Advertisement

Metamorphic Processes in Rocks

  • Vladimir V. ReverdattoEmail author
  • Igor I. Likhanov
  • Oleg P. Polyansky
  • Valentin S. Sheplev
  • Vasiliy Yu. Kolobov
Chapter
Part of the Springer Geology book series (SPRINGERGEOL)

Abstract

This chapter presents a generalized P-T-t diagram of the evolution of metamorphic complexes of different geodynamic nature that are characteristic of different types of metamorphism. This diagram was built using the most recent natural observations, which are characterized by the simultaneous presence of prograde and retrograde segments of a P-T path. This chapter discusses some of the ambiguous interpretations of P-T-t paths in areas with simultaneous manifestation of different metamorphic processes. Quantitative models for the analysis of different types of interaction of rocks undergoing metamorphism are exemplified using the following processes involved in the formation of distinctly expressed zoned reaction textures (coronites, kelyphites, symplectites, nodules, and segregations) and mineral transformations in texturally homogeneous rocks between matrix minerals and porphyroblasts. It was shown that mass transfer during metamorphic reactions occurs with the preservation of the material balance within very small local volumes of the rock, which increase from a few hundredths of a mm3 to a few cm3, depending on the duration of metamorphism, P-T parameters, strain intensity and a degree of fluid saturation of rocks. We also consider different kinetic parameters of diffusion-controlled metamorphic reactions, such as mineral reaction mechanisms and rates.

References

  1. Abu-Alam TS, Stuwe K (2009) Exhumation during oblique transpression: the Feiran-Solaf region, Egypt. J Metamorph Geol 27:439–459CrossRefGoogle Scholar
  2. Ague JJ, Carlson WD (2013) Metamorphism as garnet sees it: the kinetics of nucleation and growth, equilibration, and diffusional relaxation. Elements 9:439–445CrossRefGoogle Scholar
  3. Artoni A, Meckel LD (1998) History and deformation rates of a thrust sheet top basin: the Barreme basin, western Alps, SE France. Geol Soc Spec Publ 134:213–237 (Blackwell, London)CrossRefGoogle Scholar
  4. Ashworth JR (1993) Fluid-absent diffusion kinetics of Al inferred from retrograde meta- morphic coronas. Am Mineral 78:331–337Google Scholar
  5. Ashworth JR, Birdi JJ (1990) Diffusion modeling of coronas around olivine in an open system. Geochim Cosmochim Acta 54:2389–2401CrossRefGoogle Scholar
  6. Ashworth JR, Sheplev VS (1997) Diffusion modelling of metamorphic layered coronas with stability criterion and consideration of affinity. Geochim Cosmochim Acta 61:3671–3689CrossRefGoogle Scholar
  7. Ashworth JR, Sheplev VS, Bryxina NA et al (1998) Diffusion-controlled corona reaction and overstepping of equilibrium in a garnet granulite, Yenisei ridge, Siberia. J Metamorph Geol 16:231–246CrossRefGoogle Scholar
  8. Baker AJ (1987) Models for the tectonothermal evolution of the eastern Dalradian of Scotland. J Metamorph Geol 5:101–118CrossRefGoogle Scholar
  9. Balashov VN, Zaraisky GP, Tikhomirova VI et al (1983) Diffusion of rock-forming components in pore solutions at T = 250 °C and P = 100 MPa. Geochem Int 20(1):28–40Google Scholar
  10. Balen D, Massonne H-J, Petrinec Z (2015) Collision-related Early Paleozoic evolution of a crustal fragment from the northern Gondwana margin (Slavonian Mountains, Tisia Mega Unit, Croatia): reconstruction of the P-T path, timing and paleotectonic implications. Lithos 232:211–228CrossRefGoogle Scholar
  11. Barrow G (1893) On an intrusion of muscovite-biotite gneiss in the south-eastern Highlands of Scotland, and its accompanying metamorphism. Q J Geol Soc Lond 49:330–388CrossRefGoogle Scholar
  12. Barrow G (1912) On the geology of the Lower Deeside and the southern Highland border. Proc Geol Assoc 23:268–284CrossRefGoogle Scholar
  13. Baxter EF (2003) Natural constraints on metamorphic reaction rates. In: Vance D, Muller W, Villa IM (eds) Geochronology: linking the isotopic record with petrology and textures. Geological Society Special Publication, vol 220. Blackwell, London, pp 183–202CrossRefGoogle Scholar
  14. Beaumont C, Jamieson RA, Nguyen MH et al (2001) Hymalayan tectonics explained by extrusion of a low-viscosity crustal channel coupled to focused surface denudation. Nature 414:738–742CrossRefGoogle Scholar
  15. Beddoe-Stephens B (1990) Pressures and temperatures of Dalradian metamorphism and the andalusite-kyanite transformation in the northeast Grampians. Scott J Geol 26:3–14CrossRefGoogle Scholar
  16. Berman RG (1991) Thermobarometry using multi-equilibrium calculations: a new technique, with petrological applications. Can Mineral 29:833–856Google Scholar
  17. Bilham R, Larson K, Freymueller J et al (1997) GPS measurements of present-day convergence across the Nepal Himalaya. Nature 386:61–64CrossRefGoogle Scholar
  18. Biot MA (1961) Theory of folding of stratified viscoelastic media and its implications in tectonics and orogenesis. Geol Soc Am Bull 72:1595–1620CrossRefGoogle Scholar
  19. Bohlen SR (1991) On the formation of granulites. J Metamorph Geol 9:223–229CrossRefGoogle Scholar
  20. Boltaks BI (1961) Diffuziya v poluprovodnikakh (Diffusion in semiconductors). Fizmathgis, MoscowGoogle Scholar
  21. Bolton EW, Lasaga AC, Rye DM (1999) Long-term flow/chemistry feedback in a porous medium with heterogeneous permeability: kinetic control of dissolution and precipitation. Am J Sci 299:1–68CrossRefGoogle Scholar
  22. Boynton WV (1984) Cosmochemistry of the rare earth elements: meteorite studies. In: Henderson P (ed) Rare earth element geochemistry. Elsevier, Amsterdam, pp 63–114CrossRefGoogle Scholar
  23. Brewer ID, Burbank DW (2006) Thermal and kinematic modeling of bedrock and detrital cooling ages in the central Himalaya. J Geophys Res 111:B09409CrossRefGoogle Scholar
  24. Bronshtein IN, Semendyayev KA (1979) Handbook of mathematics. Verlag Harri Deutsch, BerlinCrossRefGoogle Scholar
  25. Brown EH (1996) High-pressure metamorphism caused by magma loading in Fiordland, New Zealand. J Metamorph Geol 14:441–452CrossRefGoogle Scholar
  26. Brown M (2001) From microscope to mountain belt: 150 years of petrology and its contribution to understanding geodynamics, particularly the tectonics of orogens. J Geodynamics 32:115–164CrossRefGoogle Scholar
  27. Brown M (2007) Metamorphic conditions in orogenic belts: a record of secular change. Int Geol Rev 49:193–234CrossRefGoogle Scholar
  28. Brown EH, Walker NW (1993) A magma-loading model for Barrovian metamorphism in the Southeast Coast Plutonic Complex, British Columbia and Washington. Geol Soc Am Bull 105:479–500CrossRefGoogle Scholar
  29. Bucher K, Grapes R (2011) Petrogenesis of metamorphic rocks, 8th edn. Springer-Verlag, Berlin-HeidelbergCrossRefGoogle Scholar
  30. Burtman VS (2013) The geodynamics of the Pamir-Punjab syntaxis. Geotectonics 47(1):31–51CrossRefGoogle Scholar
  31. Cagnard F, Barbey P, Gapais D (2011) Transition between “Archaean-type” and “modern-type” tectonics: insights from the Finnish Lapland Granulite Belt. Precambr Res 187:127–142CrossRefGoogle Scholar
  32. Cai J, Liu F, Liu P et al (2014) Metamorphic P-T path and tectonic implications of pelitic granulites from the Daqingshan Complex of the Khondalite Belt, North China Craton. Precambr Res 241:161–184CrossRefGoogle Scholar
  33. Carlson WD (2012) Rates and mechanism of Y, REE, and Cr diffusion in garnet. Am Mineral 97:1598–1618CrossRefGoogle Scholar
  34. Carmichael DM (1969) On the mechanism of prograde metamorphic reactions in quartz-bearing pelitic rocks. Contr Mineral Petrol 20:244–267CrossRefGoogle Scholar
  35. Carmichael DM (1970) Intersecting isograds in the Whetstone Lake Area, Ontario. J Petrol 11:147–181CrossRefGoogle Scholar
  36. Chinner GA (1980) Kyanite isograds of Grampian metamorphism. J Geol Soc Lond 137:35–39CrossRefGoogle Scholar
  37. Clayton JL, Bostick NH (1986) Temperature effect on kerogen and on molecular and isotopic composition of organic matter in Pierre Shale near an igneous dike. Org Geochem 10:135–143CrossRefGoogle Scholar
  38. Cloos M (1982) Flow melanges: numerical modelling and geological constraints on their origin in the Franciscan subduction complex. Geol Soc Am Bull 93:330–345CrossRefGoogle Scholar
  39. Collins WJ, Vernon RH (1991) Orogeny associated with anticlockwise P-T-t paths: Evidence from low-P, high-T metamorphic terranes in the Arunta inlier, Central Australia. Geology 19:835–838CrossRefGoogle Scholar
  40. Crawford ML (1966) Composition of plagioclase and associated minerals in some schists of Vermont, USA and South Westland, New Zealand. Contrib Mineral Petrol 13:269–294CrossRefGoogle Scholar
  41. Cruciani G, Franceschelli M, Groppo C (2011) P-T evolution of eclogite-facies metabasite from NE Sardinia, Italy: Insights into the prograde evolution of Variscan eclogites. Lithos 121:135–150CrossRefGoogle Scholar
  42. Cutts KA, Kinny PD, Strachan RA et al (2010) Three metamorphic events recorded in a single garnet: Integrated phase modelling, in situ LA-ICPMS and SIMS geochronology from the Moine Supergroup, NW Scotland. J Metamorph Geol 28:249–267CrossRefGoogle Scholar
  43. De Groot SR, Mazur P (1962) Nonequilibrium thermodynamics. North Holland Publishing Co., AmsterdamGoogle Scholar
  44. Denbig K (1966) The principles of chemical equilibrium. Cambridge University Press, CambridgeGoogle Scholar
  45. Dipple GM, Wintsch RP, Andrews MS (1990) Identification of the scales of different mobility in a ductile fault zone. J Metamorph Geol 8:645–661CrossRefGoogle Scholar
  46. Droop GTR, Bucher-Nurminen K (1984) Reaction textures and metamorphic evolution of sapphirine-bearing granulites from the Gruf Complex, Italian central Alps. J Petrol 25:766–803CrossRefGoogle Scholar
  47. Dujon SC, Lagache M (1984) Echanges entre plagioclases et solutions aqueuses de chlorures sodi-calciques á différentes pressions et temperature (400 á 800 °C, 1 a 3 kilobars). Bull Mineral 197:553–569Google Scholar
  48. Engi M, Lanari P, Kohn MJ (2017) Significant ages—an Introduction to Petrochronology. Rev Mineral Geochem 83:1–12CrossRefGoogle Scholar
  49. England P, Molnar P (1993) The interpretation of inverted metamorphic isograds using simple physical calculation. Tectonics 12:145–157CrossRefGoogle Scholar
  50. England PC, Thompson AB (1984) Pressure-temperature-time paths of regional metamorphism: heat transfer during the evolution of regions of thickened continental crust. J Petrol 25:894–928CrossRefGoogle Scholar
  51. Ernst WG (1988) Tectonic history of subduction zones inferred from retrograde blueschist P-T paths. Geology 16:1081–1084CrossRefGoogle Scholar
  52. Ernst RE, Wingate MTD, Buchan KL et al (2008) Global record of 1600–700 Ma Large Igneous Provinces (LIPs): implications for the reconstruction of the proposed Nuna (Columbia) and Rodinia supercontinents. Precambr Res 160:159–178CrossRefGoogle Scholar
  53. Escuder-Viruete J, Pérez-Estaún A (2013) Contrasting exhumation P-T paths followed by high-P rocks in the northern Caribbean subduction–accretionary complex: insights from the structural geology, microtextures and equilibrium assemblage diagrams. Lithos 160–161:117–144CrossRefGoogle Scholar
  54. Faryad SW, Chakraborty S (2005) Duration of Eo-Alpine metamorphic events obtained from multicomponent diffusion modeling of garnet: a case study from the Eastern Alps. Contrib Mineral Petrol 150:306–318CrossRefGoogle Scholar
  55. Fein JB, Walther JV (1987) Calcite solubility in supercritical CO2–H2O fluids. Geochim Cosmochim Acta 51:1665–1673CrossRefGoogle Scholar
  56. Fein JB, Walther JV (1989) Calcite solubility and speciation in supercritical NaCl–HCl aqueous fluids. Contrib Mineral Petrol 103:317–324CrossRefGoogle Scholar
  57. Ferry JM (1983) Applications of the reaction progress variable in Metamorphic Petrology. J Petrol 24:343–376CrossRefGoogle Scholar
  58. Fisher GW (1973) Nonequilibrium thermodynamics as a model for diffusion-controlled metamorphic processes. Am J Sci 273:897–924CrossRefGoogle Scholar
  59. Fisher GW (1977) Nonequilibrium thermodynamics in metamorphism. In: Fraser DG (ed) Thermodynamics in geology. NATO advanced study institutes series—C, vol 30. Reidel Publishing Co., Dordrecht, pp 381–403CrossRefGoogle Scholar
  60. Fisher GW (1978) Rate laws in metamorphism. Geochim Cosmochim Acta 42:1035–1050CrossRefGoogle Scholar
  61. Fisher GW, Elliott D (1974) Criteria for quasisteady diffusion and local equilibrium in metamorphism. In: Hofmann et al (eds) Geochemical transport and kinetics. Carnegie Institution of Washington, Publ 634, pp 231–241Google Scholar
  62. Fisher GW, Lasaga AC (1981) Irreversible thermodynamics in petrology. In: Lasaga AC, Kirkpatrick RJ (eds) Kinetics of geochemical processes. Reviews in mineralogy, vol 8. Mineral Society of America, Book Crafter Inc., Chelsea, Michigan, pp 171–209Google Scholar
  63. Fitts DD (1962) Nonequilibrium thermodynamics: a phenomenological theory of irreversible processes in fluid system. McGraw-Hill, New YorkGoogle Scholar
  64. Foster CT Jr (1977) Mass transfer in sullimanite-bearing pelitic schists near Rangeley, Maine. Am Mineral 62:727–746Google Scholar
  65. Foster CT Jr (1981) A thermodynamic model of mineral segregations in the lower sillimanite zone near Rangeley, Maine. Am Miner 66:260–277Google Scholar
  66. Foster CT Jr (1986) Thermodynamic models of reactions involving garnet in a sillimanite/staurolite schists. Mineral Mag 50:427–439CrossRefGoogle Scholar
  67. Franceschelli M, Memmi I, Ottolini L et al (2002) Trace- and major-element zoning in garnet: a case study in the pelitic schists of NE Sardinia (Italy). Neues Jahrb Mineral Monatsh 8:337–351CrossRefGoogle Scholar
  68. Frantz JD, Mao HK (1979) Bimetasomatism resulting from intergranular diffusion: II. Prediction of multimineralic zone sequences. Am J Sci 279:302–323CrossRefGoogle Scholar
  69. Freer R (1981) Diffusion in silicate minerals and glasses: a data digest and guide to the literature. Contrib Mineral Petrol 76:440–454CrossRefGoogle Scholar
  70. Frei D, Liebscher A, Franz G et al (2004) Trace element geochemistry of epidote minerals. Rev Mineral Geochem 56:553–605CrossRefGoogle Scholar
  71. Gao J, Klemdt R (2003) Formation of HP-LT rocks and their tectonic implications in the western Tianshan Orogen, NW China: geochemical and age constraints. Lithos 66:1–22CrossRefGoogle Scholar
  72. Gerya TV (2002) P-T-trendy i model’ formirovaniya granulitovykh kompleksov dokembriya (P-T trends and model of formation of Precambrian granulite complexes). Doctor of Science Dissertation, Moscow State University, MoscowGoogle Scholar
  73. Gerya TV (2010) Introduction to numerical geodynamic modelling. Cambridge University Press, CambridgeGoogle Scholar
  74. Gerya TV (2014) Precambrian geodynamics: concepts and models. Gondwana Res 25:442–463CrossRefGoogle Scholar
  75. Gerya TV, Maresch WV (2004) Metapelites of the Kanskiy granulite complex: kinked P-T path and geodynamic model. J Petrol 45:1393–1412CrossRefGoogle Scholar
  76. Ghent ED, Stout MZ (1981) Geobarometry and geothermometry of plagioclase-biotite- garnet-muscovite assemblages. Contrib Mineral Petrol 76:92–97CrossRefGoogle Scholar
  77. Gladkochub DP, Pisarevsky SA, Donskaya TV et al (2010) Proterozoic mafic magmatism in Siberian craton: an overview and implications for paleocontinental reconstruction. Precambr Res 183:660–668CrossRefGoogle Scholar
  78. Goes S, Capitanio FA, Morra G (2008) Evidence of lower-mantle slab penetration phases in plate motions. Nature 451:981–984CrossRefGoogle Scholar
  79. Griffen DT, Ribbe PH (1973) The crystal chemistry of staurolite. Am J Sci 273A:479–495Google Scholar
  80. Groppo C, Rolfo F (2008) Counterclockwise P-T evolution of the Aghil Range: metamorphic record of an accretionary melange between Kunlun and Karakorum (SW Sinkiang, China). Lithos 105:365–378CrossRefGoogle Scholar
  81. Guidotti CV (1970) The mineralogy and petrology of the transition from the lower to upper sillimanite zone in the Oquossoc area, Maine. J Petrol 11:277–336CrossRefGoogle Scholar
  82. Guidotti CV (1974) Transition from staurolite to sillimanite zone, Rangeley quadrangle, Maine. Geol Soc Am Bull 85:475–490CrossRefGoogle Scholar
  83. Gutscher M-A, Westbrook GK (2009) Great earthquakes in slow-subduction, low-taper margins. In: Lallemand S, Funiciello F (eds) Subduction zone geodynamics. Springer, Berlin, pp 119–133CrossRefGoogle Scholar
  84. Hand M, Dirks PHGM, Powell R et al (1992) How well established is isobaric cooling in Proterozoic orogenic belts? An example from the Arunta inlier, central Australia. Geology 20:649–652CrossRefGoogle Scholar
  85. Harley SL (1989) The origin of granulites: metamorphic perspective. Geol Mag 126:215–247CrossRefGoogle Scholar
  86. He Z, Zhang Z, Zong K (2014) Metamorphic P-T-t evolution of mafic HP granulites in the northeastern segment of the Tarim Craton (Dunhuang block): evidence for early Paleozoic continental subduction. Lithos 196–197:1–13CrossRefGoogle Scholar
  87. Helgeson HC (1968) Evaluation of irreversible reactions in geochemical processes involving minerals and aqueous solutions. I. Thermodynamic relations. Geochim Cosmochim Acta 32:853–877CrossRefGoogle Scholar
  88. Holland TJB, Powell R (1990) An enlarged and updated internally consistent thermodynamic dataset with uncertainties and correlations: the system K2O–Na2O–CaO–MgO–MnO–FeO–Fe2O3–Al2O3–TiO2–SiO2–C–H2–O2. J Metamorph Geol 8:89–124CrossRefGoogle Scholar
  89. Holland TJB, Powell R (1998) An internally consistent thermodynamic data set for phases of petrological interest. J Metamorph Geol 16:309–343CrossRefGoogle Scholar
  90. Hollister LS (1969) Metastable paragenetic sequence of andalusite, kyanite, and sillimanite, Kwoeik area, British Columbia. Am J Sci 267:352–370CrossRefGoogle Scholar
  91. Huerta AD, Royden LH, Hodges KV (1999) The effects of accretion, erosion and radiogenic heat on the metamorphic evolution of collisional orogens. J Metamorph Geol 17:349–366CrossRefGoogle Scholar
  92. Jamieson RA, Beaumont C, Nguyen MH et al (2002) Interaction of metamorphism, deformation and exhumation in large convergent orogens. J Metamorph Geol 20:9–24CrossRefGoogle Scholar
  93. Janots E, Engi M, Berger A (2008) Prograde metamorphic sequence of REE minerals in pelitic rocks of the Central Alps: implications for allanite-monazite-xenotime phase relations from 250 to 610 °C. J Metamorph Geol 26:509–526CrossRefGoogle Scholar
  94. Joesten R (1977) Evolution of mineral assemblage zoning in diffusion metasomatism. Geochim Cosmochim Acta 41:649–670CrossRefGoogle Scholar
  95. Joesten R (1991) Grain-boundary diffusion kinetics in silicate and oxide minerals. In: Ganguly J (ed) Diffusion, atomic ordering and mass transport. Advances in physical geochemistry, vol 8. Springer, New York, pp 345–395Google Scholar
  96. Joesten R, Fisher G (1988) Kinetics of diffusion controlled mineral growth in the Christmas Mountains (Texas) contact aureole. Geol Soc Am Bull 100:714–732CrossRefGoogle Scholar
  97. Johannes W (1989) Melting of plagioclase-quartz assemblages at 2 kbar water pressure. Contrib Mineral Petrol 103:270–276CrossRefGoogle Scholar
  98. Johnson MRW, Harley SL (2012) Orogenesis: the making of mountains. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  99. Johnson SE, Vernon RH (1995) Stepping stones and pitfalls in the determination of an anti-clockwise P-T-t deformation path: the low-P, high-T Cooma Complex, Australia. J Metamorph Geol 13:165–183CrossRefGoogle Scholar
  100. Johnson SE, Brown M, Solar GS (2003) Low-pressure subsolidus and suprasolidus phase equilibria in the MnNCKFMASH system: constraints on conditions of regional metamorphism in western Maine, northern Appalachians. Am Mineral 88:624–638CrossRefGoogle Scholar
  101. Jolivet L, Faccenna C, Goffe B et al (2003) Subduction tectonics and exhumation of high-pressure metamorphic rocks in the Mediterranean orogens. Am J Sci 303:353–409CrossRefGoogle Scholar
  102. Katchalsky A, Curran PF (1965) Nonequilibrium thermodynamics in biophysics. Harvard University Press, Cambridge, MACrossRefGoogle Scholar
  103. Kerrick DM (1990) The Al2SiO5 polymorphs. Mineralogical Society of America, Washington DCCrossRefGoogle Scholar
  104. Khain VE, Lomize MG (1995) Geotektonika s osnovami geodinamiki (Geotectonics with the basics of geodynamics). Moscow State University, MoscowGoogle Scholar
  105. Kohn MJ, Malloy MA (2004) Formation of monazite via prograde metamorphic reactions among common silicates: Implications for age determinations. Geochim Cosmochim Acta 68:101–113CrossRefGoogle Scholar
  106. Korobeinikov SN, Polyansky OP, Likhanov II et al (2006) Mathematical modeling of overthrusting fault as a cause of andalusite–kyanite metamorphic zoning in the Yenisei Ridge. Dokl Earth Sci 408(4):652–656CrossRefGoogle Scholar
  107. Korzhinskii DS (1955) Ocherk metasomaticheskikh protsessov (An overview of metasomatic processes). In: Betekhtin AG (ed) Key problems in the theory of magmatic mineral deposits, 2nd edn. Izd Acad Nauk SSSR, Moscow, pp 335–456Google Scholar
  108. Korzhinskii DS (1957) Fiziko-khimicheskiye osnovy analiza paragenezisov mineralov (Physico-chemical basis for the analysis of mineral parageneses). Izd Acad Nauk SSSR, MoscowGoogle Scholar
  109. Korzhinskii DS (1962) Teoriya protsessov mineraloobrazovaniya (The theory of mineral formation processes). Izd Acad Nauk SSSR, MoscowGoogle Scholar
  110. Korzhinskii DS (1973) Teoreticheskiye osnovy analiza paragenezisov mineralov (Theoretical bases of the analysis of mineral parageneses). Nauka, MoscowGoogle Scholar
  111. Korzhinskii DS (1982) Teoriya metasomaticheskoy zonal’nosti (The theory of metasomatic zoning). Nauka, MoscowGoogle Scholar
  112. Kotelnikov AR, Schekina TI (1986) Eksperimental’noye izucheniye kinetiki vzaimo-deystviya plagioklazov s vodno-solevym flyuidom pri 500 °C i P = 1 kbar (Experimental investigation of kinetic interaction of plagioclases with water-salt fluid at 500 °C and P = 1 kbar). Geokhimiya 9:1233–1244Google Scholar
  113. Krebs M, Maresch WV, Schertl H-P et al (2008) The dynamics of intra-oceanic subduction zones: a direct comparison between fossil petrological evidence (Rio San Juan Complex, Dominican Republic) and numerical simulation. Lithos 103:106–137CrossRefGoogle Scholar
  114. Kuznetsova RP, Sheplev VS, Kolobov VY (1992) Analiz rosta zonal’nykh mineral’nykh segregatsiy i polucheniye kharakteristik massoperenosa pri metamorfizme. 4. Issledovaniye sistemy SiO2–MgO–CaO (Analysis of growth of zoned mineral segregation and characteristics of mass transfer under metamorphism. 4. The SiO2–MgO–CaO system). Geol Geofiz 33(9):42–50Google Scholar
  115. Kuznetsova RP, Kolobov VY, Sheplev VS (1994) Analiz rosta zonal’nykh mineral’nykh segregatsiy i polucheniye kharakteristik massoperenosa pri metamorfizme. 5. Issledovaniye sistemy SiO2–Al2O3–FeO–MgO–K2O–(Na2O) (Analysis of growth of zoned mineral segregation and characteristics of mass transfer during metamorphism. 5. The SiO2–Al2O3–FeO–MgO–K2O–(Na2O) system). Geol Geofiz 35(10):87–96Google Scholar
  116. Lanari P, Engi M (2017) Local bulk compositional effect on mineral assemblages. Rev Mineral Geochem 83:55–102CrossRefGoogle Scholar
  117. Lasaga AC (1981) Rate laws of chemical reactions. In: Lasaga AC, Kirkpatrick RJ (eds) Kinetics of geochemical processes. Reviews in mineralogy, vol 8. Book Crfter Inc, Chelsea, Michigan, pp 1–68Google Scholar
  118. Lazaro C, Garcia-Casco A, Rojas Agramonte Y et al (2009) Fifty-five-million-year history of oceanic subduction and exhumation at the northern edge of the Caribbean plate (Sierra del Convento mélange, Cuba). J Metamorph Geol 27:19–40CrossRefGoogle Scholar
  119. Lepezin GG (2015) Material transfer through the interface between peraluminous metapelite and gedrite-bearing gneiss at high temperatures and moderate pressures. Geochem Int 53(1):39–59CrossRefGoogle Scholar
  120. Lepezin GG, Khlestov VV (2009) Mass transfer at the contact of high-Al metapelites: an example of the high-temperature Sharyzhalgai Complex, eastern Sayan. Geochem Int 47(3):244–259CrossRefGoogle Scholar
  121. Lepezin GG, Seroglazov VV, Usova LV (1990) Masshtaby massoperenosa na kontakte metapelitov i metabazitov (The scale of mass transfer at the contact of metapelites and metabasites). Dokl Akad Nauk 314:1218–1222Google Scholar
  122. Li J, Klemd R, Gao J et al (2016) Polycyclic metamorphic evolution of eclogite: Evidence for multistage burial–exhumation cycling in a subduction channel. J Petrol 57:119–146CrossRefGoogle Scholar
  123. Lichtner PC (1988) The quasi-stationary state approximation to coupled mass transport and fluid-rock interaction in a porous medium. Geochim Cosmochim Acta 52:143–165CrossRefGoogle Scholar
  124. Likhanov II (1989) Nizkotemperaturnaya biotitovaya izograda v kontaktovom oreole Kharlovskogo gabbrovogo massiva (Severo-Zapadnyy Altay) (Low-grade biotite isograde within the contact aureole of Kharlovo gabbro massif). Geol Geofis 30(7):46–54Google Scholar
  125. Likhanov II (1990) Razlozheniye epidota pri nizkotemperaturnom kontaktovom meta-morfizme metapelitov (Epidote consuming reaction in low-temperature contact metamorphism of metapelites). In: Zapiski (Proceedings) of VMO, vol 119, pp 40–48Google Scholar
  126. Likhanov II (2003) Mineral’nyye reaktsii i massoperenos pri metamorfizme nizkikh i umerennykh davleniy (Mineral reactions and mass-transfer during low- and medium-pressure metamorphism). Doctor of Sciences Dissertation. GEO Press, NovosibirskGoogle Scholar
  127. Likhanov II (2018) Mass-transfer and differential element mobility in metapelites during multistage metamorphism of Yenisei Ridge, Siberia. In: Ferrero S, Labari P, Gonsalses P, Grosch EG (eds) Metamorphic geology: microscale to mountain belts, vol 478. Geological Society Special Publication, Blackwell, London.  https://doi.org/10.1144/sp478.11
  128. Likhanov II, Reverdatto VV (1991) Arfvedsonite formed as a diabase-metapelite reaction product in contact metamorphism. Trans (Dokl) USSR Acad Sci Earth Sci Sect 317A(3):154–158Google Scholar
  129. Likhanov II, Reverdatto VV (2002) Mass transfer during andalusite replacement by kyanite in Al- and Fe-rich metapelites in the Yenisei Range. Petrology 10(5):479–494Google Scholar
  130. Likhanov II, Reverdatto VV (2007) Provenance of Precambrian Fe- and Al-rich metapelites in the Yenisei Ridge and Kuznetsk Alatau, Siberia: geochemical signatures. Acta Geol Sini Engl Edn 81(3):409–423CrossRefGoogle Scholar
  131. Likhanov II, Reverdatto VV (2008) Precambrian Fe- and Al-rich pelites from the Yenisey Ridge, Siberia: geochemical signatures for protolith origin and evolution during metamorphism. Int Geol Rev 50:597–623CrossRefGoogle Scholar
  132. Likhanov II, Reverdatto VV (2011a) Lower Proterozoic metapelites in the northern Yenisei Range: nature and age of protolith and the behaviour of material during collisional metamorphism. Geochem Int 49(3):224–252CrossRefGoogle Scholar
  133. Likhanov II, Reverdatto VV (2011b) Neoproterozoic collisional metamorphism in overthrust terranes of the Transangarian Yenisei Ridge, Siberia. Int Geol Rev 53:802–845CrossRefGoogle Scholar
  134. Likhanov II, Reverdatto VV (2014a) Geochemistry, age and petrogenesis of rocks from the Garevka metamorphic complex, Yenisei Ridge. Geochem Int 52(1):1–21CrossRefGoogle Scholar
  135. Likhanov II, Reverdatto VV (2014b) P-T-t constraints on the metamorphic evolution of the Transangarian Yenisei Ridge: geodynamic and petrological implications. Russ Geol Geophys 55(3):299–322CrossRefGoogle Scholar
  136. Likhanov II, Reverdatto VV (2016a) Geochemistry, petrogenesis and age of metamorphic rocks of the Angara complex at the junction of South and North Yenisei Ridge. Geochem Int 54(2):127–148CrossRefGoogle Scholar
  137. Likhanov II, Reverdatto VV (2016b) Quantitative analysis of mass-transfer during polymetamorphism in pelites of the Transangarian Yenisei Ridge. Russ Geol Geophys 57(8):1204–1220CrossRefGoogle Scholar
  138. Likhanov II, Santosh M (2017) Neoproterozoic intraplate magmatism along the western margin of the Siberian Craton: implications for breakup of the Rodinia supercontinent. Precambr Res 300:315–331CrossRefGoogle Scholar
  139. Likhanov II, Reverdatto VV, Memmi I (1994) Short-range mobilization of elements in the biotite zone of contact aureole of the Kharlovo gabbro intrusion (Russia). Eur J Mineral 6:133–144CrossRefGoogle Scholar
  140. Likhanov II, Reverdatto VV, Memmi I (1995) The origin of arfvedsonite in metabasites from the contact aureole of the Kharlovo gabbro intrusion (Russia). Eur J Mineral 7:379–389CrossRefGoogle Scholar
  141. Likhanov II, Polyanskii OP, Kozlov PS et al (2000) Replacement of andalusite by kyanite with increasing pressure at a low geothermal gradient in metapelites of the Enisei Ridge. Dokl Earth Sci 375(9):1411–1416Google Scholar
  142. Likhanov II, Polyanskii OP, Reverdatto VV et al (2001a) Metamorphic evolution of high-alumina metapelites near the Panimba overthrust (Yenisei Range): mineral associations, P-T conditions, and tectonic model. Geol Geofiz 42(8):1205–1220Google Scholar
  143. Likhanov II, Ten AA, Reverdatto VV et al (2001b) Inverse modeling approach for obtaining kinetic parameters of diffusion-controlled metamorphic reactions in the Kharlovo contact aureole (South Siberia, Russia). Mineral Petrol 71:51–65CrossRefGoogle Scholar
  144. Likhanov II, Polyansky OP, Reverdatto VV et al (2004) Evidence from Fe- and Al-rich metapelites for thrust loading in the Transangarian Region of the Yenisei Ridge, eastern Siberia. J Metamorph Geol 22:743–762CrossRefGoogle Scholar
  145. Likhanov II, Reverdatto VV, Selyatizkii AY (2005) Mineral equilibria and P-T diagram for Fe- and Al-rich metapelites in the KFMASH system (K2O-FeO-MgO-Al2O3-SiO2-H2O). Petrology 13(1):73–83Google Scholar
  146. Likhanov II, Kozlov PS, Popov NV et al (2006) Collision metamorphism as a result of thrusting in the Transangara region of the Yenisei Ridge. Dokl Earth Sci 411(1):1313–1317CrossRefGoogle Scholar
  147. Likhanov II, Reverdatto VV, Kozlov PS et al (2008a) Collision metamorphism of Precambrian complexes in the Transangarian Yenisei Range. Petrology 16(2):136–160CrossRefGoogle Scholar
  148. Likhanov II, Reverdatto VV, Verschinin AE (2008b) Fe- and Al-rich metapelites of the Teya sequence, Yenisei Range: geochemistry, protoliths and the behavior of their matter during metamorphism. Geochem Int 46(1):17–36CrossRefGoogle Scholar
  149. Likhanov II, Reverdatto VV, Kozlov PS (2009) Kyanite-sillimanite metamorphism of the Precambrian complexes, Transangarian region of the Yenisei Ridge. Russ Geol Geophys 50(12):1034–1051CrossRefGoogle Scholar
  150. Likhanov II, Reverdatto VV, Kozlov PS et al (2010a) Upper Riphean age of kyanite-sillimanite metamorphism in Transangarian Yenisei Ridge: evidence from 40Ar-39Ar data. Dokl Earth Sci 433(2):1108–1113CrossRefGoogle Scholar
  151. Likhanov II, Reverdatto VV, Travin AV (2010b) Exhumation rate of rocks from Neoproterozoic collisional metamorphic complexes of the Yenisei Ridge. Dokl Earth Sci 435(1):1518–1523CrossRefGoogle Scholar
  152. Likhanov II, Reverdatto VV, Kozlov PS (2011a) Collision-related metamorphic complexes of the Yenisei Ridge: their evolution, ages, and exhumation rate. Russ Geol Geophys 52(10):1256–1269CrossRefGoogle Scholar
  153. Likhanov II, Reverdatto VV, Kozlov PS (2011b) The Teya polymetamorphic complex in the Transangarian Yenisei Ridge: an example of metamorphic superimposed zoning of low- and medium-pressure facies series. Dokl Earth Sci 436(2):213–218CrossRefGoogle Scholar
  154. Likhanov II, Reverdatto VV, Kozlov PS et al (2011c) New evidence for Grenville events on the western margin of the Siberian craton: the example of the Garevka metamorphic complex in the Transangarian Yenisei Ridge. Dokl Earth Sci 438(2):782–787CrossRefGoogle Scholar
  155. Likhanov II, Reverdatto VV, Kozlov PS et al (2013a) Neoproterozoic metamorphic evolution in the Transangarian Yenisei Ridge: evidence from monazite and xenotime geochronology. Dokl Earth Sci 450(1):556–561CrossRefGoogle Scholar
  156. Likhanov II, Reverdatto VV, Kozlov PS et al (2013b) Three metamorphic events in Precambrian P-T-t history of the Transangarian Yenisei Ridge recorded in garnet grains in metapelites. Petrology 21(6):561–578CrossRefGoogle Scholar
  157. Likhanov II, Nozhkin AD, Reverdatto VV et al (2014) Grenville tectonic events and evolution of the Yenisei Ridge at the western margin of the Siberian craton. Geotectonics 48(5):371–389CrossRefGoogle Scholar
  158. Likhanov II, Nozhkin AD, Reverdatto VV et al (2015a) P-T evolution of ultrahigh temperature metamorphism: evidence for a late Paleoproterozoic intraplate extension at the southwestern margin of the Siberian Craton. Dokl Earth Sci 465(1):1139–1142CrossRefGoogle Scholar
  159. Likhanov II, Reverdatto VV, Kozlov PS et al (2015b) P-T-t constraints on polymetamorphic complexes in the Yenisei Ridge, East Siberia: implications for Neoproterozoic paleocontinental reconstructions. J Asian Earth Sci 113:391–410CrossRefGoogle Scholar
  160. Likhanov II, Nozhkin AD, Reverdatto VV et al (2016) Metamorphic evolution of ultrahigh-temperature Fe- and Al-rich granulites in the South Yenisei Ridge and tectonic implications. Petrology 24(4):392–408CrossRefGoogle Scholar
  161. Likhanov II, Régnier J-L, Santosh M (2018) Blueschist facies fault tectonites from the western margin of the Siberian Craton: implications for subduction and exhumation associated with early stages of the Paleo-Asian Ocean. Lithos 304–307:468–488CrossRefGoogle Scholar
  162. Liou JG (1973) Synthesis and stability relations of epidote, Ca2Al3FeSi3O12(OH). J Petrol 14:381–413CrossRefGoogle Scholar
  163. Liou JG, Kuniyoshi S, Ito K (1974) Experimental studies of the phase relations between greenschist and amphibolite in a basaltic system. Am J Sci 274:613–632CrossRefGoogle Scholar
  164. Liou JG, Kim HS, Maruyama S (1983) Prehnite-epidote equilibria and their petrologic applications. J Petrol 24:321–342CrossRefGoogle Scholar
  165. Liu M, Peterson JC, Yund RA (1997) Diffusion-controlled growth of albite and pyroxene reaction rim. Contrib Mineral Petrol 126:217–223CrossRefGoogle Scholar
  166. Livio F, Sileo G, Michetti AM et al (2007) Pleistocene compressive tectonics in Central Southern Alps (Italy): rates of folding determined from growth strata. Geophys Res Abstr 9:02740Google Scholar
  167. McKenzie DP (1969) Speculations on the consequences and causes of plate motions. Geophys J Roy Astron Soc 18:1–32CrossRefGoogle Scholar
  168. Miyashiro A (1958) Regional metamorphism of the Gosaisyo-Takanuki district in the central Abakuma Plateau. J Fac Sci Univ Tokyo 11:211–229Google Scholar
  169. Miyashiro A (1973) Metamorphism and metamorphic belts. Allen and Unwin, LondonCrossRefGoogle Scholar
  170. Mugnier J-L, Huyghe P, Leturmy P et al (2004) Episodicity and rates of thrust-sheet motion in the Himalayas (western Nepal). In: McClay KR (ed) Thrust tectonics and hydrocarbon systems, vol 82. American Association Petroleum Geologist Memoir, AAPG, Boulder, pp 93–116Google Scholar
  171. Mulrooney D, Rivers T (2005) Redistribution of the rare-earth elements among coexisting minerals in metamorphic rocks across the epidote-out isograd: an example from the St. Anthony Complex, northern Newfoundland, Canada. Can Mineral 43:263–294CrossRefGoogle Scholar
  172. Nehring F, Foley SF, Holtta P (2010) Trace element partitioning in the granulite facies. Contrib Mineral Petrol 159:493–519CrossRefGoogle Scholar
  173. Nozhkin AD, Turkina OM (1993) Geochimiya granulitov iz kanskogo i sharyzhalgaiskogo kompleksov (Geochemistry of granulites from kansk and sharyzhalgay complexes). UIGGM Press, NovosibirskGoogle Scholar
  174. Nozhkin AD, Likhanov II, Savko KA et al (2018) Sapphirine-bearing ultrahigh-temperature granulites of the Anabar shield: chemical composition, U-Pb zircon ages and P-T conditions of metamorphism. Doklady Earth Sci 479(1):347–351CrossRefGoogle Scholar
  175. Oelkers EH (1996) Physical and chemical properties of rocks and fluids for chemical mass transport calculations. In: Lichtner PC, Steefel CI, Oelkers EH (eds) Reactive transport in porous media. Review in mineralogy, vol 34. Mineralogical Society of America, Washington, pp 131–191Google Scholar
  176. Otamendi JE, de la Rosa JD, Patino Douce AE et al (2002) Rayleigh fractionation of heavy rare earths and yttrium during metamorpfic garnet growth. Geology 30:159–162CrossRefGoogle Scholar
  177. Pattison DRM (2001) Instability of Al2SiO5 “triple point” assemblages in muscovite+biotite+quartz-bearing metapelites, with implications. Am Mineral 86:1414–1422CrossRefGoogle Scholar
  178. Peacock SM (2003) Thermal structure and metamorphic evolution of subducting slabs. In: Eiler J, Abers GA (eds) Inside the subduction factory. Geophysical monograph series, vol 238. AGU, Washington, pp 7–22CrossRefGoogle Scholar
  179. Perchuk LL (1989) Vzaimosoglasovanie nekotorykh Fe-Mg geotermomotrov na osnove zakona |Nernsta: revisiya (Mutual consistence between some Fe-Mg-geothermometers based on the Nernst law: revision). Geokhimiya 27(5):611–622Google Scholar
  180. Perchuk LL, Gerya TV, van Reenen DD et al (2001) Formation and dynamics of granulite complexes within cratons. Gondwana Res 4:729–732CrossRefGoogle Scholar
  181. Perchuk LL, Gerya TV, van Reenen DD et al (2006) P-T paths and problems of high-temperature polymetamorphism. Petrology 14:117–153CrossRefGoogle Scholar
  182. Perchuk AL, Safonov OG, Sazonova LV et al (2015) Osnovy petrologii magmaticheskih processov (Basics of petrology of magmatic and metamorphic processes). Universitetskaya Kniga, MoscowGoogle Scholar
  183. Poli S, Schmidt MW (2004) Experimental subsolidus studies on epidote minerals. Rev Mineral Geochem 56:171–195CrossRefGoogle Scholar
  184. Polyanskii OP, Reverdatto VV, Anan’ev VA (2000) Evolution of the rift sedimentary basin as an indicator of geodynamic setting (on example of the Enisei-Khatanga depression). Dokl Akad Nauk 370(1):71–75Google Scholar
  185. Prigogine I (1961) Introduction to thermodynamics of irreversible processes, 2nd edn. Interscience, New YorkGoogle Scholar
  186. Prigogine I, Defay R (1962) Chemische thermodynamic. Verlag für Grundstoffindustrie, LeipzigGoogle Scholar
  187. Pyle JM, Spear FS, Rudnick RL et al (2001) Monazite-xenotine-garnet equilibrium in metapelites and a new monazite-garnet thermometer. J Petrol 42:2083–2107CrossRefGoogle Scholar
  188. Rambaldi ER (1973) Variation in the composition of plagioclase and epidote in some metamorphic rocks near Bancroft, Ontario. Can J Earth Sci 10:852–868CrossRefGoogle Scholar
  189. Raychenko AI (1981) Matematicheskaya teoriya diffusii v prilozheniyah (Mathematical theory of diffusion in applications). Naukova dumka, KievGoogle Scholar
  190. Reinhardt J, Rubenach MJ (1989) Temperature-time relationships across metamorphic zones: evidence from porphyroblast-matrix relationships in progressively deformed metapelites. Tectonophysics 158:141–161CrossRefGoogle Scholar
  191. Reverdatto VV, Kolobov VY (1987) Mass transportation in metamorphism. Geol Geofiz 28(3):1–9Google Scholar
  192. Reverdatto VV, Polyansky OP (1992) Evolution of PT-parameters in the alternative models of metamorphism. Dokl Akad Nauk 325(5):1017–1020Google Scholar
  193. Reverdatto VV, Polyansky OP (2004) Modelling of the thermal history of metamorphic zoning in the Connemara region (western Ireland). Tectonophysics 379:77–91CrossRefGoogle Scholar
  194. Reverdatto VV, Sharapov VN, Lavrent’ev YG et al (1974) Investigations in isochemical contact metamorphism. Contrib Mineral Petrol 48:287–299CrossRefGoogle Scholar
  195. Reverdatto VV, Pertsev NN, Korolyuk VN (1979) PCO2-T-evolution and origin of zoning in melilite during the regressive stage of contact metamorphism in carbonate-bearing rocks. Contrib Mineral Petrol 70:203–208CrossRefGoogle Scholar
  196. Reverdatto VV, Likhanov II, Polyansky OP et al (2017) Priroda i modeli metamorfizma (Nature and models of metamorphism). Publishing House SB RAS, NovosibirskGoogle Scholar
  197. Reverdatto VV, Babichev AV, Likhanov II et al (2018) Movement rates of metamorphic fronts in tocks near magmatic intrusive bodies. Dokl Earth Sci 480(2):751–753CrossRefGoogle Scholar
  198. Ridley J (1985) The effect of reaction enthalpy on the progress of a metamorphic reaction. In: Thompson AB, Rubie DC (eds) Advances in physical geochemistry, vol 4. Springer, Berlin, pp 80–97Google Scholar
  199. Robie RA, Bethke PM, Toulmin MS et al (1966) X-ray crystallographic data, densities and molar volumes of minerals. In: Clark SP (ed) Handbook of physical constants. Geological Society of America, New York, pp 29–73Google Scholar
  200. Robinson D, Beavins RE (1989) Diastathermal (extensional) metamorphism at very low grades and possible high grade analogues. Earth Planet Sci Lett 92:81–88CrossRefGoogle Scholar
  201. Rubenach MJ (1992) Proterozoic low-pressure/high-temperature metamorphism and an anticlockwise P-T-t path for the Hazeldene area, Mount Isa Inlier, Queensland, Australia. J Metamorph Geol 10:333–346CrossRefGoogle Scholar
  202. Sandiford M, Powell R (1991) Some remarks on high-temperature-low-pressure metamorphism in convergent orogens. J Metamorph Geol 9:333–340CrossRefGoogle Scholar
  203. Sarkar T, Schenk V (2014) Two-stage granulite formation in a Proterozoic magmatic arc (Ongole domain of the Eastern Ghats Belt, India): Part 1. Petrology and pressure–temperature evolution. Precambr Res 255:485–509CrossRefGoogle Scholar
  204. Savko КA, Bazikov NS (2011) Phase Equilibria of bastnaesite, allanite, and monazite: bastnaesite-out isograde in metapelites of the Vorontsovskaya Group, Voronezh Crystalline Massif. Petrology 19:445–469CrossRefGoogle Scholar
  205. Savko КA, Bazikov NS, Korish EKh et al (2012) Accessory rare earths-bearing minerals in Palaeoproterozoic schists of Voronezh crystalline massif. Zap RMO 141:107–128Google Scholar
  206. Schenk V (1984) Petrology of felsic granulites, metapelites, metabasites and metacarbonates from southern Calabria (Italy): prograde metamorphism, uplift and cooling of a former lower crust. J Petrol 25:255–298CrossRefGoogle Scholar
  207. Seroglazov VV (1992) Mass transfer at the contact of high-Al gneisses and metaultrabasites (Sharyzhalgai Complex, eastern Sayan). Dokl Akad Nauk 323(5):925–929Google Scholar
  208. Sharp WE, Kennedy GC (1965) The system CaO–CO2–H2O in two-phase region calcite—aqueous solution. J Geol 73(2):391–403CrossRefGoogle Scholar
  209. Sheplev VS (1998) Matematicheskoe modelirovanie chimitcheskoy zonalnosti v metamorfitcheskih reakcionnyh strukturah (Mathematical modeling of chemical zoning in metamorphic reaction structures). Doctor of Science Dissertation, OIGGM SO RAN, NovosibirskGoogle Scholar
  210. Sheplev VS, Reverdatto VV (1998) Mineralogical geothermobarometry under unsteady equilibrium conditions. Dokl Akad Nauk 361(3):392–396Google Scholar
  211. Sheplev VS, Korneeva LV, Reverdatto VV (1990) A simple model of dissolution and growth of scattered mineral grains during metamorphism. Geokhimiya 28(7):954–961Google Scholar
  212. Sheplev VS, Kolobov VY, Kuznetsova RN et al (1991) Analysis of growth of zonated mineral segregation and characteristics of mass transfer during metamorphism. 1. Theoretical model in a quasi-stationary approximation. Sov Geol Geophy 32(12):1–12Google Scholar
  213. Sheplev VS, Kuznetsova RP, Kolobov VY (1992a) Analysis of growth of zonated mineral segregation and characteristics of mass transfer during metamorphism. 2. The system SiO2–Al2O3–MgO–NaCa2O5/2). Geol Geofiz 33(2):73–80Google Scholar
  214. Sheplev VS, Kuznetsova RP, Kolobov VY (1992b) Analysis of growth of zonal mineral segregation and characteristics of mass transfer under metamorphism 3 The model of steady diffusion. Geol Geofiz 33(6):46–52Google Scholar
  215. Sheplev VS, Kolobov VY, Kuznetsova RP (1998) Analysis of growth of zonated mineral associations. In: Augustithis SS (ed) Theophrastus’ contributions to advanced studies in geology, vol II. Theophrastus Publications, Athens, pp 223–247Google Scholar
  216. Shmonov VM, Vitovtova VM, Zharikov AV (2002) Fluidnaya pronixaemost’ porod zemnoy kory (Fluid permeability of rocks of the Earth’s crust). Nauchniy Mir, MoscowGoogle Scholar
  217. Shvedenkov GY, Reverdatto VV, Bul’bak TA et al (2006) Bimetasomatic zoning in the CaO-MgO-SiO2-H2O-CO2 system: experiments with the use of natural rock samples. Petrology 14(5):515–527CrossRefGoogle Scholar
  218. Shvedenkova SV, Shvedenkov GY (1990) Experimental investigation of calcium and sodium distribution between plagioclase and solution at 350 °C and 100 MPa. Geol Geofis 2:75–80Google Scholar
  219. Sills JD, Rollinson HR (1987) The metamorphic evolution of the Lewisian Complex. In: Park RG, Tarney J (eds) Evolution of the Lewisian and comparable Precambrian high grade terrains, vol 28. Geological Society, London, Special Publications, pp 81–92Google Scholar
  220. Skippen C (1974) An experimental model for low pressure metamorphism of siliceous dolomitic marble. Am J Sci 274:487–509CrossRefGoogle Scholar
  221. Sklyarov EV (2006) Exhumation of metamorphic complexes: basic mechanisms. Russ Geol Geophys 47(1):68–72Google Scholar
  222. Sklyarov EV, Gladkochub DP, Donskaya TV et al (2001) Metamorfizm i tektonika (Metamorphism and Tectonics). Intermet Engineering, MoscowGoogle Scholar
  223. Skublov SG (2005) Geokhimiya redkozemelnyh elementov v porodoobrazuyushih metamorficheskih mineralah (Geochemistry of rare-earth elements in the rock-forming metamorphic minerals). Nauka, St. PetersburgGoogle Scholar
  224. Sobolev SV, Babeyko AYu (1994) Modeling of mineralogical composition, density and elastic-wave velocities in anhydrous magmatic rocks. Surv Geophys 15(5):515–544CrossRefGoogle Scholar
  225. Soloviev AV, Shapiro MN, Garver DI (2001) O skorostyah formirovaniya kollizionnyih nadvigov (On the rates of formation of collision thrusts (Lesnovsky overthrust, northern Kamchatka)). Bull MOIP Geol Dept 76(5):29–32Google Scholar
  226. Spear FS (1989) Relative thermobarometry and metamorphic P-T paths. In: Daly JS, Cliff RA, Yardley BWD (eds) Evolution of metamorphic belts. Geological Society Special Publication, Blackwell, Oxford, pp 63–82Google Scholar
  227. Spear FS, Peacock SM (1989) Metamorphic pressure-temperature-time paths. American Geophysical Union, WashingtonCrossRefGoogle Scholar
  228. Spear FS, Hickmott DD, Selverstone J (1990) Metamorphic consequences of thrust emplacement, Fall Mountain, New Hampshire. Geol Soc Am Bull 102:1344–1360CrossRefGoogle Scholar
  229. Spear FS, Kohn MJ, Cheney JT et al (2002) Metamorphic, thermal and tectonic evolution of Central New England. J Petrol 43:2097–2120CrossRefGoogle Scholar
  230. Staudigel H, King SD (1992) Ultrafast subduction—the key to slab recycling efficiency and mantle differentiation. Earth Planet Sci Lett 109:517–530CrossRefGoogle Scholar
  231. Stein S, Stein CA (1996) Thermo-mechanical evolution of oceanic lithosphere: implications for the subduction process and deep earthquakes. In: Bebout GE, Scholl DW, Kirby SH et al (eds) Subduction: top to bottom. Geophysical monograph, vol 96. American Geophysical Union, New York, pp 1–17Google Scholar
  232. Suppe J, Chou GT, Hook SC (1992) Rates of folding and faulting determined from growth strata. In: McClay KR (ed) Thrust tectonics. Springer, Dordrecht, pp 105–121CrossRefGoogle Scholar
  233. Syracuse EM, van Keken PE, Abers GA (2010) The global range of subduction zone thermal models. Phys Earth Planet Inter 183:73–90CrossRefGoogle Scholar
  234. Tam PY, Zhao G, Sun M et al (2012a) Petrology and metamorphic P-T path of high-pressure mafic granulites from the Jiaobei massif in the Jiao-Liao-Ji Belt, North China Craton. Lithos 155:94–109CrossRefGoogle Scholar
  235. Tam PY, Zhao G, Zhou X et al (2012b) Metamorphic P-T path and implications of high-pressure pelitic granulites from the Jiaobei massif in the Jiao-Liao-Ji Belt, North China Craton. Gondwana Res 22:104–117CrossRefGoogle Scholar
  236. Teyssier C, Whitney DL (2002) Gneiss domes and orogeny. Geology 30:1139–1142CrossRefGoogle Scholar
  237. Thompson AB (1975) Calc-silikate diffusion zones between marble and pelitic schists. J Petrol 16(2):314–346CrossRefGoogle Scholar
  238. Thompson AB, England PC (1984) Pressure-temperature-paths of regional metamorphism, II: their influence and interpretation using mineral assemblages in metamorphic rocks. J Petrol 25:929–954CrossRefGoogle Scholar
  239. Tong L, Xu Y-G, Cawood PA et al (2014) Anticlockwise P-T evolution at ~280 Ma recorded from ultrahigh-temperature metapelitic granulite in the Chinese Altai orogenic belt, a possible link with the Tarim mantle plume? J Asian Earth Sci 94:1–11CrossRefGoogle Scholar
  240. Tozer RSJ, Butler RWH, Corrado S (2002) Comparing thin- and thick-skanned thrust tectonic models of the Central Apenines, Italy. In: Europ Geosci Union, Stephan Mueller Spec Publ Ser, vol 1. pp 181–194.  https://doi.org/10.5194/smsps-1-181-2002CrossRefGoogle Scholar
  241. Trommsdorff V (1966) Progressive metamorphose kieseliger korbonatgesteine in den Zentralalpen zwischen Bernina und Simplon. Schweiz Mineral Petrogr Mitt 46(2):431–460Google Scholar
  242. Trommsdorff V (1972) Change in T-X during metamorphism of siliceous dolomitic rocks of the Central Alps. Schweiz Mineral Petrogr Mitt 52(3):567–571Google Scholar
  243. Tsunogae T, van Reenen DD (2006) Corundum + quartz and Mg-staurolite bearing granulite from the Limpopo Belt, southern Africa: implications for a P-T path. Lithos 92:576–587CrossRefGoogle Scholar
  244. Van Westrenen W, Allan NL, Blundy JD et al (2003) Trace element incorporation into pyrope-grossular solid solutions: an atomistic simulation study. Phys Chem Miner 30:217–229CrossRefGoogle Scholar
  245. Vernon RH (1976) Metamorphic processes, reactions and microstructure development. George Allen and Unwin, LondonGoogle Scholar
  246. Walther JV, Wood BJ (1984) Rate and mechanism in prograde metamorphism. Contrib Mineral Petrol 88:246–259CrossRefGoogle Scholar
  247. Wan T (2010) The tectonics of China: data, maps and evolution. Springer, HeidelbergGoogle Scholar
  248. Wan B, Windley BF, Xiao W et al (2015) Paleoproterozoic high-pressure metamorphism in the northern North China Craton and implications for the Nuna supercontinent. Nat Commun 6:8344CrossRefGoogle Scholar
  249. Wang Q, Zhang PZ, Freymueller JT et al (2001) Present-day crustal deformation in China constrained by Global Positioning System measurements. Science 294:574–577CrossRefGoogle Scholar
  250. Waters DJ (1986) Metamorphic history of sapphirine-bearing and related magnesian gneisses from Namaqualand, South Africa. J Petrol 27:541–565CrossRefGoogle Scholar
  251. Weare JH, Stephens JR, Eugster HP (1976) Diffusion metasomatism and mineral reaction zones: general principles and application to feldspar alteration. Am J Sci 276:767–816CrossRefGoogle Scholar
  252. Wernicke B (1985) Uniform-sense normal simple shear of the continental lithosphere. Can J Earth Sci 22:108–125CrossRefGoogle Scholar
  253. White RW, Powell R, Clarke GL (2002) The interpretation of reaction textures in Fe-rich metapelitic granulites of the Musgrave Block, central Australia: constraints from mineral equilibria calculations in the system K2O–FeO–MgO–Al2O3–SiO2–H2O–TiO2–Fe2O3. J Metamorph Geol 20:41–55CrossRefGoogle Scholar
  254. Whitney DL, Lang HM, Ghent ED (1995) Quantitative determination of metamorphic reaction history: mass balance between groundmass and mineral inclusion assemblages in metamorphic rocks. Contrib Mineral Petrol 120:404–411CrossRefGoogle Scholar
  255. Whitney DL, Mechum TA, Kuehner SM et al (1996) Progressive metamorphism of pelitic rocks from protolith to granulite facies, Dutchess County, New York, USA: Constraints on the timing of fluid infiltration during regional metamorphism. J Metamorph Geol 14:163–181CrossRefGoogle Scholar
  256. Whitney DL, Miller RB, Paterson SR (1999) P-T-t evidence for mechanisms of vertical tectonic motion in a contractional orogen: north-western US and Canadian Cordillera. J Metamorph Geol 17:75–90CrossRefGoogle Scholar
  257. Will TM, Schmadicke E (2003) Isobaric cooling and anti-clockwise P-T paths in the Variscan Odenwald crystalline complex, Germany. J Metamorph Geol 21:469–480CrossRefGoogle Scholar
  258. Wolfram S (2003) The mathematica book, 5th edn. Wolfram Media Inc., ChampaignGoogle Scholar
  259. Xiang H, Zhang L, Zhong ZQ et al (2012) Ultrahigh-temperature metamorphism and anticlockwise P-T–t path of Paleozoic granulites from north Qinling-Tongbai orogen, Central China. Gondwana Res 21:559–576CrossRefGoogle Scholar
  260. Yalcin MN, Littke R, Sachsenhofer RF (1997) Thermal history of sedimentary basins. In: Welte DH, Horsfield B, Baker DR (eds) Petroleum and basin evolution. Insights from petroleum geochemistry, geology and basin modeling. Springer, Heidelberg, pp 71–168CrossRefGoogle Scholar
  261. Yu S, Zhang J, Real PGD (2011) Petrology and P-T path of high-pressure granulite from the Dulan area, North Qaidam Mountains, northwestern China. J Asian Earth Sci 42:641–660CrossRefGoogle Scholar
  262. Yund RA (1997) Rates of grain boundary diffusion through enstatite and forsterite reaction rims. Contrib Mineral Petrol 126:224–226CrossRefGoogle Scholar
  263. Zhai QG, Zhang RY, Jahn BM et al (2011) Triassic eclogites from central Qiangtang, northern Tibet, China: petrology, geochronology and metamorphic P-T path. Lithos 125:173–189CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Vladimir V. Reverdatto
    • 1
    Email author
  • Igor I. Likhanov
    • 2
  • Oleg P. Polyansky
    • 3
  • Valentin S. Sheplev
    • 4
  • Vasiliy Yu. Kolobov
    • 5
  1. 1.V.S. Sobolev Institute of Geology and GeophysicsSiberian Branch, Russian Academy of SciencesNovosibirskRussia
  2. 2.V.S. Sobolev Institute of Geology and GeophysicsSiberian Branch, Russian Academy of SciencesNovosibirskRussia
  3. 3.V.S. Sobolev Institute of Geology and GeophysicsSiberian Branch, Russian Academy of SciencesNovosibirskRussia
  4. 4.V.S. Sobolev Institute of Geology and GeophysicsSiberian Branch, Russian Academy of SciencesNovosibirskRussia
  5. 5.V.S. Sobolev Institute of Geology and GeophysicsSiberian Branch, Russian Academy of SciencesNovosibirskRussia

Personalised recommendations