Advertisement

Polar Ice Sheet Flow Models

  • Ryszard StaroszczykEmail author
Chapter
Part of the GeoPlanet: Earth and Planetary Sciences book series (GEPS)

Abstract

In this chapter, the flow of grounded ice sheets on geophysical scales is investigated. Two ice flow configurations are considered: plane and radially-symmetric. Assuming that ice viscosities depend on local temperature, strain-rate and current strength of anisotropy of the material, computational models have been developed to solve the system of equations governing the flow of a large, gravity-driven, polythermal polar ice sheet. The plane flow problem is solved by a finite-element method, whereas the radially-symmetric problem is solved by applying a method of asymptotic expansions in a small parameter defining the ratio of an ice sheet’s thickness to its lateral span. The results of numerical simulations illustrate the effect of ice anisotropy on both the free-surface profile and the velocity field in a polar ice sheet. In addition, the influence of the bed topography features on the overall flow of an ice sheet is examined. The chapter is complemented with the presentation of results showing the effects of the dynamic recrystallization process on the flow of a polar ice sheet.

References

  1. Bargmann S, Seddik H, Greve R (2012) Computational modeling of flow-induced anisotropy of polar ice for the EDML deep drilling site, Antarctica: the effect of rotation recrystallization and grain boundary migration. Int J Numer Anal Meth Geomech 36(7):892–917.  https://doi.org/10.1012/nag.1034CrossRefGoogle Scholar
  2. Chorin AJ (1967) A numerical method for solving incompressible viscous flow problems. J Comp Phys 2(1):12–26CrossRefGoogle Scholar
  3. Chorin AJ (1968) Numerical solution of the Navier-Stokes equations. Math Comp 22(104):745–762CrossRefGoogle Scholar
  4. Cliffe KA, Morland LW (2000) Full and reduced model solutions of steady axi-symmetric ice sheet flow over small and large bed topography slopes. Continuum Mech Thermodyn 12(3):195–216CrossRefGoogle Scholar
  5. Cliffe KA, Morland LW (2001) A thermo-mechanically coupled test case for axi-symmetric ice sheet flow. Continuum Mech Thermodyn 13(2):135–148.  https://doi.org/10.1007/s001610100047CrossRefGoogle Scholar
  6. Cliffe KA, Morland LW (2002) Full and reduced model solutions of steady axi-symmetric ice sheet flow over bed topography with moderate slopes. Continuum Mech Thermodyn 14(2):149–164.  https://doi.org/10.1007/s001610100059CrossRefGoogle Scholar
  7. Cliffe KA, Morland LW (2004) Full and reduced model solutions of unsteady axi-symmetric ice sheet flow over a flat bed. Continuum Mech Thermodyn 16(5):481–494.  https://doi.org/10.1007/s00161-004-0175-3CrossRefGoogle Scholar
  8. Dahl-Jensen D (1989) Steady thermomechanical flow along two-dimensional flow lines in large grounded ice sheets. J Geophys Res 94(B8):10355–10362CrossRefGoogle Scholar
  9. Drăghicescu A (2001) Steady plane nonlinearly viscous flow of ice sheets on beds with moderate slope topography. Continuum Mech Thermodyn 13(6):421–438CrossRefGoogle Scholar
  10. Fabre A, Letreguilly A, Ritz C, Mangeney A (1995) Greenland under changing climate: sensitivity experiments with a new three-dimensional ice-sheet model. Ann Glaciol 21:1–7CrossRefGoogle Scholar
  11. Fowler AC, Larson DA (1978) On the flow of polythermal glaciers. I. Model and preliminary analysis. Proc R Soc Lond A 363(1713):217–242CrossRefGoogle Scholar
  12. Gillet-Chaulet F, Gagliardini O, Meyssonnier J, Montagnat M, Castelnau O (2005) A user-friendly anisotropic flow law for ice-sheet modelling. J Glaciol 51(172):3–14CrossRefGoogle Scholar
  13. Gillet-Chaulet F, Hindmarsh RCA (2011) Flow at ice-divide triple junctions: 1. Three-dimensional full-Stokes modeling. J Geophys Res 116(F02023).  https://doi.org/10.1029/2009JF001611
  14. Greve R, Blatter H (2009) Dynamics of ice sheets and glaciers. Springer, Berlin, HeidelbergCrossRefGoogle Scholar
  15. Gundestrup NS, Dahl-Jensen D, Johnsen SJ, Rossi A (1993) Bore-hole survey at dome GRIP 1991. Cold Reg Sci Technol 21(4):399–402CrossRefGoogle Scholar
  16. Hanson B (1995) A fully three-dimensional finite-element model applied to velocities on Storglaciären. Sweden J Glaciol 41(137):91–102CrossRefGoogle Scholar
  17. Herterich K (1988) A three-dimensional model of the Antarctic ice sheet. Ann Glaciol 11:32–35CrossRefGoogle Scholar
  18. Hindmarsh RCA (2004) A numerical comparison of approximations to the Stokes equations used in ice sheet and glacier modeling. J Geophys Res 109(F1):F01012.  https://doi.org/10.1029/2003JF000065CrossRefGoogle Scholar
  19. Hindmarsh RCA, Morland LW, Boulton GS, Hutter K (1987) The unsteady plane flow of ice-sheets, a parabolic problem with two moving boundaries. Geophys Astrophys Fluid Dyn 39(3):183–225CrossRefGoogle Scholar
  20. Hirsch C (1992) Numerical computation of internal and external flows, vol 2. Wiley, ChichesterGoogle Scholar
  21. Hodge SM (1985) Two-dimensional, time-dependent modeling of an arbitrarily shaped ice mass with the finite element technique. J Glaciol 31(109):350–359CrossRefGoogle Scholar
  22. Hooke RL, Raymond CF, Hotchkiss RL, Gustafson RJ (1979) Calculations of velocity and temperature in a polar glacier using the finite-element method. J Glaciol 24(90):131–145CrossRefGoogle Scholar
  23. Hutter K (1981) The effect of longitudinal strain on the shear stress of an ice sheet: in defence of using stretched coordinates. J Glaciol 27(95):39–56CrossRefGoogle Scholar
  24. Hutter K. (1983) Theoretical glaciology. Material science of ice and the mechanics of glaciers and ice sheets. Reidel, DordrechtGoogle Scholar
  25. Hutter K, Yakowitz S, Szidarovszky F (1986) A numerical study of plane ice sheet flow. J Glaciol 32(111):139–160CrossRefGoogle Scholar
  26. Huybrechts P (1990) A 3-D model for the Antarctic ice sheet: a sensitivity study on the glacial-interglacial contrast. Climate Dyn 5(2):79–92CrossRefGoogle Scholar
  27. Hvidberg CS (1996) Steady-state thermomechanical modelling of ice flow near the centre of large ice sheets with the finite-element technique. Ann Glaciol 23:116–123CrossRefGoogle Scholar
  28. Ma Y, Gagliardini O, Ritz C, Gillet-Chaulet F, Durand G, Montagnat M (2010) Enhancement factors for grounded ice and ice shelves inferred from an anisotropic ice-flow model. J Glaciol 56(199):805–812CrossRefGoogle Scholar
  29. Mangeney A, Califano F (1998) The shallow ice approximation for anisotropic ice: formulation and limits. J Geophys Res 103(B1):691–705CrossRefGoogle Scholar
  30. Mangeney A, Califano F, Castelnau O (1996) Isothermal flow of an anisotropic ice sheet in the vicinity of an ice divide. J Geophys Res 101(B12):28189–28204CrossRefGoogle Scholar
  31. Mangeney A, Califano F, Hutter K (1997) A numerical study of anisotropic, low Reynolds number, free surface flow for ice sheet modeling. J Geophys Res 102(B10):22749–22764CrossRefGoogle Scholar
  32. Morland LW (1984) Thermomechanical balances of ice sheet flows. Geophys Astrophys Fluid Dyn 29:237–266CrossRefGoogle Scholar
  33. Morland LW (1997) Radially symmetric ice sheet flow. Phil Trans R Soc Lond A 355:1873–1904CrossRefGoogle Scholar
  34. Morland LW (2000) Steady plane isothermal linearly viscous flow of ice sheets on beds with moderate-slope topography. Proc R Soc Lond A 456(1999):1711–1739CrossRefGoogle Scholar
  35. Morland LW (2001) Influence of bed topography on steady plane ice sheet flow. In: Straughan B, Greve R, Ehrentraut H, Wang Y (eds) Continuum mechanics and applications in geophysics and the environment. Springer, Berlin, pp 276–304CrossRefGoogle Scholar
  36. Morland LW (2009) A three-dimensional ice-sheet flow solution. J Glaciol 55(191):473–480.  https://doi.org/10.3189/002214309788816588CrossRefGoogle Scholar
  37. Morland LW, Drăghicescu A (1998) Steady plane isothermal linearly viscous flow of ice sheets on beds with large slope topography. Environmetrics 9:459–492CrossRefGoogle Scholar
  38. Morland LW, Johnson IR (1980) Steady motion of ice sheets. J Glaciol 25(92):229–246CrossRefGoogle Scholar
  39. Morland LW, Staroszczyk R (2006) Steady radial ice sheet flow with fabric evolution. J Glaciol 52(177):267–280.  https://doi.org/10.3189/172756506781828719CrossRefGoogle Scholar
  40. Pan W, Tartakovsky AM, Monaghan JJ (2013) Smoothed particle hydrodynamics non-newtonian model for ice-sheet and ice-shelf dynamics. J Comput Phys 242:828–842.  https://doi.org/10.1016/j.jcp.2012.10.027CrossRefGoogle Scholar
  41. Press WH, Teukolsky SA, Vettering WT, Flannery BP (2001) Numerical recipes in Fortran 77, vol. 1, 2nd edn. Cambridge University Press, CambridgeGoogle Scholar
  42. Raymond CF (1983) Deformation in the vicinity of ice divides. J Glaciol 29(103):357–373CrossRefGoogle Scholar
  43. Schoof C (2003) The effect of basal topography on ice sheet dynamics. Continuum Mech Thermodyn 15(3):295–307CrossRefGoogle Scholar
  44. Seddik H, Greve R, Zwinger T, Gillet-Chaulet F, Gagliardini O (2012) Simulations of the Greenland ice sheet 100 years into the future with the full Stokes model Elmer/Ice J Glaciol 58(209):427–440.  https://doi.org/10.3189/2012JoG11J177CrossRefGoogle Scholar
  45. Staroszczyk R (2003) Plane ice sheet flow with evolving and recrystallising fabric. Ann Glaciol 37(1):247–251.  https://doi.org/10.3189/172756403781815834CrossRefGoogle Scholar
  46. Staroszczyk R (2004) Constitutive modelling of creep induced anisotropy of ice. IBW PAN Publishing House, GdańskGoogle Scholar
  47. Staroszczyk R (2006) Axi-symmetric ice sheet flow with evolving anisotropic fabric. Bull Pol Ac Tech 54(4):419–428Google Scholar
  48. Staroszczyk R, Morland LW (2000) Plane ice-sheet flow with evolving orthotropic fabric. Ann Glaciol 30:93–101CrossRefGoogle Scholar
  49. Zienkiewicz OC, Taylor RL, Nithiarasu P (2005a) The finite element method for fluid dynamics, 6th edn. Elsevier Butterworth-Heinemann, AmsterdamGoogle Scholar
  50. Zienkiewicz OC, Taylor RL, Zhu JZ (2005b) The finite element method: its basis and fundamentals, 6th edn. Elsevier Butterworth-Heinemann, AmsterdamGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institute of Hydro-EngineeringPolish Academy of SciencesGdańskPoland

Personalised recommendations