Advertisement

The Role of Event-Based Biosurveillance in Biodefense

  • David M. HartleyEmail author
  • Wai-Ling Mui
  • Courtney D. Corley
Chapter

Abstract

The term biosurveillance refers to the collection, analysis, and dissemination of multiple types of data for early warning, early detection, situational awareness, and consequence management support of biological events. This broad view encompasses both traditional and more recent approaches to surveillance as they relate to natural and intentional outbreaks and epidemics in human and agricultural populations. This chapter focuses on event-based biosurveillance utilizing data available from the internet. We provide an overview of the process of event-based biosurveillance, describe important computer methods for handling and analyzing collected data, and discuss future directions and research needs.

Keywords

Biosurveillance Event-based biosurveillance Internet-based surveillance Digital disease detection Epidemic intelligence Early warning 

References

  1. 1.
    Paquet C, Coulombier D, Kaiser R, Ciotti M. Epidemic intelligence: a new framework for strengthening disease surveillance in Europe. Euro Surveill. 2006;11(12):212–4.CrossRefGoogle Scholar
  2. 2.
    Endsley MR. Toward a theory of situation awareness in dynamic systems. Hum Factors. 1995;37(1):32–64.CrossRefGoogle Scholar
  3. 3.
    O’Shea J. Digital disease detection: A systematic review of event-based internet biosurveillance systems. Int J Med Inform. 2017;101:15–22.  https://doi.org/10.1016/j.ijmedinf.2017.01.019.CrossRefPubMedGoogle Scholar
  4. 4.
    Declich S, Carter AO. Public health surveillance: historical origins, methods and evaluation. Bull World Health Organ. 1994;72(2):285–304.PubMedPubMedCentralGoogle Scholar
  5. 5.
    CDC. Global disease detection operations center: event-based surveillance. 2016. https://www.cdc.gov/globalhealth/healthprotection/gddopscenter/how.html. Accessed 26 Aug 2017.
  6. 6.
    Brownstein JS, Freifeld CC, Madoff LC. Digital disease detection – harnessing the Web for public health surveillance. N Engl J Med. 2009;360(21):2153–7.  https://doi.org/10.1056/NEJMp0900702.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Choi J, Cho Y, Shim E, Woo H. Web-based infectious disease surveillance systems and public health perspectives: a systematic review. BMC Public Health. 2016;16(1):1238.  https://doi.org/10.1186/s12889-016-3893-0.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Hartley D, Nelson N, Walters R, Arthur R, Yangarber R, Madoff L, Linge J, Mawudeku A, Collier N, Brownstein J, Thinus G, Lightfoot N. Landscape of international event-based biosurveillance. Emerg Health Threats J. 2010;3:e3.  https://doi.org/10.3134/ehtj.10.003.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Hartley DM, Nelson NP, Arthur RR, Barboza P, Collier N, Lightfoot N, Linge JP, van der Goot E, Mawudeku A, Madoff LC, Vaillant L, Walters R, Yangarber R, Mantero J, Corley CD, Brownstein JS. An overview of internet biosurveillance. Clin Microbiol Infect. 2013;19(11):1006–13.  https://doi.org/10.1111/1469-0691.12273.CrossRefPubMedGoogle Scholar
  10. 10.
    Milinovich GJ, Williams GM, Clements AC, Hu W. Internet-based surveillance systems for monitoring emerging infectious diseases. Lancet Infect Dis. 2014;14(2):160–8.  https://doi.org/10.1016/S1473-3099(13)70244-5.CrossRefPubMedGoogle Scholar
  11. 11.
    WHO. Early detection, assessment and response to acute public health events: implementation of early warning and response with a focus on event-based surveillance. 2014. http://www.who.int/ihr/publications/WHO_HSE_GCR_LYO_2014.4/en/. Accessed 26 Aug 2017.
  12. 12.
    Mykhalovskiy E, Weir L. The global public health intelligence network and early warning outbreak detection: a Canadian contribution to global public health. Can J Public Health. 2006;97(1):42–4.PubMedGoogle Scholar
  13. 13.
    Linge J, Steinberger R, Fuart F, Bucci S, Belyaeva J, Gemo M, Al-Khudhairy D, Yangarber R, van der Goot E. MedISys: medical information system. In: Asimakopoulou E, Bessis N, editors. Advanced ICTs for disaster management and threat detection: collaborative and distributed frameworks, Chapter 9. New York: IGI Global; 2010. p. 131–42.CrossRefGoogle Scholar
  14. 14.
    Collier N, Doan S, Kawazoe A, Goodwin RM, Conway M, Tateno Y, Ngo QH, Dien D, Kawtrakul A, Takeuchi K, Shigematsu M, Taniguchi K. BioCaster: detecting public health rumors with a Web-based text mining system. Bioinformatics. 2008;24(24):2940–1.  https://doi.org/10.1093/bioinformatics/btn534.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Nelson NP, Brownstein JS, Hartley DM. Event-based biosurveillance of respiratory disease in Mexico, 2007–2009: connection to the 2009 influenza A(H1N1) pandemic? Euro Surveill. 2010;15(30)Google Scholar
  16. 16.
    Nelson NP, Yang L, Reilly AR, Hardin JE, Hartley DM. Event-based internet biosurveillance: relation to epidemiological observation. Emerg Themes Epidemiol. 2012;9(1):4.  https://doi.org/10.1186/1742-7622-9-4.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    DHS. National Biosurveillance Integration Center Strategic Plan. 2012. https://www.dhs.gov/sites/default/files/publications/nbic-strategic-plan-public-2012.pdf. Accessed 26 Aug 2017.
  18. 18.
  19. 19.
    Margevicius KJ, Generous N, Taylor-McCabe KJ, Brown M, Daniel WB, Castro L, Hengartner A, Deshpande A. Advancing a framework to enable characterization and evaluation of data streams useful for biosurveillance. PLoS One. 2014;9(1):e83730.  https://doi.org/10.1371/journal.pone.0083730.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Gottesdiener E. Good practices for developing user requirements. CrossTalk J Defense Software Eng. 2008;21(3):13–7.Google Scholar
  21. 21.
    HHS. Enterprise life cycle artifacts. 2014. https://www.hhs.gov/ocio/eplc/Enterprise%20Performance%20Lifecycle%20Artifacts/eplc_artifacts.html. Accessed 26 Aug 2017.
  22. 22.
  23. 23.
    Software Engineering Institute. A framework for software product line practice, Ver. 5.0, Requirements engineering. (2017). https://www.mitre.org/publications/systems-engineering-guide/se-lifecycle-building-blocks/r. Accessed 13 Aug 2017
  24. 24.
    Walters RA, Harlan PA, Nelson NP, Hartley DM, Voeller JG. Data sources for biosurveillance. In: Voeller JG, editor. Wiley handbook of science and technology for homeland security, vol 4: Wiley; 2010. p. 2431–47.  https://doi.org/10.1002/9780470087923.hhs15.
  25. 25.
    Charles-Smith LE, Reynolds TL, Cameron MA, Conway M, Lau EH, Olsen JM, Pavlin JA, Shigematsu M, Streichert LC, Suda KJ, Corley CD. Using social media for actionable disease surveillance and outbreak management: A systematic literature review. PLoS One. 2015;10(10):e0139701.  https://doi.org/10.1371/journal.pone.0139701.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Hartley DM. Using social media and internet data for public health surveillance: the importance of talking. Milbank Q. 2014;92(1):34–9.  https://doi.org/10.1111/1468-0009.12039.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Hartley DM, Giannini CM, Wilson S, Frieder O, Margolis PA, Kotagal UR, White DL, Connelly BL, Wheeler DS, Tadesse DG, Macaluso M. Coughing, sneezing, and aching online: Twitter and the volume of influenza-like illness in a pediatric hospital. PLoS One. 2017;12(7):e0182008.  https://doi.org/10.1371/journal.pone.0182008.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Volkova S, Charles LE, Harrison J, Corley CD. Uncovering the relationships between military community health and affects expressed in social media. EPJ Data Sci. 2017;6:9.  https://doi.org/10.1140/epjds/s13688-017-0102-z.CrossRefGoogle Scholar
  29. 29.
    Bach M, Jordan S, Hartung S, Santos-Hövener C, Wright MT. Participatory epidemiology: the contribution of participatory research to epidemiology. Emerg Themes Epidemiol. 2017. doi: https://doi.org/10.1186/s12982-017-0056-4
  30. 30.
    Paolotti D, Carnahan A, Colizza V, Eames K, Edmunds J, Gomes G, Koppeschaar C, Rehn M, Smallenburg R, Turbelin C, Van Noort S, Vespignani A. Web-based participatory surveillance of infectious diseases: the influenzanet participatory surveillance experience. Clin Microbiol Infect. 2014;20(1):17–21.  https://doi.org/10.1111/1469-0691.12477.CrossRefPubMedGoogle Scholar
  31. 31.
    Smolinski MS, Crawley AW, Baltrusaitis K, Chunara R, Olsen JM, Wójcik O, Santillana M, Nguyen A, Brownstein JS. Flu near you: crowdsourced symptom reporting spanning 2 influenza seasons. Am J Public Health. 2015;105(10):2124–30.  https://doi.org/10.2105/AJPH.2015.302696.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Nguyen A, Brownstein JS. Flu near you: crowdsourced symptom reporting spanning 2 influenza seasons. Am J Public Health. 2015;105(10):2124–30.  https://doi.org/10.2105/AJPH.2015.302696.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Garimella VRK, Alfayad A, Weber I. Social media image analysis for public health. In: Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems. New York: ACM; 2016.Google Scholar
  34. 34.
    Generous N, Margevicius KJ, Taylor-McCabe KJ, Brown M, Daniel WB, Castro L, Hengartner A, Deshpande A. Selecting essential information for biosurveillance – a multi-criteria decision analysis. PLoS One. 2014;9(1):e86601.  https://doi.org/10.1371/journal.pone.0086601.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Collmann J, Matei SA, editors. Ethical reasoning in big data: an exploratory analysis, Computational social sciences. Series. Basel: Springer; 2016.Google Scholar
  36. 36.
    Collmann J, Robinson A. Designing ethical practice in biosurveillance: the project Argus doctrine. In: Zeng D, et al., editors. Infectious disease informatics and biosurveillance, integrated series in information systems, vol. 27. New York: Springer; 2011.Google Scholar
  37. 37.
    Collier N. What’s unusual in online disease outbreak news? J Biomed Semantics. 2010;1(1):2.  https://doi.org/10.1186/2041-1480-1-2.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Torii M, Yin L, Nguyen T, Mazumdar CT, Liu H, Hartley DM, Nelson NP. An exploratory study of a text classification framework for Internet-based surveillance of emerging epidemics. Int J Med Inform. 2011;80(1):56–66.  https://doi.org/10.1016/j.ijmedinf.2010.10.015.CrossRefPubMedGoogle Scholar
  39. 39.
    Studer R, Benjamins R, Fensel D. Knowledge engineering: principles and methods. Data Knowl Eng. 1998;25(1–2):161–98.CrossRefGoogle Scholar
  40. 40.
    Collier N, Kawazoe A, Jin L, Shigematsu M, Dien D, Barrero RA, Takeuchi K, Kawtrakul A. A multilingual ontology for infectious disease surveillance: rationale, design and challenges. Lang Resour Eval. 2006;40:405–13.CrossRefGoogle Scholar
  41. 41.
    Smith WP, Chappell AR, Corley CD. Medical and Transmission Vector Vocabulary Alignment with Schema.org. In Proceedings of the International Conference on Biomedical Ontology (ICBO 2015), July 27-30, 2015, Lisbon, Portugal, edited by FM Couto and J Hastings. Aachen: CEUR Workshop Proceedings. http://ceur-ws.org/Vol-1515/regular11.pdf
  42. 42.
    Daughton AR, Priedhorsky R, Fairchild G, Generous N, Hengartner A, Abeyta E, Velappan N, Lillo A, Stark K, Deshpande A. A globally-applicable disease ontology for biosurveillance. Anthology of Biosurveillance Diseases (ABD). 2016. https://arxiv.org/abs/1609.05774
  43. 43.
    Wilson JM, Polyak MG, Blake JW, Collmann J. A heuristic indication and warning staging model for detection and assessment of biological events. J Am Med Inform Assoc. 2008;15(2):158–71.  https://doi.org/10.1197/jamia.M2558.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Keller M, Freifeld CC, Brownstein JS. Automated vocabulary discovery for geo-parsing online epidemic intelligence. BMC Bioinf. 2009;10:385.  https://doi.org/10.1186/1471-2105-10-385.CrossRefGoogle Scholar
  45. 45.
    Yangarber R, Jokipii L, Rauramo A, Huttunen S. Extracting information about outbreaks of infectious epidemics. In: Proceedings of the Human Language Technology Conference/Conference on Empirical Methods in Natural Language Processing: HLT/EMNLP-2005. Vancouver, Canada, 2005; pp. 22–23. Available at: http://aclweb.org/anthology/H/H05/H05-2012.pdf.
  46. 46.
    Grein TW, Kamara KB, Rodier G, Plant AJ, Bovier P, Ryan MJ, Ohyama T, Heymann DL. Rumors of disease in the global village: outbreak verification. Emerg Infect Dis. 2000;6(2):97–102.CrossRefGoogle Scholar
  47. 47.
    Barboza P, Vaillant L, Mawudeku A, Nelson NP, Hartley DM, Madoff LC, Linge JP, Collier N, Brownstein JS, Yangarber R, Astagneau P, Early Alerting Reporting Project of The Global Health Security Initiative. Evaluation of epidemic intelligence systems integrated in the early alerting and reporting project for the detection of A/H5N1 influenza events. PLoS One. 2013;8(3):e57252.  https://doi.org/10.1371/journal.pone.0057252.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Velasco E, Agheneza T, Denecke K, Kirchner G, Eckmanns T. Social media and internet-based data in global systems for public health surveillance: a systematic review. Milbank Q. 2014;92(1):7–33.  https://doi.org/10.1111/1468-0009.12038.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Corley CD, Lancaster MJ, Brigantic RT, Chung JS, Walters RA, Arthur RR, Bruckner-Lea CJ, Calapristi A, Dowling G, Hartley DM, Kennedy S, Kircher A, Klucking S, Lee EK, McKenzie T, Nelson NP, Olsen J, Pancerella C, Quitugua TN, Reed JT, Thomas CS. Assessing the continuum of event-based biosurveillance through an operational lens. Biosecur Bioterror. 2012;10(1):131–41.  https://doi.org/10.1089/bsp.2011.0096.CrossRefPubMedGoogle Scholar
  50. 50.
    McGrath JW. Biological impact of social disruption resulting from epidemic disease. Am J Phys Anthropol. 1991;84(4):407–19.CrossRefGoogle Scholar
  51. 51.
    Collmann J, Blake J, Bridgeland D, Kinne L, Yossinger NS, Dillon R, Martin S, Zou K. Measuring the potential for mass displacement in menacing contexts. J Refug Stud. 2016;29(3):273–94.  https://doi.org/10.1093/jrs/few017.CrossRefGoogle Scholar
  52. 52.
    Briggs CL, Mantini-Briggs C. Stories in the time of cholera: racial profiling during a medical nightmare. Berkeley: University of California Press; 2004.Google Scholar
  53. 53.
    Crouch A. Japanese biological warfare in China: one family’s encounter. In the inventory of the Sheldon H. Harris Papers, Box 7, Folder 1. Hoover Institution Archives, Stanford University, Stanford, California. http://www.oac.cdlib.org/findaid/ark:/13030/kt8f59r20s/entire_text/. Accessed 12 Dec 2018
  54. 54.
    Ammari T, Schoenebeck S. Understanding and supporting fathers and fatherhood on social media sites. In: Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems. New York: ACM; 2015. p. 1905–14.Google Scholar
  55. 55.
    De Choudhury M, Counts S, Horvitz E. Predicting postpartum changes in emotion and behavior via social media. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. New York: ACM; 2013. p. 3267–76.CrossRefGoogle Scholar
  56. 56.
    Lin YR. Assessing sentiment segregation in urban communities. In: Proceedings of the 2014 International Conference on Social Computing. SocialCom ‘14. New York: ACM; 2014. p. 9:1–8.  https://doi.org/10.1145/2639968.2640066.CrossRefGoogle Scholar
  57. 57.
    Valdes JMD, Eisenstein J, De Choudhury M. Psychological effects of urban crime gleaned from social media. In: Proceedings of ICWSM; 2015. http://www.aaai.org/ocs/index.php/ICWSM/ICWSM15/paper/view/10563.Google Scholar
  58. 58.
    Harris J, Mansour R, Choucair B, Olson J, Nissen C, Bhatt J, Brown S. Health department use of social media to identify foodborne illness-Chicago, Illinois, 2013-2014. MMWR. 2014;63(32):681.PubMedGoogle Scholar
  59. 59.
    Paul MJ, Dredze M. Drug extraction from the web: summarizing drug experiences with multi-dimensional topic models. In: Proceedings of HLT-NAACL. Atlanta: Association for Computational Linguistics; 2013. p. 168–78.Google Scholar
  60. 60.
    Ortony A. On making believable emotional agents believable. In: Trappl R, Petta P, Payr S, editors. Emotions in humans and artifacts. Cambridge, MA: MIT; 2003.Google Scholar
  61. 61.
    Pennebaker J. Using computer analyses to identify language style and aggressive intent: the secret life of function words. Dynamics of Asymmetric Conflict. 2011;4(2):92–102.  https://doi.org/10.1080/17467586.2011.627932.CrossRefGoogle Scholar
  62. 62.
    Corley CD, Pullum LL, Hartley DM, Benedum C, Noonan C. Disease prediction models and operational readiness. PLoS One. 2014;9(3):e91989.  https://doi.org/10.1371/journal.pone.0091989.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Schmidhuber J. Deep learning in neural networks: an overview. Neural Networks. 2015;61:85–117.CrossRefGoogle Scholar
  64. 64.
    Nguyen TH, Grishman, R. Event detection and domain adaptation with convolutional neural networks. 2015. Volume 2. Short Papers, 365.Google Scholar
  65. 65.
    Dong L, Wei F, Zhou M, Xu K. Question answering over freebase with multi-column convolutional neural networks. In: Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing, vol. Volume 1. Beijing: ACL; 2015. p. 260–9.Google Scholar
  66. 66.
    Lei T, Xin Y, Zhang Y, Barzilay R, Jaakkola T. Low-rank tensors for scoring dependency structures. In: Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics, vol. Volume 1; 2014. p. 1381–91.Google Scholar
  67. 67.
    Godin F, Vandersmissen B, De Neve W, Van de Walle R. Multimedia Lab@ ACL W-NUT NER shared task: named entity recognition for Twitter microposts using distributed word representations. ACL-IJCNLP. 2015;2015:146.Google Scholar
  68. 68.
    Wu Y, Schuster M, Chen Z, Le QV, Norouzi M, Macherey W, et al. Google’s neural machine translation system: bridging the gap between human and machine translation; 2016. arXiv preprint arXiv:1609.08144.Google Scholar
  69. 69.
    Tang D, Wei F, Yang N, Zhou M, Liu T, Qin B. Learning sentiment-specific word embedding for Twitter sentiment classification. In: Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics, vol. 1; 2014. p. 1555–65.Google Scholar
  70. 70.
    Yin W, Schütze H. Convolutional neural network for paraphrase identification. In: Proceedings of the 2015 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Denver: Association for Computational Linguistics; 2015. p. 901–11.Google Scholar
  71. 71.
    Bahdanau D, Cho K, Bengio Y. Neural machine translation by jointly learning to align and translate. In: Proceedings of the International Conference on Learning Representations (ICLR); 2015. arXiv preprint arXiv 1409.0473.Google Scholar
  72. 72.
    Cho K, Dzmitry Bahdanau D, Bougares F, Schwenk H, Bengio Y. Learning phrase representations using RNN encoder-decoder for statistical machine translation. In Proceedings of the Empirical Methods in Natural Language Processing (EMNLP) Conference; 2014. arXiv preprint arXiv:1406.1078.Google Scholar
  73. 73.
    Srivastava N, Mansimov E, Salakhutdinov R. Unsupervised learning of video representations using LSTMs; 2015. arXiv preprint arXiv:1502.04681.Google Scholar
  74. 74.
    Stoto MA. Biosurveillance capability requirements for the global health security agenda: lessons from the 2009 H1N1 pandemic. Biosecur Bioterror. 2014;12(5):225–30.  https://doi.org/10.1089/bsp.2014.0030.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Burkom HS, Loschen WA, Mnatsakanyan ZR, Lombardo JS. Tradeoffs driving policy and research decisions in biosurveillance. Johns Hopkins APL Tech Dig. 2008;27(4):299–312.Google Scholar
  76. 76.
    Buehler JW, Berkelman RL, Hartley DM, Peters CJ. Syndromic surveillance and bioterrorism-related epidemics. Emerg Infect Dis. 2003;9(10):1197–204.CrossRefGoogle Scholar
  77. 77.
    Hartley DM. Space imaging and rift valley fever vectors. In: Laxminaryan R, Macauley MK, editors. The value of information: methodological frontiers and new applications for realizing social benefit. Springer; 2012.Google Scholar
  78. 78.
    Macauley MK, Laxminarayan R (2010) The value of information: methodological frontiers and new applications for realizing social benefit. Resources for the future conference summary. http://www.rff.org/research/publications/value-information-methodological-frontiers-and-new-applications-realizing. Accessed 22 Aug 2017.
  79. 79.
    Laxminarayan R, Macauley MK. The value of information: methodological frontiers and new applications for realizing social benefit. Springer; 2012.Google Scholar
  80. 80.
    Chen H, Zeng D, Yan P. Infectious disease informatics: syndromic surveillance for public health and biodefense, integrated series in information systems 21. New York: Springer; 2010.CrossRefGoogle Scholar
  81. 81.
    Wong W-K, Moore AW. Classical time-series methods for biosurveillance. In: Wagner MM, Moore AW, Aryel RM, editors. Handbook of biosurveillance. MA: Elsevier Academic Press; 2006.Google Scholar
  82. 82.
    Ginsberg J, Mohebbi MH, Patel RS, Brammer L, Smolinski MS, Brilliant L. Detecting influenza epidemics using search engine query data. Nature. 2009;457:1012–4.  https://doi.org/10.1038/nature07634.CrossRefPubMedGoogle Scholar
  83. 83.
    Pollett S, Boscardin WJ, Azziz-Baumgartner E, et al. Evaluating Google Flu trends in Latin America: important lessons for the next phase of digital disease detection. Clin Infect Dis. 2017;64:42–3.  https://doi.org/10.1093/cid/ciw657.CrossRefGoogle Scholar
  84. 84.
    Santillana M. Perspectives on the future of internet search engines and biosurveillance systems. Clin Infect Dis. 2017;64:34–41.  https://doi.org/10.1093/cid/ciw660.CrossRefGoogle Scholar
  85. 85.
    Lazer D, Kennedy R, King G, Vespignani A. The parable of Google Flu: traps in big data analysis. Science. 2014;343(6176):1203–5.  https://doi.org/10.1126/science.1248506.CrossRefPubMedGoogle Scholar
  86. 86.
    Bansal S, Chowell G, Simonsen L, Vespignani A, Viboud C. Big data for infectious disease surveillance and modeling. J Infect Dis. 2016;214(suppl_4):S375–9.  https://doi.org/10.1093/infdis/jiw400.CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Santillana M, Nguyen AT, Dredze M, Paul MJ, Nsoesie EO, Brownstein JS. Combining search, social media, and traditional data sources to improve influenza surveillance. PLoS Comput Biol. 2015;11:e1004513.  https://doi.org/10.1371/journal.pcbi.1004513.CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Parker J, Yates A, Goharian N, Frieder O. Health-related hypothesis generation using social media data. Soc Net Anal Min. 2015;5(1)  https://doi.org/10.1007/s13278-014-0239-8.

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • David M. Hartley
    • 1
    • 2
    Email author
  • Wai-Ling Mui
    • 3
  • Courtney D. Corley
    • 4
  1. 1.University of Cincinnati College of MedicineCincinnatiUSA
  2. 2.Cincinnati Children’s HospitalCincinnatiUSA
  3. 3.Synertex, LLCMcLeanUSA
  4. 4.Pacific Northwest National LaboratoryRichlandUSA

Personalised recommendations