Advertisement

Big Data and Biodefense: Prospects and Pitfalls

  • Kathleen M. VogelEmail author
Chapter

Abstract

This chapter will provide an overview of how “big data” and “big data” analytics can be brought to bear on the pressing biodefense challenges of: (1) threat awareness; and (2) surveillance and detection. The chapter will also discuss potential problems that can arise by relying exclusively on “big data” approaches, which have properties and limitations inherent in their composition that may not be initially recognized but which may lead to erroneous results. The chapter will conclude by discussing how multi-disciplinary teams of researchers using hybrid systems, involving “big data” and “small data,” could more effectively and accurately contribute to understanding biodefense problems.

Keywords

Big data Biodefense Threat awareness Surveillance and detection Biological weapons Bioterrorism 

References

  1. 1.
    Achenbach J, Sun LH. Scientists synthesize smallpox cousin in ominous breakthrough. The Washington Post. 2017. https://www.washingtonpost.com/news/speaking-of-science/wp/2017/07/07/scientists-synthesize-smallpox-cousin-in-ominous-breakthrough/?utm_term=.95d61eea13c8.
  2. 2.
    Central Intelligence Agency. The darker bioweapons future. 2003. https://www.hsdl.org/?abstract&did=442021.Google Scholar
  3. 3.
    Hilts PJ. Biological weapons reweighed. The Washington Post. 1986.Google Scholar
  4. 4.
    Makunda G, Oye KA, Mohr SC. What rough beast: synthetic biology and the future of biosecurity. Polit Life Sci. 2009;28(2):2–26.CrossRefGoogle Scholar
  5. 5.
    National Research Council. Biotechnology research in an age of terrorism. Washington, DC: The National Academies Press; 2004.  https://doi.org/10.17226/10827.CrossRefGoogle Scholar
  6. 6.
    The Commission on the Intelligence Capabilities of the United States Regarding Weapons of Mass Destruction. Report to the President. 2005. https://fas.org/irp/offdocs/wmdcomm.html.
  7. 7.
    U.S. Department of Defense. Advances in biotechnology and genetic engineering: implications for the development of new biological warfare agents. 1996. www.acq.osd.mil/cp/docs/reports/biotech96.pdf.
  8. 8.
    Lohr S. How big data became so big. The New York Times. 2012. http://www.nytimes.com/2012/08/12/business/how-big-data-became-so-big-unboxed.html.
  9. 9.
    Manyika J, Chui M, Brown B, Bughin J, Dobbs R, Roxburgh C, Hung Byers A. Big data: the next frontier for innovation, competition, and productivity. The McKinsey Global Institute. 2011. http://www.mckinsey.com/business-functions/digital-mckinsey/our-insights/big-data-the-next-frontier-for-innovation.
  10. 10.
    Lazer D, Pentland AS, Adamic L, Aral S, Laszlo Babasi A, Brewer D, Christakis N, Contractor N, Fowler J, Gutmann M, Jebara T, King G, Macy M, Roy D, Van Alstyne M. Life in the network: the coming age of computational social science. Science. 2009;323(5915):721–3.CrossRefGoogle Scholar
  11. 11.
    George G, Haas MR, Pentland A. Big data and management. Acad Manag J. 2014;57(2):321–6.CrossRefGoogle Scholar
  12. 12.
    The White House. Homeland Security Presidential Directive 10 (HSPD 10): biodefense for the 21st century. 2004. https://fas.org/irp/offdocs/nspd/hspd-10.html.Google Scholar
  13. 13.
  14. 14.
  15. 15.
    U.S. General Accountability Office. Biodefense: The Nation Faces Multiple Challenges in Building and Maintaining Biodefense and Biosurveillance, Statement of Chris Currie, Director, Homeland Security and Justice, Testimony Before the Committee on Homeland Security and Governmental Affairs U.S. Senate GAO-16-547T. 2016. http://www.gao.gov/assets/680/676548.pdf.
  16. 16.
    American Association for the Advancement of Science. Federal Bureau of Investigation, and the United Nations Interregional Crime and Justice Research Institute. National and transnational security: implications of big data in the life sciences. 2014. https://www.aaas.org/report/national-and-transnational-security-implications-big-data-life-sciences.
  17. 17.
    Tateosian L, Glatz M, Shukunobe M, Chopra P. GazeGIS: a gaze-based reading and dynamic geographic information system. In: Burch M, Chuang L, Fisher B, Schmidt A, Weiskopf D, editors. Eye tracking and visualization. ETVIS 2015. Mathematics and visualization. Berlin: Springer; 2017. p. 129–47.Google Scholar
  18. 18.
    NATO. Distributed data analytics for combating weapons of mass destruction. STO meeting proceedings, MP-IST-131. 2017.Google Scholar
  19. 19.
    Nowviskie B, Saathoff GB. Interpretation and insider threat: rereading the anthrax mailings of 2001 through a “big data” lens. In: Akhgar B, Saathoff GB, Arabnia H, Hill R, Saniforth A, Bayerl P, editors. Application of big data for national security. 1st ed. Amsterdam: Elsevier; 2015. p. 55–67.CrossRefGoogle Scholar
  20. 20.
    Murch RS. Amerithrax: the investigation of bioterrorism using Bacillus anthracis sproes in mailed letters. In: Katz R, Zilinskas RA, editors. Encyclopedia of bioterrorism. New York: Wiley; 2011. p. 25–30.Google Scholar
  21. 21.
    Moretti F. Graphs, maps, trees: abstract models for a literary history. London: Verso Books; 2005.Google Scholar
  22. 22.
    Moretti F. Distant reading. London: Verso Books; 2013.Google Scholar
  23. 23.
    Vogel KM. Phantom menace or looming danger: a new framework for assessing bioweapons threats. Baltimore, MD: Johns Hopkins University Press; 2013.Google Scholar
  24. 24.
    Kerr R, Wolfe T, Donegan R, Pappas A. Collection and analysis on Iraq: issues for the US intelligence community. Stud Intell. 2005;49(3):47–54.Google Scholar
  25. 25.
    Vogel KM. Framing biosecurity: an alternative to the biotech revolution model? Sci Public Policy. 2008;35(1):45–54.CrossRefGoogle Scholar
  26. 26.
    Gilbert NG, Mulkay M. Opening Pandora’s box: a sociological analysis of scientists’ discourse. New York, NY: Cambridge University Press; 1984.Google Scholar
  27. 27.
    Boyd D, Crawford K. Critical questions for big data: provocations for a cultural, technological, and scholarly phenomenon. Inf Commun Soc. 2012;15(5):662–79.CrossRefGoogle Scholar
  28. 28.
    Bansal S, Chowell G, Simonsen L, Vespignani A, Viboud C. Big data for infectious disease surveillance and modeling. J Infect Dis. 2016;214(Suppl 4):S375–9.  https://doi.org/10.1093/infdis/jiw400.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    van Panhuis WG, Paul P, Emerson C, Grefenstette J, Wilder R, Herbst AJ, Heymann D, Burke DS. BMC Public Health. 2014;14:1144.CrossRefGoogle Scholar
  30. 30.
    National Academies of Sciences, Engineering, and Medicine. Big data and analytics for infectious disease research, operations, and policy: proceedings of a workshop. Washington, DC: The National Academies Press; 2016.  https://doi.org/10.17226/23654.CrossRefGoogle Scholar
  31. 31.
    Chowell G, Cleaton JM, Viboud C. Elucidating transmission patterns from Internet reports: Ebola and Middle East respiratory syndrome as case studies. J Infect Dis. 2016;214(Suppl 4):S421–6.  https://doi.org/10.1093/infdis/jiw356.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Salathé M, Bengtsson L, Bodnar TJ, Brewer DD, Brownstein JS, Buckee C, et al. Digital epidemiology. PLoS Comput Biol. 2012;8(7):e1002616.  https://doi.org/10.1371/journal.pcbi.1002616.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Butler D. When Google got flu wrong. Nature. 2013;494(7436):155–6. http://www.nature.com/news/when-google-got-flu-wrong-1.12413 CrossRefGoogle Scholar
  34. 34.
    Ginsberg J, Mohebbi MH, Patel RS, Brammer L, Smolinski MS, Brilliant L. Detecting influenza epidemics using search engine query data. Nature. 2009;457:1012–4.  https://doi.org/10.1038/nature07634.CrossRefPubMedGoogle Scholar
  35. 35.
    Cook S, Conrad C, Fowlkes AL, Mohebbi MH. Assessing Google Flu Trends performance in the United States during the 2009 Influenza Virus A (H1N1) pandemic. PLoS One. 2011;6:e23610.CrossRefGoogle Scholar
  36. 36.
    Lazer D, Kennedy R, King G, Vespignani A. The parable of Google Flu: traps in big data analysis. Science. 2014;343(6176):1203–5.CrossRefGoogle Scholar
  37. 37.
    Olson DR, Konty KJ, Paladini M, Viboud C, Simonsen L. Reassessing Google Flu Trends data for detection of seasonal and pandemic influenza: a comparative epidemiological study at three geographic scales. PLoS Comput Biol. 2013;9(10):e1003256.  https://doi.org/10.1371/journal.pcbi.1003256.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Leinweber D. Stupid data miner tricks: overfitting the S&P 500. J Invest. 2007;16(1):15–22.  https://doi.org/10.3905/joi.2007.681820.CrossRefGoogle Scholar
  39. 39.
    Crawford K, Finn M. The limits of crisis data: analytical and ethical challenges of using social and mobile data to understand disasters. GeoJournal. 2015;80:491–502.  https://doi.org/10.1007/s10708-014-9597-z.CrossRefGoogle Scholar
  40. 40.
    Dixon D. Analysis tool or research methodology? Is there an epistemology for patterns? In: Berry D, editor. Understanding digital humanities. London: Palgrave Macmillan; 2012.Google Scholar
  41. 41.
    De Micheli C, Stroppa A. Twitter and the underground market. 11th Nexa lunch seminar, Turin, Italy. 2013. http://nexa.polito.it/nexacenterfiles/lunch-11-de_michelistroppa.pdf.
  42. 42.
    Marwic A, Lewis, R. Media manipulation and disinformation online. 2017. https://datasociety.net/output/media-manipulation-and-disinfo-online/k.Google Scholar
  43. 43.
    Mazur E. Collecting data from social networking web sites and blogs. In: Gosling SD, Johnson JA, editors. Advanced methods for conducting online behavioral research. Washington, DC: American Psychological Association; 2010. p. 77–90.CrossRefGoogle Scholar
  44. 44.
    Leitenberg M, Zilinskas RA, Kuhn JH. The Soviet biological weapons program: a history. Cambridge, MA: Harvard University Press; 2012.CrossRefGoogle Scholar
  45. 45.
    Belk RW. Qualitative research in advertising. J Advert. 2017;46(1):36–47.CrossRefGoogle Scholar
  46. 46.
    Manovich L. Trending: the promises and the challenges of big social data. In: Gold MK, editor. Debates in the digital humanities. Minneapolis, MN: University of Minnesota Press; 2012. p. 460–75.CrossRefGoogle Scholar
  47. 47.
    Murthy D. Digital ethnography. An examination of the use of new technologies for social research. Sociology. 2008;42(5):837–55.  https://doi.org/10.1177/0038038508094565.CrossRefGoogle Scholar
  48. 48.
    Orgad S. How can researchers make sense of the issues involved in collecting and interpreting online and offline data? In: Markham AN, Baym NK, editors. Internet inquiry. Conversations about method. Los Angeles, CA: Sage; 2009. p. 33–53.CrossRefGoogle Scholar
  49. 49.
    Snijders C, Matzati U, Reips U-D. “Big data”: big gaps of knowledge in the field of Internet science. Int J Internet Sci. 2012;7(1):1–5.Google Scholar
  50. 50.
    Tufekci Z. Big questions for social media big data: representativeness, validity and other methodological pitfalls. In: ICWSM ’14: Proceedings of the International AAAI Conference on Weblogs and Social Media; 2014.Google Scholar
  51. 51.
    Arbesman S. Stop hyping big data and start paying attention to long data. Wired. 2013. https://www.wired.com/2013/01/forget-big-data-think-long-data/.
  52. 52.
    Adar E, Weld DS, Bershad BN, Gribble SS. Why we search: Visualizing and predicting user behavior. In; Proceedings of the 16th International Conference on World Wide Web, 161–70. WWW ’07. New York, NY, USA: ACM; 2007.Google Scholar
  53. 53.
    Kairam SR, Morris MR, Teevan J, Liebling D, Dumais S. Towards Supporting Search over Trending Events with Social Media. In: Seventh International AAAI Conference on Weblogs and Social Media; 2013.Google Scholar
  54. 54.
    Jasanoff S. Technologies of humility. Nature. 2007;450:33.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.School of Public PolicyUniversity of Maryland at College ParkCollege ParkUSA

Personalised recommendations