Advertisement

Viral Vectors for Muscle Gene Therapy

  • Dan Wang
  • Alexander Brown
  • Guangping GaoEmail author
Chapter

Abstract

Muscle is a major target tissue for gene therapy, in part because various gene delivery vector platforms enable in vivo gene delivery to muscle tissues. Among them, recombinant adeno-associated virus (rAAV) stands out as one of the most safe and effective vectors for human applications. Many AAV strains isolated from nature collectively constituted the vector toolbox for muscle gene delivery during the field’s early development through animal studies. Caveats emerged as these vectors were carefully evaluated in clinical applications. As the research community has accumulated knowledge about basic AAV biology and the nature of human-specific hurdles to translational therapy, AAV capsid engineering has emerged as a powerful approach for modifying naturally occurring AAV to better address the challenges in human muscle gene therapy. In this chapter, we first introduce basic AAV biology that pertains to the vectorology of AAV for gene therapy. Next, we summarize how AAV vectors based on natural isolates contributed to the continuing success of human muscle gene therapy. Finally, we discuss the protein engineering approaches that have been applied to AAV capsid to develop better clinical vectors, namely, rational design and directed evolution.

Keywords

AAV Capsid engineering Gene therapy Muscle 

References

  1. 1.
    Wang D, Gao G (2014) State-of-the-art human gene therapy: part I. Gene delivery technologies. Discov Med 18(97):67–77PubMedPubMedCentralGoogle Scholar
  2. 2.
    Hardee CL, Arevalo-Soliz LM, Hornstein BD, Zechiedrich L (2017) Advances in non-viral DNA vectors for gene therapy. Genes (Basel) 8(2):e65.  https://doi.org/10.3390/genes8020065 CrossRefGoogle Scholar
  3. 3.
    Giacca M, Zacchigna S (2012) Virus-mediated gene delivery for human gene therapy. J Control Release 161(2):377–388.  https://doi.org/10.1016/j.jconrel.2012.04.008 CrossRefPubMedGoogle Scholar
  4. 4.
    Vannucci L, Lai M, Chiuppesi F, Ceccherini-Nelli L, Pistello M (2013) Viral vectors: a look back and ahead on gene transfer technology. New Microbiol 36(1):1–22PubMedGoogle Scholar
  5. 5.
    Kay MA (2011) State-of-the-art gene-based therapies: the road ahead. Nat Rev Genet 12(5):316–328.  https://doi.org/10.1038/nrg2971 CrossRefPubMedGoogle Scholar
  6. 6.
    Wang D, Zhong L, Nahid MA, Gao G (2014) The potential of adeno-associated viral vectors for gene delivery to muscle tissue. Expert Opin Drug Deliv 11(3):345–364.  https://doi.org/10.1517/17425247.2014.871258 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Muzyczka N, Berns K (2001) Parvoviridae: the viruses and their replication. In: Knipe D, Howley P, Griffin D et al (eds) Fields virology, vol 2. Lippincott, Williams and Wilkins, Philadelphia, pp 2327–2359Google Scholar
  8. 8.
    Paulk NK, Rumachik NG, Adams CM, Leib R, Stamners S, Holt KH, Sinn PL, Kotin RM, Bertozzi CR, Kay MA (2017) rAAV is extensively and differentially post-translationally modified in human versus insect cell line production methods. Mol Ther 25(Suppl 1):46Google Scholar
  9. 9.
    Drouin LM, Agbandje-McKenna M (2013) Adeno-associated virus structural biology as a tool in vector development. Future Virol 8(12):1183–1199.  https://doi.org/10.2217/fvl.13.112 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Agbandje-McKenna M, Kleinschmidt J (2011) AAV capsid structure and cell interactions. Methods Mol Biol 807:47–92.  https://doi.org/10.1007/978-1-61779-370-7_3 CrossRefPubMedGoogle Scholar
  11. 11.
    Sonntag F, Schmidt K, Kleinschmidt JA (2010) A viral assembly factor promotes AAV2 capsid formation in the nucleolus. Proc Natl Acad Sci U S A 107(22):10220–10225.  https://doi.org/10.1073/pnas.1001673107 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Gao G, Sena-Esteves M (2012) Introducing genes into mammalian cells: viral vectors. In: Green MR, Sambrook JR (eds) Molecular cloning, 4th edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 1209–1330Google Scholar
  13. 13.
    Naldini L (2011) Ex vivo gene transfer and correction for cell-based therapies. Nat Rev Genet 12(5):301–315.  https://doi.org/10.1038/nrg2985 CrossRefPubMedGoogle Scholar
  14. 14.
    Calcedo R, Vandenberghe LH, Gao G, Lin J, Wilson JM (2009) Worldwide epidemiology of neutralizing antibodies to adeno-associated viruses. J Infect Dis 199(3):381–390.  https://doi.org/10.1086/595830 CrossRefPubMedGoogle Scholar
  15. 15.
    Vance MA, Mitchell A, Samulski RJ (2015) AAV biology, infectivity and therapeutic use from bench to clinic. In: Gene therapy - principles and challenges. Intech, LondonGoogle Scholar
  16. 16.
    Buning H, Perabo L, Coutelle O, Quadt-Humme S, Hallek M (2008) Recent developments in adeno-associated virus vector technology. J Gene Med 10(7):717–733.  https://doi.org/10.1002/jgm.1205 CrossRefPubMedGoogle Scholar
  17. 17.
    Gao G, Vandenberghe LH, Alvira MR, Lu Y, Calcedo R, Zhou X, Wilson JM (2004) Clades of Adeno-associated viruses are widely disseminated in human tissues. J Virol 78(12):6381–6388.  https://doi.org/10.1128/JVI.78.12.6381-6388.2004 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Gao G, Zhong L, Danos O (2011) Exploiting natural diversity of AAV for the design of vectors with novel properties. Methods Mol Biol 807:93–118.  https://doi.org/10.1007/978-1-61779-370-7_4 CrossRefPubMedGoogle Scholar
  19. 19.
    Samulski RJ, Berns KI, Tan M, Muzyczka N (1982) Cloning of adeno-associated virus into pBR322: rescue of intact virus from the recombinant plasmid in human cells. Proc Natl Acad Sci U S A 79(6):2077–2081CrossRefGoogle Scholar
  20. 20.
    Samulski RJ, Srivastava A, Berns KI, Muzyczka N (1983) Rescue of adeno-associated virus from recombinant plasmids: gene correction within the terminal repeats of AAV. Cell 33(1):135–143CrossRefGoogle Scholar
  21. 21.
    Fisher KJ, Jooss K, Alston J, Yang Y, Haecker SE, High K, Pathak R, Raper SE, Wilson JM (1997) Recombinant adeno-associated virus for muscle directed gene therapy. Nat Med 3(3):306–312CrossRefGoogle Scholar
  22. 22.
    Louboutin JP, Wang L, Wilson JM (2005) Gene transfer into skeletal muscle using novel AAV serotypes. J Gene Med 7(4):442–451CrossRefGoogle Scholar
  23. 23.
    Riaz M, Raz Y, Moloney EB, van Putten M, Krom YD, van der Maarel SM, Verhaagen J, Raz V (2015) Differential myofiber-type transduction preference of adeno-associated virus serotypes 6 and 9. Skelet Muscle 5:37.  https://doi.org/10.1186/s13395-015-0064-4 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Greelish JP, Su LT, Lankford EB, Burkman JM, Chen H, Konig SK, Mercier IM, Desjardins PR, Mitchell MA, Zheng XG, Leferovich J, Gao GP, Balice-Gordon RJ, Wilson JM, Stedman HH (1999) Stable restoration of the sarcoglycan complex in dystrophic muscle perfused with histamine and a recombinant adeno-associated viral vector. Nat Med 5(4):439–443.  https://doi.org/10.1038/7439 CrossRefPubMedGoogle Scholar
  25. 25.
    Wang B, Li J, Xiao X (2000) Adeno-associated virus vector carrying human minidystrophin genes effectively ameliorates muscular dystrophy in mdx mouse model. Proc Natl Acad Sci U S A 97(25):13714–13719.  https://doi.org/10.1073/pnas.240335297 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Song S, Morgan M, Ellis T, Poirier A, Chesnut K, Wang J, Brantly M, Muzyczka N, Byrne BJ, Atkinson M, Flotte TR (1998) Sustained secretion of human alpha-1-antitrypsin from murine muscle transduced with adeno-associated virus vectors. Proc Natl Acad Sci U S A 95(24):14384–14388CrossRefGoogle Scholar
  27. 27.
    Manno CS, Chew AJ, Hutchison S, Larson PJ, Herzog RW, Arruda VR, Tai SJ, Ragni MV, Thompson A, Ozelo M, Couto LB, Leonard DG, Johnson FA, McClelland A, Scallan C, Skarsgard E, Flake AW, Kay MA, High KA, Glader B (2003) AAV-mediated factor IX gene transfer to skeletal muscle in patients with severe hemophilia B. Blood 101(8):2963–2972.  https://doi.org/10.1182/blood-2002-10-3296 CrossRefPubMedGoogle Scholar
  28. 28.
    Manno CS, Pierce GF, Arruda VR, Glader B, Ragni M, Rasko JJ, Ozelo MC, Hoots K, Blatt P, Konkle B, Dake M, Kaye R, Razavi M, Zajko A, Zehnder J, Rustagi PK, Nakai H, Chew A, Leonard D, Wright JF, Lessard RR, Sommer JM, Tigges M, Sabatino D, Luk A, Jiang H, Mingozzi F, Couto L, Ertl HC, High KA, Kay MA (2006) Successful transduction of liver in hemophilia by AAV-Factor IX and limitations imposed by the host immune response. Nat Med 12(3):342–347.  https://doi.org/10.1038/nm1358 CrossRefPubMedGoogle Scholar
  29. 29.
    Gao GP, Alvira MR, Wang L, Calcedo R, Johnston J, Wilson JM (2002) Novel adeno-associated viruses from rhesus monkeys as vectors for human gene therapy. Proc Natl Acad Sci U S A 99(18):11854–11859.  https://doi.org/10.1073/pnas.182412299 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Wang Z, Zhu T, Qiao C, Zhou L, Wang B, Zhang J, Chen C, Li J, Xiao X (2005) Adeno-associated virus serotype 8 efficiently delivers genes to muscle and heart. Nat Biotechnol 23(3):321–328.  https://doi.org/10.1038/nbt1073 CrossRefPubMedGoogle Scholar
  31. 31.
    Zincarelli C, Soltys S, Rengo G, Rabinowitz JE (2008) Analysis of AAV serotypes 1-9 mediated gene expression and tropism in mice after systemic injection. Mol Ther 16(6):1073–1080.  https://doi.org/10.1038/mt.2008.76 CrossRefPubMedGoogle Scholar
  32. 32.
    Yla-Herttuala S (2012) Endgame: glybera finally recommended for approval as the first gene therapy drug in the European union. Mol Ther 20(10):1831–1832.  https://doi.org/10.1038/mt.2012.194 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Mendell JR, Sahenk Z, Malik V, Gomez AM, Flanigan KM, Lowes LP, Alfano LN, Berry K, Meadows E, Lewis S, Braun L, Shontz K, Rouhana M, Clark KR, Rosales XQ, Al-Zaidy S, Govoni A, Rodino-Klapac LR, Hogan MJ, Kaspar BK (2015) A phase 1/2a follistatin gene therapy trial for becker muscular dystrophy. Mol Ther 23(1):192–201.  https://doi.org/10.1038/mt.2014.200 CrossRefPubMedGoogle Scholar
  34. 34.
    Bish LT, Morine K, Sleeper MM, Sanmiguel J, Wu D, Gao G, Wilson JM, Sweeney HL (2008) Adeno-associated virus (AAV) serotype 9 provides global cardiac gene transfer superior to AAV1, AAV6, AAV7, and AAV8 in the mouse and rat. Hum Gene Ther 19(12):1359–1368.  https://doi.org/10.1089/hum.2008.123 CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Schmidt M, Voutetakis A, Afione S, Zheng C, Mandikian D, Chiorini JA (2008) Adeno-associated virus type 12 (AAV12): a novel AAV serotype with sialic acid- and heparan sulfate proteoglycan-independent transduction activity. J Virol 82(3):1399–1406.  https://doi.org/10.1128/JVI.02012-07 CrossRefPubMedGoogle Scholar
  36. 36.
    Xu G, Luo L, Tai PW, Qin W, Xiao Y, Wang C, Su Q, Ma H, He R, Wei Y, Gao G (2016) High-throughput sequencing of AAV Proviral libraries from the human population reveals novel variants with unprecedented intra- and inter-tissue diversity. Mol Ther 24(Suppl 1):S4CrossRefGoogle Scholar
  37. 37.
    Asokan A, Schaffer DV, Samulski RJ (2012) The AAV vector toolkit: poised at the clinical crossroads. Mol Ther 20(4):699–708.  https://doi.org/10.1038/mt.2011.287 CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Yang Q, Mamounas M, Yu G, Kennedy S, Leaker B, Merson J, Wong-Staal F, Yu M, Barber JR (1998) Development of novel cell surface CD34-targeted recombinant adenoassociated virus vectors for gene therapy. Hum Gene Ther 9(13):1929–1937.  https://doi.org/10.1089/hum.1998.9.13-1929 CrossRefPubMedGoogle Scholar
  39. 39.
    Rabinowitz JE, Xiao W, Samulski RJ (1999) Insertional mutagenesis of AAV2 capsid and the production of recombinant virus. Virology 265(2):274–285.  https://doi.org/10.1006/viro.1999.0045 CrossRefPubMedGoogle Scholar
  40. 40.
    Wu P, Xiao W, Conlon T, Hughes J, Agbandje-McKenna M, Ferkol T, Flotte T, Muzyczka N (2000) Mutational analysis of the adeno-associated virus type 2 (AAV2) capsid gene and construction of AAV2 vectors with altered tropism. J Virol 74(18):8635–8647CrossRefGoogle Scholar
  41. 41.
    Munch RC, Janicki H, Volker I, Rasbach A, Hallek M, Buning H, Buchholz CJ (2013) Displaying high-affinity ligands on adeno-associated viral vectors enables tumor cell-specific and safe gene transfer. Mol Ther 21(1):109–118.  https://doi.org/10.1038/mt.2012.186 CrossRefPubMedGoogle Scholar
  42. 42.
    Buchholz CJ, Friedel T, Buning H (2015) Surface-engineered viral vectors for selective and cell type-specific gene delivery. Trends Biotechnol 33(12):777–790.  https://doi.org/10.1016/j.tibtech.2015.09.008 CrossRefPubMedGoogle Scholar
  43. 43.
    Yu CY, Yuan Z, Cao Z, Wang B, Qiao C, Li J, Xiao X (2009) A muscle-targeting peptide displayed on AAV2 improves muscle tropism on systemic delivery. Gene Ther 16(8):953–962.  https://doi.org/10.1038/gt.2009.59 CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Ying Y, Muller OJ, Goehringer C, Leuchs B, Trepel M, Katus HA, Kleinschmidt JA (2010) Heart-targeted adeno-associated viral vectors selected by in vivo biopanning of a random viral display peptide library. Gene Ther 17(8):980–990.  https://doi.org/10.1038/gt.2010.44 CrossRefPubMedGoogle Scholar
  45. 45.
    Boucas J, Lux K, Huber A, Schievenbusch S, von Freyend MJ, Perabo L, Quadt-Humme S, Odenthal M, Hallek M, Buning H (2009) Engineering adeno-associated virus serotype 2-based targeting vectors using a new insertion site-position 453-and single point mutations. J Gene Med 11(12):1103–1113.  https://doi.org/10.1002/jgm.1392 CrossRefPubMedGoogle Scholar
  46. 46.
    Lux K, Goerlitz N, Schlemminger S, Perabo L, Goldnau D, Endell J, Leike K, Kofler DM, Finke S, Hallek M, Buning H (2005) Green fluorescent protein-tagged adeno-associated virus particles allow the study of cytosolic and nuclear trafficking. J Virol 79(18):11776–11787.  https://doi.org/10.1128/JVI.79.18.11776-11787.2005 CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Asokan A, Johnson JS, Li C, Samulski RJ (2008) Bioluminescent virion shells: new tools for quantitation of AAV vector dynamics in cells and live animals. Gene Ther 15(24):1618–1622.  https://doi.org/10.1038/gt.2008.127 CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Judd J, Wei F, Nguyen PQ, Tartaglia LJ, Agbandje-McKenna M, Silberg JJ, Suh J (2012) Random insertion of mCherry into VP3 domain of adeno-associated virus yields fluorescent capsids with no loss of infectivity. Mol Ther Nucleic Acids 1:e54.  https://doi.org/10.1038/mtna.2012.46 CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Muik A, Reul J, Friedel T, Muth A, Hartmann KP, Schneider IC, Munch RC, Buchholz CJ (2017) Covalent coupling of high-affinity ligands to the surface of viral vector particles by protein trans-splicing mediates cell type-specific gene transfer. Biomaterials 144:84–94.  https://doi.org/10.1016/j.biomaterials.2017.07.032 CrossRefPubMedGoogle Scholar
  50. 50.
    Zhang C, Yao T, Zheng Y, Li Z, Zhang Q, Zhang L, Zhou D (2016) Development of next generation adeno-associated viral vectors capable of selective tropism and efficient gene delivery. Biomaterials 80:134–145.  https://doi.org/10.1016/j.biomaterials.2015.11.066 CrossRefPubMedGoogle Scholar
  51. 51.
    Katrekar D, Moreno AM, Mali P (2017) Facile capsid pseudotyping via unnatural amino acid (UAA) based site-specific modification of AAV2 and AAV-DJ capsids and engineering of AAVs. Mol Ther 25(Suppl 1):336Google Scholar
  52. 52.
    Xie Q, Bu W, Bhatia S, Hare J, Somasundaram T, Azzi A, Chapman MS (2002) The atomic structure of adeno-associated virus (AAV-2), a vector for human gene therapy. Proc Natl Acad Sci U S A 99(16):10405–10410.  https://doi.org/10.1073/pnas.162250899 CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Walters RW, Agbandje-McKenna M, Bowman VD, Moninger TO, Olson NH, Seiler M, Chiorini JA, Baker TS, Zabner J (2004) Structure of adeno-associated virus serotype 5. J Virol 78(7):3361–3371CrossRefGoogle Scholar
  54. 54.
    Padron E, Bowman V, Kaludov N, Govindasamy L, Levy H, Nick P, McKenna R, Muzyczka N, Chiorini JA, Baker TS, Agbandje-McKenna M (2005) Structure of adeno-associated virus type 4. J Virol 79(8):5047–5058.  https://doi.org/10.1128/JVI.79.8.5047-5058.2005 CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Nam HJ, Lane MD, Padron E, Gurda B, McKenna R, Kohlbrenner E, Aslanidi G, Byrne B, Muzyczka N, Zolotukhin S, Agbandje-McKenna M (2007) Structure of adeno-associated virus serotype 8, a gene therapy vector. J Virol 81(22):12260–12271CrossRefGoogle Scholar
  56. 56.
    DiMattia MA, Nam HJ, Van Vliet K, Mitchell M, Bennett A, Gurda BL, McKenna R, Olson NH, Sinkovits RS, Potter M, Byrne BJ, Aslanidi G, Zolotukhin S, Muzyczka N, Baker TS, Agbandje-McKenna M (2012) Structural insight into the unique properties of adeno-associated virus serotype 9. J Virol 86(12):6947–6958.  https://doi.org/10.1128/JVI.07232-11 CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Asokan A, Conway JC, Phillips JL, Li C, Hegge J, Sinnott R, Yadav S, DiPrimio N, Nam HJ, Agbandje-McKenna M, McPhee S, Wolff J, Samulski RJ (2010) Reengineering a receptor footprint of adeno-associated virus enables selective and systemic gene transfer to muscle. Nat Biotechnol 28(1):79–82.  https://doi.org/10.1038/nbt.1599 CrossRefPubMedGoogle Scholar
  58. 58.
    Tarantal AF, Lee CCI, Martinez ML, Asokan A, Samulski RJ (2017) Systemic and persistent muscle gene expression in rhesus monkeys with a liver de-targeted adeno-associated virus vector. Hum Gene Ther 28(5):385–391.  https://doi.org/10.1089/hum.2016.130 CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Bowles DE, McPhee SW, Li C, Gray SJ, Samulski JJ, Camp AS, Li J, Wang B, Monahan PE, Rabinowitz JE, Grieger JC, Govindasamy L, Agbandje-McKenna M, Xiao X, Samulski RJ (2012) Phase 1 gene therapy for Duchenne muscular dystrophy using a translational optimized AAV vector. Mol Ther 20(2):443–455.  https://doi.org/10.1038/mt.2011.237 CrossRefPubMedGoogle Scholar
  60. 60.
    Zhong L, Li B, Mah CS, Govindasamy L, Agbandje-McKenna M, Cooper M, Herzog RW, Zolotukhin I, Warrington KH Jr, Weigel-Van Aken KA, Hobbs JA, Zolotukhin S, Muzyczka N, Srivastava A (2008) Next generation of adeno-associated virus 2 vectors: point mutations in tyrosines lead to high-efficiency transduction at lower doses. Proc Natl Acad Sci U S A 105(22):7827–7832.  https://doi.org/10.1073/pnas.0802866105 CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Hakim CH, Yue Y, Shin JH, Williams RR, Zhang K, Smith BF, Duan D (2014) Systemic gene transfer reveals distinctive muscle transduction profile of tyrosine mutant AAV-1, −6, and −9 in neonatal dogs. Mol Ther Methods Clin Dev 1:14002.  https://doi.org/10.1038/mtm.2014.2 CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Zinn E, Pacouret S, Khaychuk V, Turunen HT, Carvalho LS, Andres-Mateos E, Shah S, Shelke R, Maurer AC, Plovie E, Xiao R, Vandenberghe LH (2015) In silico reconstruction of the viral evolutionary lineage yields a potent gene therapy vector. Cell Rep 12(6):1056–1068.  https://doi.org/10.1016/j.celrep.2015.07.019 CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Landegger LD, Pan B, Askew C, Wassmer SJ, Gluck SD, Galvin A, Taylor R, Forge A, Stankovic KM, Holt JR, Vandenberghe LH (2017) A synthetic AAV vector enables safe and efficient gene transfer to the mammalian inner ear. Nat Biotechnol 35(3):280–284.  https://doi.org/10.1038/nbt.3781 CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Nance ME, Duan D (2015) Perspective on adeno-associated virus capsid modification for Duchenne muscular dystrophy gene therapy. Hum Gene Ther 26(12):786–800.  https://doi.org/10.1089/hum.2015.107 CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Bartel MA, Weinstein JR, Schaffer DV (2012) Directed evolution of novel adeno-associated viruses for therapeutic gene delivery. Gene Ther 19(6):694–700.  https://doi.org/10.1038/gt.2012.20 CrossRefPubMedGoogle Scholar
  66. 66.
    Santiago-Ortiz J, Ojala DS, Westesson O, Weinstein JR, Wong SY, Steinsapir A, Kumar S, Holmes I, Schaffer DV (2015) AAV ancestral reconstruction library enables selection of broadly infectious viral variants. Gene Ther 22(12):934–946.  https://doi.org/10.1038/gt.2015.74 CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Yang L, Li J, Xiao X (2011) Directed evolution of adeno-associated virus (AAV) as vector for muscle gene therapy. Methods Mol Biol 709:127–139.  https://doi.org/10.1007/978-1-61737-982-6_8 CrossRefPubMedGoogle Scholar
  68. 68.
    Choudhury SR, Fitzpatrick Z, Harris AF, Maitland SA, Ferreira JS, Zhang Y, Ma S, Sharma RB, Gray-Edwards HL, Johnson JA, Johnson AK, Alonso LC, Punzo C, Wagner KR, Maguire CA, Kotin RM, Martin DR, Sena-Esteves M (2016) In vivo selection yields AAV-B1 capsid for central nervous system and muscle gene therapy. Mol Ther 24(7):1247–1257.  https://doi.org/10.1038/mt.2016.84 CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Lisowski L, Dane AP, Chu K, Zhang Y, Cunningham SC, Wilson EM, Nygaard S, Grompe M, Alexander IE, Kay MA (2014) Selection and evaluation of clinically relevant AAV variants in a xenograft liver model. Nature 506(7488):382–386.  https://doi.org/10.1038/nature12875 CrossRefPubMedGoogle Scholar
  70. 70.
    Paulk NK, Pekrum K, Charville G, Maguire-Nguyen K, Xu J, Wosczyna M, Lisowski L, Lee G, Shrager J, Rando T, Kay MA (2017) Evolved AAV capsids for intramuscular passive vaccine administration to human skeletal muscle. Mol Ther 25(Suppl 1):96Google Scholar
  71. 71.
    Zhang Y, King OD, Rahimov F, Jones TI, Ward CW, Kerr JP, Liu N, Emerson CP Jr, Kunkel LM, Partridge TA, Wagner KR (2014) Human skeletal muscle xenograft as a new preclinical model for muscle disorders. Hum Mol Genet 23(12):3180–3188.  https://doi.org/10.1093/hmg/ddu028 CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Koerber JT, Jang JH, Schaffer DV (2008) DNA shuffling of adeno-associated virus yields functionally diverse viral progeny. Mol Ther 16(10):1703–1709.  https://doi.org/10.1038/mt.2008.167 CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Maheshri N, Koerber JT, Kaspar BK, Schaffer DV (2006) Directed evolution of adeno-associated virus yields enhanced gene delivery vectors. Nat Biotechnol 24(2):198–204.  https://doi.org/10.1038/nbt1182 CrossRefPubMedGoogle Scholar
  74. 74.
    Grimm D, Lee JS, Wang L, Desai T, Akache B, Storm TA, Kay MA (2008) In vitro and in vivo gene therapy vector evolution via multispecies interbreeding and retargeting of adeno-associated viruses. J Virol 82(12):5887–5911.  https://doi.org/10.1128/JVI.00254-08 CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Li C, Wu S, Albright B, Hirsch M, Li W, Tseng YS, Agbandje-McKenna M, McPhee S, Asokan A, Samulski RJ (2016) Development of patient-specific AAV vectors after neutralizing antibody selection for enhanced muscle gene transfer. Mol Ther 24(1):53–65.  https://doi.org/10.1038/mt.2015.134 CrossRefPubMedGoogle Scholar
  76. 76.
    Pulicherla N, Shen S, Yadav S, Debbink K, Govindasamy L, Agbandje-McKenna M, Asokan A (2011) Engineering liver-detargeted AAV9 vectors for cardiac and musculoskeletal gene transfer. Mol Ther 19(6):1070–1078.  https://doi.org/10.1038/mt.2011.22 CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Tse LV, Klinc KA, Madigan VJ, Castellanos Rivera RM, Wells LF, Havlik LP, Smith JK, Agbandje-McKenna M, Asokan A (2017) Structure-guided evolution of antigenically distinct adeno-associated virus variants for immune evasion. Proc Natl Acad Sci U S A 114(24):E4812–E4821.  https://doi.org/10.1073/pnas.1704766114 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Horae Gene Therapy CenterUniversity of Massachusetts Medical SchoolWorcesterUSA
  2. 2.Department of Microbiology and Physiological SystemsUniversity of Massachusetts Medical SchoolWorcesterUSA

Personalised recommendations