Advertisement

Sea Ice in Civil Engineering Applications

  • Ryszard StaroszczykEmail author
Chapter
Part of the GeoPlanet: Earth and Planetary Sciences book series (GEPS)

Abstract

This chapter is devoted to the behaviour of sea ice on civil engineering length and time scales. Several problems of the interaction between a coherent sea ice cover and an engineering structure are analysed. First, the problem of elastic response of floating ice during its short-time interaction (measured in seconds) with a rigid vertical structure is analysed, with the aim to evaluate horizontal forces that are exerted by ice on the structure during an elastic buckling failure of a floating ice plate under compressive and bending loadings. Next, ice–structure interaction events lasting for hours and days are investigated, in which the deformations of ice are dominated by its creep. Thus, the mechanism of creep buckling of a floating ice plate is analysed, with the purpose to estimate the magnitudes of forces acting on the structure until the time at which the flexural failure of the ice cover occurs. This s followed by the analysis of a dynamic impact of floating ice on a rigid structure, during which the floating ice behaves in a typically brittle manner.

References

  1. Ashby MF, Hallam SD (1986) The failure of brittle solids containing small cracks under compressive stress-states. Acta Metall 34(3):497–510CrossRefGoogle Scholar
  2. Chadwick P (1999) Continuum mechanics: concise theory and problems, 2nd edn. Dover, Mineola, New YorkGoogle Scholar
  3. Flato GM, Hibler WD (1992) Modeling pack ice as a cavitating fluid. J Phys Oceanogr 22(6):626–651CrossRefGoogle Scholar
  4. Gray JMNT, Morland LW (1994) A two-dimensional model for the dynamics of sea ice. Philos Trans R Soc Lond A 347(1682):219–290.  https://doi.org/10.1098/rsta.1994.0045CrossRefGoogle Scholar
  5. Hawkes I, Mellor M (1972) Deformation and fracture of ice under uniaxial stress. J Glaciol 11(61):103–131CrossRefGoogle Scholar
  6. Herman A (2016) Discrete-element bonded-particle Sea Ice model DESIgn, version 1.3a—model description and implementation. Geosci Model Dev 9(3):1219–1241.  https://doi.org/10.5194/gmd-9-1219-2016CrossRefGoogle Scholar
  7. Herman A (2017) Wave-induced stress and breaking of sea ice in a coupled hydrodynamic discrete-element wave-ice model. Cryosphere 11(6):2711–2725.  https://doi.org/10.5194/tc-11-2711-2017CrossRefGoogle Scholar
  8. Hibler WD (1977) A viscous sea ice law as a stochastic average of plasticity. J Geophys Res 82(27):3932–3938CrossRefGoogle Scholar
  9. Hibler WD (1979) A dynamic thermodynamic sea ice model. J Phys Oceanogr 9(4):815–846CrossRefGoogle Scholar
  10. Hibler WD (2001) Sea ice fracturing on the large scale. Eng Fract Mech 68(17–18):2013–2043.  https://doi.org/10.1016/S0013-7944(01)00035-2CrossRefGoogle Scholar
  11. Hibler WD, Ip CF (1995) The effect of sea ice rheology on Arctic buoy drift. ASME AMD 207:255–263Google Scholar
  12. Hunke EC, Dukowicz JK (1997) An elastic-viscous-plastic model for sea ice dynamics. J Phys Oceanogr 27(9):1849–1867CrossRefGoogle Scholar
  13. Hutter K (1983) Theoretical glaciology. Material science of ice and the mechanics of glaciers and ice sheets. Reidel, DordrechtGoogle Scholar
  14. Iliescu D, Schulson EM (2002) Brittle compressive failure of ice: monotonic versus cyclic loading. Acta Mater 50(8):2163–2172CrossRefGoogle Scholar
  15. Ip CF, Hibler WD, Flato GM (1991) On the effect of rheology on seasonal sea-ice simulations. Ann Glaciol 15:17–25CrossRefGoogle Scholar
  16. Jordaan IJ (2001) Mechanics of ice–structure interaction. Eng Fract Mech 68(17–18):1923–1960CrossRefGoogle Scholar
  17. Kara AB, Wallcraft AJ, Metzger EJ, Hurlburt HE, Fairall CW (2007) Wind stress drag coefficient over the global ocean. J Clim 20(23):5856–5864.  https://doi.org/10.1175/2007JCLI1825.1CrossRefGoogle Scholar
  18. Kerr AD (1978) On the determination of horizontal forces a floating ice plate exerts on a structure. J Glaciol 20(82):123–134CrossRefGoogle Scholar
  19. Kerr AD, Palmer WT (1972) The deformation and stresses in floating ice plates. Acta Mech 15(1–2):57–72.  https://doi.org/10.1007/BF01177286CrossRefGoogle Scholar
  20. Lu P, Li Z, Cheng B, Leppäranta M (2011) A parameterization of the ice-ocean drag coefficient. J Geophys Res 116(C07):C07019.  https://doi.org/10.1029/2010JC006878CrossRefGoogle Scholar
  21. Mellor M (1980) Mechanical properties of polycrystalline ice. In: Tryde P (ed) Proceedings of IUTAM symposium on physics and mechanics of ice, Copenhagen 1979. Springer, Berlin, pp 217–245CrossRefGoogle Scholar
  22. Morland LW (1993) The flow of ice sheets and ice shelves. In: Hutter K (ed) Continuum mechanics in environmental sciences and geophysics. Springer, Wien, pp 403–466CrossRefGoogle Scholar
  23. Morland LW (2001) Influence of bed topography on steady plane ice sheet flow. In: Straughan B, Greve R, Ehrentraut H, Wang Y (eds) Continuum mechanics and applications in geophysics and the environment. Springer, Berlin, pp 276–304CrossRefGoogle Scholar
  24. Morland LW, Staroszczyk R (1998) A material coordinate treatment of the sea-ice dynamics equations. Proc R Soc Lond A 454(1979):2819–2857.  https://doi.org/10.1098/rspa.1998.0283CrossRefGoogle Scholar
  25. Nevel DE (1980) Bending and buckling of a wedge on an elastic foundation. In: Tryde P (ed) Proceedings of IUTAM symposium on physics and mechanics of ice, Copenhagen 1979. Springer, Berlin, pp 278–288CrossRefGoogle Scholar
  26. Nixon WA (1996) Wing crack models of the brittle compressive failure of ice. Cold Reg Sci Technol 24(1):41–55CrossRefGoogle Scholar
  27. Overland JE, Pease CH (1988) Modeling ice dynamics of coastal seas. J Geophys Res 93(C12):15 619–15 637.  https://doi.org/10.1029/JC093iC12p15619CrossRefGoogle Scholar
  28. Palmer AC, Sanderson TJO (1991) Fractal crushing of ice and brittle solids. Proc R Soc Lond A 433:469–477CrossRefGoogle Scholar
  29. Polojärvi A, Tuhkuri J (2009) 3D discrete numerical modelling of ridge keel punch through tests. Cold Reg Sci Technol 56(1):18–29.  https://doi.org/10.1016/j.coldregions.2008.09.008CrossRefGoogle Scholar
  30. Polojärvi A, Tuhkuri J, Pustogvar A (2015) DEM simulations of direct shear box experiments of ice rubble: force chains and peak loads. Cold Reg. Sci. Technol. 116:12–23.  https://doi.org/10.1016/j.coldregions.2015.03.011CrossRefGoogle Scholar
  31. Pralong A, Hutter K, Funk M (2006) Anisotropic damage mechanics for viscoelastic ice. Continuum Mech Thermodyn 17(5):387–408CrossRefGoogle Scholar
  32. Rothrock DA (1975) The energetics of the plastic deformation of pack ice by ridging. J Geophys Res 80(33):4514–4519.  https://doi.org/10.1029/JC080i033p04514CrossRefGoogle Scholar
  33. Sanderson TJO (1988) Ice mechanics. Risks to offshore structures. Graham and Trotman, LondonGoogle Scholar
  34. Schulkes RMSM, Morland LW, Staroszczyk R (1998) A finite-element treatment of sea ice dynamics for different ice rheologies. Int J Numer Anal Methods Geomech 22(3):153–174CrossRefGoogle Scholar
  35. Schulson EM, Duval P (2009) Creep and fracture of ice. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  36. Schulson EM, Gratz ET (1999) The brittle compressive failure of orthotropic ice under triaxial loading. Acta Mater 47(3):745–755CrossRefGoogle Scholar
  37. Sjölind SG (1985) Viscoelastic buckling analysis of floating ice sheets. Cold Reg Sci Technol 11(3):241–246CrossRefGoogle Scholar
  38. Sjölind SG (1987) A constitutive model for ice as a damaging visco-elastic material. Cold Reg Sci Technol 14(3):247–262CrossRefGoogle Scholar
  39. Smith GD, Morland LW (1981) Viscous relations for the steady creep of polycrystalline ice. Cold Reg Sci Technol 5(2):141–150CrossRefGoogle Scholar
  40. Smith RB (1983) A note on the constitutive law for sea ice. J Glaciol 29(101):191–195CrossRefGoogle Scholar
  41. Sodhi DS, Haynes FD, Kato K, Hirayama K (1983) Experimental determination of the buckling loads of floating ice sheets. Ann Glaciol 4:260–265CrossRefGoogle Scholar
  42. Specht B (1988) Modified shape functions for the three-node plate bending element passing the patch test. Int J Numer Methods Eng 26(3):705–715.  https://doi.org/10.1002/nme.1620260313CrossRefGoogle Scholar
  43. Staroszczyk R (2002) On the maximum horizontal forces exerted by floating ice on engineering structures. Arch Hydro-Eng Environ Mech 49(4):17–35Google Scholar
  44. Staroszczyk R (2003) Finite element simulations of floating ice–engineering structure interactions. Arch Hydro-Eng Environ Mech 50(3):251–268Google Scholar
  45. Staroszczyk R (2005) Loads exerted by floating ice on a cylindrical structure. Arch Hydro-Eng Environ Mech 52(1):39–58Google Scholar
  46. Staroszczyk R (2006) Loads exerted on a cylindrical structure by floating ice modelled as a viscous-plastic material. Arch Hydro-Eng Environ Mech 53(2):105–126Google Scholar
  47. Staroszczyk R (2007) Loads on an off-shore structure due to an ice floe impact. Arch Hydro-Eng Environ Mech 54(2):77–94Google Scholar
  48. Staroszczyk R (2018) Floating ice plate failure due to its thermal expansion at the surface. Ocean Eng 158:331–337.  https://doi.org/10.1016/j.oceaneng.2018.03.072CrossRefGoogle Scholar
  49. Staroszczyk R, Hedzielski B (2004) Creep buckling of a wedge-shaped floating ice plate. Eng Trans 52(1–2):111–130Google Scholar
  50. Timco GW, O’Brien S (1994) Flexural strength equation for sea ice. Cold Reg Sci Technol 22(3):285–298.  https://doi.org/10.1016/0165-232X(94)90006-XCrossRefGoogle Scholar
  51. Timoshenko S, Woinowsky-Krieger S (1959) Theory of plates and shells, 2nd edn. McGraw-Hill, New YorkGoogle Scholar
  52. Tremblay LB, Mysak LA (1997) Modeling sea ice as a granular material, including the dilatancy effect. J Phys Oceanogr 27(11):2342–2360CrossRefGoogle Scholar
  53. Wang YS, Ralston TD (1983) Elastic-plastic stress and strain distributions in an ice sheet moving against a circular structure. In: Proceedings of seventh international conference on port and ocean engineering under arctic conditions, Helsinki 1983, pp 940–951Google Scholar
  54. Xu Y, Xu J, Wang J (2004) Fractal model for size effect on ice failure strength. Cold Reg Sci Technol 40(1–2):135–144CrossRefGoogle Scholar
  55. Zienkiewicz OC, Taylor RL (2005a) The finite element method for solid and structural mechanics, 6th edn. Elsevier Butterworth-Heinemann, AmsterdamGoogle Scholar
  56. Zienkiewicz OC, Taylor RL, Zhu JZ (2005b) The finite element method: its basis and fundamentals, 6th edn. Elsevier Butterworth-Heinemann, AmsterdamCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institute of Hydro-EngineeringPolish Academy of SciencesGdańskPoland

Personalised recommendations