUSA

Personalised recommendations