Challenges Associated with Bacillus anthracis as a Bio-threat Agent

  • Haim LevyEmail author
  • Itai Glinert
  • Assa Sittner
  • Amir Ben-Shmuel
  • Elad Bar-David
  • David Kobiler
  • Shay Weiss


In nature, Anthrax is a zoonotic disease caused by the gram-positive spore-forming bacterium Bacillus anthracis usually infecting grazing animals. Taking advantage of their stability and ability to survive harsh conditions for decades, this deadly bacterium was stockpiled during the twentieth century as a bio-weapon by the great nations. The 1972 convention that prohibited the development, production and stockpiling of bio-weapons reduced these nation-level productions but increased the probability that knowhow, and in some cases weapon grade spores, will become available for use by terror groups, thus creating a new threat—bio-terror. In modern history there were two documented bio-terror events as well as one accidental discharge from an army facility and other industrial exposures that resulted in human exposure to B. anthracis spores. These incidents demonstrate the power of B. anthracis spores as a bio-terror agent and the challenges that are associated with such release/use. In this chapter, we will use the published data regarding these events together with experimental data obtained from animal experiments, to discuss the challenges associated with the use of B. anthracis spores as a bio-terror agent and the ways to counteract them. We will go through the different challenges of patient diagnosis and treatment, discuss the challenges of monitoring the environment and decontamination. In addition we will describe the available forensic tools and discuss the challenges of identifying spore production prior to dissemination.


Anthrax Bacillus anthracis Spores Treatment Decontamination Diagnosis 



The opinions, conclusions, and recommendations expressed or implied within are solely those of the authors and do not necessarily represent the views of the Israel Institute for Biological research, or any other Israeli Government agency.


  1. 1.
    Hanna P. Anthrax pathogenesis and host response. Curr Top Microbiol Immunol. 1998;225:13–35.PubMedGoogle Scholar
  2. 2.
    Dixon TC, et al. Anthrax. N Engl J Med. 1999;341(11):815–26.CrossRefPubMedGoogle Scholar
  3. 3.
    Sitali DC, et al. Awareness and attitudes towards anthrax and meat consumption practices among affected communities in Zambia: a mixed methods approach. PLoS Negl Trop Dis. 2017;11(5):e0005580.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Sirisanthana T, Brown AE. Anthrax of the gastrointestinal tract. Emerg Infect Dis. 2002;8(7):649–51.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Owen JL, Yang T, Mohamadzadeh M. New insights into gastrointestinal anthrax infection. Trends Mol Med. 2015;21(3):154–63.CrossRefPubMedGoogle Scholar
  6. 6.
    Brachman PC. Inhalation anthrax. Ann N Y Acad Sci. 1980;353:11.CrossRefGoogle Scholar
  7. 7.
    Spencer RC. Bacillus anthracis. J Clin Pathol. 2003;56(3):182–7.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Okinaka RT, Keim P. The Phylogeny of Bacillus cereus sensu lato. Microbiol Spectr. 2016;4(1):TBS-0012-2012.CrossRefGoogle Scholar
  9. 9.
    Ganz HH, et al. Interactions between Bacillus anthracis and plants may promote anthrax transmission. PLoS Negl Trop Dis. 2014;8(6):e2903.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Liu S, Moayeri M, Leppla SH. Anthrax lethal and edema toxins in anthrax pathogenesis. Trends Microbiol. 2014;22(6):317–25.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Fouet A. The surface of Bacillus anthracis. Mol Asp Med. 2009;30(6):374–85.CrossRefGoogle Scholar
  12. 12.
    Moayeri M, Leppla SH. Cellular and systemic effects of anthrax lethal toxin and edema toxin. Mol Asp Med. 2009;30(6):439–55.CrossRefGoogle Scholar
  13. 13.
    Szablewski CM, et al. Anthrax cases associated with animal-hair shaving brushes. Emerg Infect Dis. 2017;23(5):806–8.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Dahlgren CM, et al. Bacillus anthracis aerosols in goat hair processing mills. Am J Hyg. 1960;72:24–31.PubMedGoogle Scholar
  15. 15.
    Kissling E, et al. B. anthracis in a wool-processing factory: seroprevalence and occupational risk. Epidemiol Infect. 2012;140(5):879–86.CrossRefPubMedGoogle Scholar
  16. 16.
    Glassman HN. Discussion. Bacteriol Rev. 1966;30(3):657–9.PubMedPubMedCentralGoogle Scholar
  17. 17.
    Druett HA, et al. Studies on respiratory infection: II. The influence of aerosol particle size on infection of the guinea-pig with Pasteurella pestis. J Hyg. 1956;54(1):37–48.CrossRefPubMedGoogle Scholar
  18. 18.
    WHO. Anthrax in humans and animals. World Health Organization, 2008.Google Scholar
  19. 19.
    Schmitt K, Zacchia NA. Total decontamination cost of the anthrax letter attacks. Biosecur Bioterror. 2012;10(1):98–107.CrossRefPubMedGoogle Scholar
  20. 20.
    Meselson M, et al. The Sverdlovsk anthrax outbreak of 1979. Science. 1994;266(5188):1202–8.CrossRefPubMedGoogle Scholar
  21. 21.
    Consequences of alleged 1979 Sverdlovsk Anthrax outbreak explored, 1990.Google Scholar
  22. 22.
    Keim P, et al. Molecular investigation of the Aum Shinrikyo anthrax release in Kameido, Japan. J Clin Microbiol. 2001;39(12):4566–7.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Jernigan DB, et al. Investigation of bioterrorism-related anthrax, United States, 2001: epidemiologic findings. Emerg Infect Dis. 2002;8(10):1019–28.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Dull PM, et al. Bacillus anthracis aerosolization associated with a contaminated mail sorting machine. Emerg Infect Dis. 2002;8(10):1044–7.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Justice, T.U.S.D.o., Amerithrax investigative summary, T.U.S.D.o. Justice, Editor, 2010; p. 96.Google Scholar
  26. 26.
    Brookmeyer R, Blades N. Prevention of inhalational anthrax in the U.S. outbreak. Science. 2002;295(5561):1861.CrossRefPubMedGoogle Scholar
  27. 27.
    Jernigan JA, et al. Bioterrorism-related inhalational anthrax: the first 10 cases reported in the United States. Emerg Infect Dis. 2001;7(6):933–44.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Heller MB, et al. Laboratory response to anthrax bioterrorism, New York City, 2001. Emerg Infect Dis. 2002;8(10):1096–102.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Council NR. Reopening public facilities after a biological attack: a decision making framework, vol. 224. Washington, DC: The National Academies Press; 2005.Google Scholar
  30. 30.
    CDC. Anthrax. Available from:
  31. 31.
    Abramova FA, et al. Pathology of inhalational anthrax in 42 cases from the Sverdlovsk outbreak of 1979. Proc Natl Acad Sci USA. 1993;90(6):2291–4.CrossRefPubMedGoogle Scholar
  32. 32.
    Goossens PL. Animal models of human anthrax: The Quest for the Holy Grail. Mol Asp Med. 2009;30(6):467–80.CrossRefGoogle Scholar
  33. 33.
    Welkos S, et al. Animal models for the pathogenesis, treatment, and prevention of infection by Bacillus anthracis. Microbiol Spectr. 2015;3(1):TBS-0001-2012.PubMedGoogle Scholar
  34. 34.
    Beasley DWC, Brasel TL, Comer JE. First vaccine approval under the FDA animal rule. NPJ Vaccines. 2016;1:16013.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Kobiler D, et al. Protective antigen as a correlative marker for anthrax in animal models. Infect Immun. 2006;74(10):5871–6.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Twenhafel NA. Pathology of inhalational anthrax animal models. Vet Pathol. 2010;47(5):819–30.CrossRefPubMedGoogle Scholar
  37. 37.
    Levy H, et al. The central nervous system as target of Bacillus anthracis toxin independent virulence in rabbits and guinea pigs. PLoS One. 2014;9(11):e112319.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Vasconcelos D, et al. Pathology of inhalation anthrax in cynomolgus monkeys (Macaca fascicularis). Lab Investig. 2003;83(8):1201–9.CrossRefPubMedGoogle Scholar
  39. 39.
    Vietri NJ, et al. A short course of antibiotic treatment is effective in preventing death from experimental inhalational anthrax after discontinuing antibiotics. J Infect Dis. 2009;199(3):336–41.CrossRefPubMedGoogle Scholar
  40. 40.
    Altboum Z, et al. Postexposure prophylaxis against anthrax: evaluation of various treatment regimens in intranasally infected guinea pigs. Infect Immun. 2002;70(11):6231–41.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Weiss S, et al. Efficacy of single and combined antibiotic treatments of anthrax in rabbits. Antimicrob Agents Chemother. 2015;59(12):7497–503.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Weiss S, et al. Antibiotics cure anthrax in animal models. Antimicrob Agents Chemother. 2011;55(4):1533–42.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Boyer AE, et al. Detection and quantification of anthrax lethal factor in serum by mass spectrometry. Anal Chem. 2007;79(22):8463–70.CrossRefPubMedGoogle Scholar
  44. 44.
    Gates-Hollingsworth MA, et al. Immunoassay for capsular antigen of Bacillus anthracis enables rapid diagnosis in a rabbit model of inhalational anthrax. PLoS One. 2015;10(5):e0126304.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    CDC, Anthrax (Bacillus anthracis) 2010 Case Definition 2010, CDC.Google Scholar
  46. 46.
    Quinn CP, et al. Specific, sensitive, and quantitative enzyme-linked immunosorbent assay for human immunoglobulin G antibodies to anthrax toxin protective antigen. Emerg Infect Dis. 2002;8(10):1103–10.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Hendricks KA, et al. Centers for disease control and prevention expert panel meetings on prevention and treatment of anthrax in adults. Emerg Infect Dis. 2014;20(2)Google Scholar
  48. 48.
    Turnbull PCB, et al. MICs of selected antibiotics for Bacillus anthracis, Bacillus cereus, Bacillus thuringiensis, and Bacillus mycoides from a range of clinical and environmental sources as determined by the etest. J Clin Microbiol. 2004;42(8):3626–34.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Heine HS, et al. Evaluation of combination drug therapy for treatment of antibiotic-resistant inhalation anthrax in a murine model. Antimicrob Agents Chemother. 2017;61(9)Google Scholar
  50. 50.
    EPA, multiple daily low-dose Bacillus anthracis Ames inhalation exposures in the rabbit, T.U.S.E.P. Agency, Editor. 2012.Google Scholar
  51. 51.
    Henning LN, et al. Development of an inhalational Bacillus anthracis exposure therapeutic model in cynomolgus macaques. Clin Vaccine Immunol. 2012;19(11):1765–75.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Friedlander AM, et al. Postexposure prophylaxis against experimental inhalation anthrax. J Infect Dis. 1993;167(5):1239–43.CrossRefPubMedGoogle Scholar
  53. 53.
    Bresnitz EA. Lessons learned from the CDC’s post-exposure prophylaxis program following the anthrax attacks of 2001. Pharmacoepidemiol Drug Saf. 2005;14(6):389–91.CrossRefPubMedGoogle Scholar
  54. 54.
    Knudson GB. Treatment of anthrax in man: historical and current concepts. U.S.A.M.R.I.o.I. Diseases, Editor. 1985.Google Scholar
  55. 55.
    Pillai SK, et al. Antimicrobial treatment for systemic anthrax: analysis of cases from 1945 to 2014 identified through a systematic literature review. Health Secur. 2015;13(6):355–64.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Riedel S. Anthrax: a continuing concern in the era of bioterrorism. Proc (Bayl Univ Med Cent). 2005;18(3):234–43.CrossRefGoogle Scholar
  57. 57.
    Bower WA, et al. Clinical framework and medical countermeasure use during an anthrax mass-casualty incident. MMWR Recomm Rep. 2015;64(4):1–22.CrossRefPubMedGoogle Scholar
  58. 58.
    Cunha AB. Anthrax treatment & management. Medscape, 2016.Google Scholar
  59. 59.
    Xu W, et al. A systematic review and meta-analysis of preclinical trials testing anti-toxin therapies for B. anthracis infection: a need for more robust study designs and results. PLoS One. 2017;12(8):e0182879.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Glinert I, et al. Revisiting the concept of targeting only Bacillus anthracis toxins as a treatment for anthrax. Antimicrob Agents Chemother. 2016;60(8):4878–85.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    CDC. Update: investigation of bioterrorism-related anthrax and interim guidelines for clinical evaluation of persons with possible anthrax, in MMWR. Centers for disease control and prevention, 2001; p. 8.Google Scholar
  62. 62.
    Greene CM, et al. Epidemiologic investigations of bioterrorism-related anthrax, New Jersey, 2001. Emerg Infect Dis. 2002;8(10):1048–55.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    CCR. Anthrax in America: a chronology and analysis of the fall 2001 attacks. Center for Counterproliferation Research; 2002.Google Scholar
  64. 64.
    Pile JC, et al. Anthrax as a potential biological warfare agent. Arch Intern Med. 1998;158(5):429–34.CrossRefPubMedGoogle Scholar
  65. 65.
    CDC, Sentinel level clinical microbiology laboratory guidelines for suspected agents of bioterrorism and emerging infectious diseases – Bacillus anthracis 2010.Google Scholar
  66. 66.
    Ozanich RM, et al. Evaluation of PCR systems for field screening of Bacillus anthracis. Health Secur. 2017;15(1):70–80.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Bartholomew RA, et al. Evaluation of immunoassays and general biological indicator tests for field screening of Bacillus anthracis and Ricin. Health Secur. 2017;15(1):81–96.CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Riojas MA, et al. Multiplex PCR for species-level identification of Bacillus anthracis and detection of pXO1, pXO2, and related plasmids. Health Secur. 2015;13(2):122–9.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Koczula KM, Gallotta A. Lateral flow assays. Essays Biochem. 2016;60(1):111–20.CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Fisher M, et al. A combined immunomagnetic separation and lateral flow method for a sensitive on-site detection of Bacillus anthracis spores – assessment in water and dairy products. Lett Appl Microbiol. 2009;48(4):413–8.CrossRefPubMedGoogle Scholar
  71. 71.
    Tetracore. BioThreat Alert® Reader. Available from:
  72. 72.
    Weis CP, et al. Secondary aerosolization of viable Bacillus anthracis spores in a contaminated US Senate Office. JAMA. 2002;288(22):2853–8.CrossRefPubMedGoogle Scholar
  73. 73.
    Ferrari N, et al. Bone marrow-derived, endothelial progenitor-like cells as angiogenesis-selective gene-targeting vectors. Gene Ther. 2003;10(8):647–56.CrossRefPubMedGoogle Scholar
  74. 74.
    Council NR. Review of the scientific approaches used during the FBI’s investigation of the 2001 anthrax letters. Washington, DC: The National Academies Press, 2011; p. 232.Google Scholar
  75. 75.
    GAO. Capitol Hill Anthrax Incident, C.o.F. Report to the Chairman, U.S. Senate, Editor, 2003.Google Scholar
  76. 76.
    EPA. Federal on-scene coordinator’s report for the Capitol Hill Site Washington, DC, P. United States Environmental Protection Agency Region 3 Philadelphia, Editor, 2002.Google Scholar
  77. 77.
    Office, U.S.G.A., Capitol hill anthrax incident EPA’s cleanup was successful; opportunities exist to enhance contract oversight, C.o.F. Report to the Chairman, U.S. Senate, Editor, 2003.Google Scholar
  78. 78.
    Canter DA. Addressing residual risk issues at anthrax cleanups: how clean is safe? J Toxicol Environ Health A. 2005;68(11–12):1017–32.CrossRefPubMedGoogle Scholar
  79. 79.
    Brief, E.t., review of Bacillus anthracis (anthrax) studies for dose-response modeling to estimate risk, U.S.E.P. Agency, Editor, 2012.Google Scholar
  80. 80.
    Brachman PS, et al. An epidemic of inhalation anthrax: The first in the twentieth century epidemiology. Am J Epidemiol. 1960;72(1):6–23.CrossRefGoogle Scholar
  81. 81.
    Medicine, I.o., Prepositioning antibiotics for anthrax, ed. C. Stroud, et al. Washington, DC: The National Academies Press, 2012; p. 358.Google Scholar
  82. 82.
    PriMED, Anthrax – Russia (10): (Yamal-Nenets) Human, Reindeer Vaccinated, 2016.Google Scholar
  83. 83.
    illumina, An introduction to next-generation sequencing technology.Google Scholar
  84. 84.
    Rasko DA, et al. Bacillus anthracis comparative genome analysis in support of the Amerithrax investigation. Proc Natl Acad Sci USA. 2011;108(12):5027–32.CrossRefPubMedGoogle Scholar
  85. 85.
    Sammon C, et al. A survey of use of the emergency department during a local public health crisis. Ann Emerg Med. 2002;40(2):1.Google Scholar
  86. 86.
    Keim P, et al. The genome and variation of Bacillus anthracis. Mol Asp Med. 2009;30(6):397–405.CrossRefGoogle Scholar
  87. 87.
    ProMED, Anthrax – Kenya: foiled anthrax attack, suspected Islamic State, 2016.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Haim Levy
    • 1
    Email author
  • Itai Glinert
    • 1
  • Assa Sittner
    • 1
  • Amir Ben-Shmuel
    • 1
  • Elad Bar-David
    • 1
  • David Kobiler
    • 1
  • Shay Weiss
    • 1
  1. 1.Department of Infectious DiseasesIsrael Institute for Biological ResearchNess ZionaIsrael

Personalised recommendations