Brucella: Potential Biothreat Agent

  • Mehmet DoganayEmail author
  • Gizem Dinler-Doganay
  • Aysegul Ulu-Kilic
  • Rebecca J. Ingram


Brucellosis is an ancient disease caused by brucellae, which are small, facultative, intracellular, gram-negative coccobacilli. Ten species of Brucella have been identified as the causative agents of brucellosis in mammalian hosts. Natural infections with Brucellae occur globally among humans and animals, resulting in significant economic losses. Research in recent years has focused on appropriate methods for environmental sampling, early detection techniques, decontamination procedures, and the development of new therapeutics and vaccines. Despite this research focus, there is still no human vaccine available. This is of particular concern as Brucellae are highly infectious via the aerosol route; therefore, they have the potential to be misused as agents of biological warfare. The global biological terrorist risk is increasing yearly due to a number of factors including increased migration, escalating numbers of displaced people, the speed and scale of global travel, and technological advances which have enhanced our ability to manipulate pathogens. Presented are a review of the recent developments in brucellosis research and an evaluation of the risks associated with the use of brucellae in deliberate biological attacks.


Brucella Brucellosis Biothreat agent Bioterrorism Diagnosis Decontamination Prevention 


  1. 1.
    Corbel MJ, Alton GG, Ariza J et al. Brucellosis in humans and animals. World Health Organization, Geneva; 2006.Google Scholar
  2. 2.
    Pappas G, Papadimitriou P, Akritidis N, et al. The new global map of human brucellosis. Lancet Infect Dis. 2006;6:91–9.CrossRefPubMedGoogle Scholar
  3. 3.
    Cirincione J, Wolfsthal JB, Rajkumar M. Deadly Arsenal: nuclear, biological and chemical threat. 2nd ed. Washington: Carnegie Endowment for International Peace; 2005.Google Scholar
  4. 4.
    Pappas G, Panagopoulou P, Christou L, Akritidis N. Brucella as a biological weapon. Cell Mol Life Sci. 2006;63:2229–36.CrossRefPubMedGoogle Scholar
  5. 5.
    Robinson JPP, Cosivi O, Davey BJ, et al. Public health response to biological and chemical weapons; WHO guidance. Geneva: World Health Organization; 2004.Google Scholar
  6. 6.
    Doganay M, Demiraslan H. Refugees of the Syrian Civil War: impact on reemerging infections, health services, and biosecurity in Turkey. Health Secur. 2016;14:220–5.CrossRefPubMedGoogle Scholar
  7. 7.
    Rosman Y, Eisenkraft A, Milk N, et al. Lessons learned from the Syrian sarin attack: evaluation of a clinical syndrome through social media. Ann Intern Med. 2014;160:644–8.CrossRefPubMedGoogle Scholar
  8. 8.
    Bossi P, Tegnell A, Baka A, et al. Bichat guidelines for the clinical management of brucellosis and bioterrorism-related brucellosis. Euro Surveill. 2004;9(12):1–5.CrossRefGoogle Scholar
  9. 9.
    Dinler-Doganay G, Doganay M. Brucella as a potential agent of bioterrorism. Recent Pat Antiinfect Drug Discov. 2013;8:27–33.CrossRefGoogle Scholar
  10. 10.
    Gyles C. Agroterrorism. Can Vet J. 2010;51:347–8.PubMedPubMedCentralGoogle Scholar
  11. 11.
    Araj GE. Brucella. In: Jorgensen JH, Pfaller MA, Carroll KC, et al., editors. Manual of clinical microbiology. 11th ed. Washington, DC: ASM Press; 2015. p. 863–72.CrossRefGoogle Scholar
  12. 12.
    Atluri VL, Xavier MN, Maarten FJ, et al. Interactions of the human pathogenic Brucella species with their hosts. Annu Rev Microbiol. 2011;65:523–41.CrossRefPubMedGoogle Scholar
  13. 13.
    Falenski A, Mayer-Scholl A, Filter M, et al. Survival of Brucella spp. in mineral water, milk and yogurt. Int J Food Microbiol. 2011;145:326–30.CrossRefPubMedGoogle Scholar
  14. 14.
    Godfroid J, Scholz HC, Barbier T, et al. Brucellosis at the animal/ecosystem/human interface at the beginning of 21st century. Prev Vet Med. 2011;102:118–31.CrossRefPubMedGoogle Scholar
  15. 15.
    Bosilkovski M. Microbiology, epidemiology, and pathogenesis of Brucella, 2017. Accessed September 13, 2017.
  16. 16.
    Doganay M, Aygen B. Human brucellosis: an overview. Int J Infect Dis. 2003;7:173–82.CrossRefGoogle Scholar
  17. 17.
    Morse AM. Historical perspective of microbial bioterrorism. In: Anderson B, Friedman H, Bendinelli M, editors. Microorganism and bioterrorism. Florida: Springer; 2006. p. 15–29.CrossRefGoogle Scholar
  18. 18.
    Christopher GW, Cieslak TJ, Pavlin JA, et al. Biological warfare: A historical perspective. JAMA. 1997;278(5):412–7.CrossRefPubMedGoogle Scholar
  19. 19.
    Kaufmann AF, Meltzer MI, Schmid GP. The economic impact of a bioterrorist attack: are prevention and postattack intervention programs justifiable? Emerg Infect Dis. 1997;3:83–94.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Dalziel GR. Food defence incidents 1950–2008: a chronology and analysis of incidents involving the malicious contamination of the food supply chain. Singapore: Nanyang Technological University; 2009.Google Scholar
  21. 21.
    Agriculture related CBW activity. Chronology of chemical and biological incidents targeting the food industry 1946–2006. Accessed January 2012.
  22. 22.
    Seleem MN, Boyle SM, Sriranganathan N. Brucellosis: a re-emerging zoonoses. Vet Microbiol. 2010;140:392–8.CrossRefPubMedGoogle Scholar
  23. 23.
    Noviella S, Gallo R, Kelly M, et al. Laboratory-acquired brucellosis. Emerg Infect Dis. 2004;10:1848–50.CrossRefGoogle Scholar
  24. 24.
    Yagupsky P, Peled N, Riesenberg K, Banai M. Exposure of hospital personnel to Brucella melitensis and occurrence of laboratory-acquired disease in an endemic area. Scand J Infect Dis. 2000;32:31–5.CrossRefPubMedGoogle Scholar
  25. 25.
    Doganay M, Aygen B, Esel D, et al. Brucellosis due to blood transfusion. J Hosp Infect. 2001;49:151–2.CrossRefPubMedGoogle Scholar
  26. 26.
    Kato Y, Masuda G, Itoda I, et al. Brucellosis in a returned traveler and his wife: probable person-to-person transmission of Brucella melitensis. J Travel Med. 2007;14:343–5.CrossRefPubMedGoogle Scholar
  27. 27.
    Franco MP, Mulder M, Gilman RH, Smits HL. Human brucellosis. Lancet Infect Dis. 2007;7(12):775–86.CrossRefPubMedGoogle Scholar
  28. 28.
    Andriopoulos P, Tsironi M, Deftereos S, et al. Acute brucellosis: presentation, diagnosis, and treatment of 144 cases. Int J Infect Dis. 2007;11:52–7.CrossRefPubMedGoogle Scholar
  29. 29.
    Aygen B, Doganay M, Sumerkan B, et al. Clinical manifestations, complications and treatment of brucellosis: a retrospective evaluation of 480 patients. Med Mal Infect. 2002;32:485–93.CrossRefGoogle Scholar
  30. 30.
    Bosilkovski M, Krteva L, Dimzova M, et al. Human brucellosis in Macedonia – 10 years of clinical experience in endemic region. Croat Med J. 2010;51(4):327–36.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Buzgan T, Karahocagil MK, Irmak H, et al. Clinical manifestations and complications in 1028 cases of brucellosis: a retrospective evaluation and review of the literature. Int J Infect Dis. 2010;14(6):e469–78.CrossRefPubMedGoogle Scholar
  32. 32.
    Demiroglu YZ, Turunc T, Aliskan H, et al. Brucellosis: retrospective evaluation of the clinical, laboratory and epidemiological features of 151 cases. Mikrobiyol Bul. 2007;41:517–27.PubMedGoogle Scholar
  33. 33.
    Memish Z, Mah MW, Al Mahmoud S, et al. Brucella bacteraemia: clinical and laboratory observations in 160 patients. J Infect. 2000;40:59–63.CrossRefPubMedGoogle Scholar
  34. 34.
    Pourbagher MA, Pourbagher A, Savas L, et al. Clinical pattern and abdominal sonographic findings in 251 cases of brucellosis in southern Turkey. AJR Am J Roentgenol. 2006;187:W191–4.CrossRefPubMedGoogle Scholar
  35. 35.
    Tasbakan MI, Yamazhan T, Gökengin D, et al. Brucellosis: a retrospective evaluation. Trop Dr. 2003;33:151–3.Google Scholar
  36. 36.
    Solera J. Update on brucellosis: therapeutic challenges. Int J Antimicrob Agents. 2010;36(Suppl 1):S18–20.CrossRefPubMedGoogle Scholar
  37. 37.
    Ariza J, Corredoira J, Pallares R, et al. Characteristics of and risk factors for relapse of brucellosis in humans. Clin Infect Dis. 1995;20(5):1241–9.CrossRefPubMedGoogle Scholar
  38. 38.
    Maves RC, Castillo R, Guillen A, et al. Antimicrobial susceptibility of Brucella melitensis isolates in Peru. Antimicrob Agents Chemother. 2011;55(3):1279–81.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Herrick JA, Lederman RJ, Sullivan B, et al. Brucella arteritis: clinical manifestations, treatment, and prognosis. Lancet Infect Dis. 2014;14(6):520–6.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Dean AS, Crump L, Greter H, et al. Clinical manifestations of human brucellosis: a systematic review and meta-analysis. PLoS Negl Trop Dis. 2012;6(12):e1929.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Ulu-Kilic A, Sayar MS, Tütüncü E, et al. Complicated brucellar spondylodiscitis: experience from an endemic area. Rheumatol Int. 2013;33(11):2909–12.CrossRefPubMedGoogle Scholar
  42. 42.
    Araj GF. Update on laboratory diagnosis of human brucellosis. Int J Antimicrob Agents. 2010;36(Suppl 1):S12–7.CrossRefPubMedGoogle Scholar
  43. 43.
    La Spada E, Micalizzi A, La Spada M, et al. Abnormal liver function in brucellosis. Infez Med. 2008;16(3):148–53.PubMedGoogle Scholar
  44. 44.
    Bourantas LK, Pappas G, Kapsali E, et al. Brucellosis-induced autoimmune hemolytic anemia treated with rituximab. Ann Pharmacother. 2010;44(10):1677–80.CrossRefPubMedGoogle Scholar
  45. 45.
    Kaygusuz TO, Kaygusuz I, Kilic SS, et al. Investigation of hearing loss in patients with acute brucellosis by standard and high-frequency audiometry. Clin Microbiol Infect. 2005;11(7):559–63.CrossRefPubMedGoogle Scholar
  46. 46.
    Karaali Z, Baysal B, Poturoglu S, Kendir M. Cutaneous manifestations in brucellosis. Indian J Dermatol. 2011;56(3):339–40.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Sasmazel A, Baysal A, Fedakar A, et al. Treatment of Brucella endocarditis: 15 years of clinical and surgical experience. Ann Thorac Surg. 2010;89(5):1432–6.CrossRefPubMedGoogle Scholar
  48. 48.
    Sagi M, Nesher L, Yagupsky P. The Bactec FX blood culture system detects Brucella melitensis bacteremia in adult patients within the routine 1-week incubation period. J Clin Microbiol. 2017;55(3):942–6.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Mohamed Zahidi J, Bee Yong T, Hashim R, et al. Identification of Brucella spp. isolated from human brucellosis in Malaysia using high-resolution melt (HRM) analysis. Diagn Microbiol Infect Dis. 2015;81(4):227–33.CrossRefPubMedGoogle Scholar
  50. 50.
    Al Dahouk S, Nöckler K. Implications of laboratory diagnosis on brucellosis therapy. Expert Rev Anti-Infect Ther. 2011;9(7):833–45.CrossRefPubMedGoogle Scholar
  51. 51.
    Osoba AO, Balkhy H, Memish Z, et al. Diagnostic value of Brucella ELISA IgG and IgM in bacteremic and non-bacteremic patients with brucellosis. J Chemother. 2001;13(Suppl 1):54–9.CrossRefPubMedGoogle Scholar
  52. 52.
    Mantur B, Parande A, Amarnath S, et al. ELISA versus conventional methods of diagnosing endemic brucellosis. Am J Trop Med Hyg. 2010;83(2):314–8.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Memish ZA, Almuneef M, Mah MW, et al. Comparison of the Brucella standard agglutination test with the ELISA IgG and IgM in patients with Brucella bacteremia. Diagn Microbiol Infect Dis. 2002;44(2):129–32.CrossRefPubMedGoogle Scholar
  54. 54.
    Gómez MC, Nieto JA, Rosa C, et al. Evaluation of seven tests for diagnosis of human brucellosis in an area where the disease is endemic. Clin Vaccine Immunol. 2008;15(6):1031–3.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Orduña A, Almaraz A, Prado A, Gutierrez MP, et al. Evaluation of an immunocapture-agglutination test (Brucellacapt) for serodiagnosis of human brucellosis. J Clin Microbiol. 2000;38(11):4000–5.PubMedPubMedCentralGoogle Scholar
  56. 56.
    Yu WL, Nielsen K. Review of detection of Brucella spp. by polymerase chain reaction. Croat Med J. 2010;51:306–13.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Solís García del Pozo J, Solera J. Systematic review and meta-analysis of randomized clinical trials in the treatment of human brucellosis. PLoS One. 2012;7(2):e32090.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Alavi SM, Alavi L. Treatment of brucellosis: a systematic review of studies in recent twenty years. Caspian J Intern Med. 2013;4(2):636–41.PubMedPubMedCentralGoogle Scholar
  59. 59.
    Keles C, Bozbuga N, Sismanoglu M, et al. Surgical treatment of Brucella endocarditis. Ann Thorac Surg. 2001;71(4):1160–3.CrossRefPubMedGoogle Scholar
  60. 60.
    Ulu-Kilic A, Karakas A, Erdem H, et al. Update on treatment options for spinal brucellosis. Clin Microbiol Infect. 2014;20(2):O75–82.CrossRefPubMedGoogle Scholar
  61. 61.
    Erdem H, Ulu-Kilic A, Kilic S, et al. Efficacy and tolerability of antibiotic combinations in neurobrucellosis: results of the Istanbul study. Antimicrob Agents Chemother. 2012;56(3):1523–8. Scholar
  62. 62.
    Tanyel E, Coban AY, Koruk ST, et al. Actual antibiotic resistance pattern of Brucella melitensis in central Anatolia. An update from an endemic region. Saudi Med J. 2007;28(8):1239–42.PubMedGoogle Scholar
  63. 63.
    Cannons A, Amuso P, Anderson B. Biotechnology and the public health response to bioterrorism. In: Anderson B, Friedman H, Bendinelli M, editors. Microorganisms and bioterrorism. Infectious agents and pathogenesis. Boston, MA: Springer; 2006.Google Scholar
  64. 64.
    Jernigan DB, Raghunathan PL, Bell BP, the National Anthrax Epidemiologic Investigation Team, et al. Investigation of Bioterrorism-Related Anthrax, United States, 2001: epidemiologic findings. Emerg Infect Dis. 2002;8(10):1019–28.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Refai M. Application of biotechnology in the diagnosis and control of brucellosis in the Near East Region. World J Microbiol Biotechnol. 2003;19:443–9.CrossRefGoogle Scholar
  66. 66.
    Hinic V, Brodard I, Thomann A, et al. Novel identification and differentiation of Brucella melitensis, B. abortus, B. suis, B. ovis, B. canis and N. neotomae suitable for both conventional and real-time PCR systems. J Microbiol Methods. 2008;75:375–8.CrossRefPubMedGoogle Scholar
  67. 67.
    Vizcaino N, Cloeckaert A, Verger J, et al. DNA polymorphism in the genus Brucella. Microbes Infect. 2000;2:1089–100.CrossRefPubMedGoogle Scholar
  68. 68.
    Rahi A, Sattarahmady N, Heli H. An ultrasensitive electrochemical genosensor for Brucella based on palladium nanoparticles. Anal Biochem. 2016;510:11–7.CrossRefPubMedGoogle Scholar
  69. 69.
    Sattarahmady N, Tondro GH, Gholchin M, Heli H. Gold nanoparticles biosensor of Brucella spp. genomic DNA: visual and spectrophotometric detections. Biochem Eng J. 2015;97:1–7.CrossRefGoogle Scholar
  70. 70.
    Sikarwar B, Singh VV, Sharma PK, et al. DNA-probe-target interaction based detection of Brucella melitensis by using surface plasmon resonance. Biosens Bioelectron. 2017;87:964–9. Scholar
  71. 71.
    Abbady AQ, Al-Mariri A, Zarkawi M. Expression and purification of Brucella-specific nanobodies. Iran J Biotechnol. 2013;11(2):80–8.CrossRefGoogle Scholar
  72. 72.
    Yagupsky P, Baron EJ. laboratory exposure to Brucellae and implications for bioterrorism. Emerg Infect Dis. 2005;11:1180–5.CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Perkins SD, Smither SJ, Atkins HS. Towards a Brucella vaccine for humans. FEMS Microbiol. 2010;34:379–94.CrossRefGoogle Scholar
  74. 74.
    Avila-Calderon ED, Lopez-Merino A, Sriranganathan N, et al. A history of the development of Brucella vaccines. Biomed Res Int. 2013;2013:743509. Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Mehmet Doganay
    • 1
    Email author
  • Gizem Dinler-Doganay
    • 2
  • Aysegul Ulu-Kilic
    • 1
  • Rebecca J. Ingram
    • 3
  1. 1.Department of Infectious Diseases, Faculty of MedicineErciyes UniversityKayseriTurkey
  2. 2.Department of Molecular Biology and GeneticsIstanbul Technical UniversityIstanbulTurkey
  3. 3.Wellcome Wolfston Institute of Experimental Medicine, Queens UniversityBelfastUK

Personalised recommendations