Causes, Geodynamic Factors and Models of Metamorphism

  • Vladimir V. ReverdattoEmail author
  • Igor I. Likhanov
  • Oleg P. Polyansky
  • Valentin S. Sheplev
  • Vasiliy Yu. Kolobov
Part of the Springer Geology book series (SPRINGERGEOL)


This chapter considers numerical model-based relationships between metamorphism and geodynamics, discusses tectonomagmatic causes and controls of metamorphism, and makes attempt to link the geological types of metamorphism to the specific Р-Т conditions and Р-Т-t paths. Three categories of metamorphism are distinguished based on the magnitude of the heat flux: (1) metamorphism induced by a thermal gradient close to the average continental values (metamorphism associated with crustal subsidence, in depressions during continental rifting, metamorphism caused by tectonic stacking in orogeny, and metamorphism associated with Archean crust formation), (2) by a higher thermal gradient caused by the supply of additional heat by magmatic intrusions (contact metamorphism, medium-pressure zonal metamorphism) and diapirism, (3) by a lower thermal gradient during the collision of lithospheric plates and crustal blocks (metamorphism associated with overthrusting, underthrusting and subduction). Different types of metamorphism are manifested in different geodynamic regimes over different time scales and can be correlated with a specific combination of metamorphic facies. Interpretation of geodynamic and magmatic causes of different types of metamorphism using thermomechanical numerical models accounting for variable rates and mechanisms of subsidence and exhumation can be used to solve many geodynamical problems. Analysis of the problem reveals that metamorphism is a consequence and an indicator of geodynamics.


  1. Agard P, Yamato P, Jolivet L et al (2009) Exhumation of oceanic blueschists and eclogites in subduction zones: timing and mechanisms. Earth Sci Rev 92:53–79CrossRefGoogle Scholar
  2. Anan’ev VA (1999) Kontaktoviy metamorfizm Ayu-Daga (Contact metamorphism on the Ayu-Dagh mountain). Candidate of Science Dissertation, NovosibirskGoogle Scholar
  3. Anan’ev VA, Polyansky OP, Lepezin GG et al (2003) Metamorphic zoning of the Tongulak mountain range, Altai: mathematical modeling. Russ Geol Geophys 44(4):297–304Google Scholar
  4. Aranovich LY, Podlesskii KK (1983) Phase conformity in the system: cordierite–garnet–sillimanite– quartz In: Marakushev AA (ed) The biotite – garnet – cordierite equilibria and the evolution of metamorphism Nauka, Moscow, pp 89–123Google Scholar
  5. Arndt NT (2013) Formation and evolution of the continental crust. Geochem Perspectiv 2(3):405–533CrossRefGoogle Scholar
  6. Artemieva IM (2003) Lithospheric structure, composition and thermal regime of the East European Craton: implications for the subsidence of the Russian platform. Earth Planet Sci Lett 213:431–446CrossRefGoogle Scholar
  7. Artyushkov EV (1993) Fizicheskaya tektonika (Physical tectonics) Nauka, MoscowGoogle Scholar
  8. Artyushkov EV, Batsanin SF (1984) On the thermal regime variations in the Earth crust connected with the approach to its lower boundary of anomalous mantle. Izvest Acad Sci USSR. Phys Solid Earth 12:3–9Google Scholar
  9. Ashworth JR, Evirgen MM (1985) Plagioclase relations in pelites, Central Meuderes Massif, Turkey. II. Perturbation of garnet-plagioclase geobarometers. J Metamorph Geol 3:219–229CrossRefGoogle Scholar
  10. Babichev AV, Polyansky OP, Korobeynikov SN et al (2014) Mathematical modeling of magma fracturing and dike formation. Dokl Earth Sci 458(2):1298–1301CrossRefGoogle Scholar
  11. Badarch G, Cunningham WD, Windley BW (2002) A new terrane subdivision for Mongolia: implications for the Phanerozoic crustal growth of central Asia. J Asian Earth Sci 21:87–110CrossRefGoogle Scholar
  12. Baltybaev ShK, Glebovitskii VA, Shul’diner VI et al (1996) The Meyeri thrust: the main element of the suture at the boundary between the Karelian Craton and the Svecofennian belt in the Ladoga region of the Baltic Shield. Dokl Acad Nauk 348(4):581–584Google Scholar
  13. Baltybaev ShK, Levchenkov OA, Levskii LK (2009) Svekofennskiy poyas Fenno-skandii: prostranstvenno-vremennaya korrelyatsiya ranneproterozoyskikh endogennykhprotsessov (The Svecofennian belt of the Fennoscandia: spatio-temporal correlation of the early Proterozoic endogenous processes), Nauka, St. PetersburgGoogle Scholar
  14. Barber JP, Yardley BWD (1985) Conditions of high grade metamorphism in the Dalradian of Connemara, Ireland. J Geol Soc London 142:87–96CrossRefGoogle Scholar
  15. Barton MD, Ilchik RP, Marikos MA (1991a) Metasomatism. In: Kerrick DM (ed) Contact metamorphism. Reviews in mineralogy, vol 26, Book Crafters Inc, Chelsea, Michigan, pp 321–350Google Scholar
  16. Barton MD, Staude J-M, Snow EA et al (1991b) Aureole systematics In: Kerrick DM (ed) Contact metamorphism. Reviews in mineralogy, vol 26, Book Crafters Inc, Chelsea, Michigan, pp 723–847Google Scholar
  17. Baumgartner L, Ferry JM (1991) A model for coupled fluid-flow and mixed-volatile mineral reactions with applications to regional metamorphism. Contr Mineral Petrol 106:273–285CrossRefGoogle Scholar
  18. Beaumont C, Jamieson RA, Nguyen MH et al (2001) Hymalayan tectonics explained by extrusion of a low-viscosity crustal channel coupled to focused surface denudation. Nature 414:738–742CrossRefGoogle Scholar
  19. Bebout GE (2007) Metamorphic chemical geodynamics of subduction zones. Earth Planet Sci Lett 260:373–393CrossRefGoogle Scholar
  20. Berg JH (1977a) Dry granulite mineral assemblages in the contact aureoles of the Nain complex, Labrador. Contr Mineral Petrol 64:33–52CrossRefGoogle Scholar
  21. Berg JH (1977b) Regional geobarometry in the contact aureoles of the anorthositic Nain complex, Labrador. J Petrol 18:399–430CrossRefGoogle Scholar
  22. Bialas RW, Buck WR, Qin R (2010) How much magma is required to rift a continent? Earth Planet Sci Lett 292:68–78CrossRefGoogle Scholar
  23. Birth F, Schairer JF, Spicer HC (1942) Handbook of physical constants. Geol Soc Amer, Spec Paper 36:325Google Scholar
  24. Bittner D, Schmeling H (1995) Numerical modelling of melting processes and induced diapirism in the lower crust. Geophys J Int 123:59–70CrossRefGoogle Scholar
  25. Bohlen SR, Montana A, Kerrick DM (1991) Precise determinations of the equilibria kyanite – sillimanite and kyanite – andalusite and a revised triple point for Al2SiO5 polymorphs. Am Mineral 76:677–680Google Scholar
  26. Bowers JR, Kerrick DM, Furlong KP (1990) Conduction model for the thermal evolution of the Cupsuptic aureole, Maine. Am J Sci 290:644–665CrossRefGoogle Scholar
  27. Brown M (2008) Characteristic thermal regimes of plate tectonics and their metamorphic imprint throughout earth history: when did earth first adopt a plate tectonics mode of behavior? In: Condie KC, Pease V (eds) When did plate tectonics begin on planet earth? Geol Soc Am, Spec Paper, vol 440, p 97–128Google Scholar
  28. Brown M (2013) Granite: from genesis to emplacement. Geol Soc Am Bull 125:1079–1113Google Scholar
  29. Brown EH, Walker NW (1993) A magma-loading model for Barrovian metamorphism in the Southeast Coast Plutonic Complex, British Columbia and Washington. Geol Soc Am Bull 105:479–500CrossRefGoogle Scholar
  30. Buck WR (1986) Small-scale convection induced by passive rifting: the cause of uplift of rift shoulders. Earth Planet Sci Lett 77:362–372CrossRefGoogle Scholar
  31. Buck WR (1991) Modes of continental lithospheric extension. J Geophys Res 96(B12):20161–20178CrossRefGoogle Scholar
  32. Buntebarth G (1984) Geothermics—an introduction. Springer, Berlin, Heidelberg, New YorkGoogle Scholar
  33. Buntebarth G (1991) Thermal model of cooling. In: Voll G, Töpel J, Pattison DRM, Seifert F (eds) Equilibrium and kinetics in contact metamorphism. The Ballachulish igneous complex and its aureole. Springer, Berlin, Heidelberg, pp 379–402CrossRefGoogle Scholar
  34. Burke K, Dewey JF (1973) Plume-generated triple junctions. Key indicators in applying plate tectonics to old rocks. J Geol 81:406–433CrossRefGoogle Scholar
  35. Burov E, Cloetingh S (2009) Controls of mantle plumes and lithospheric folding on modes of intraplate continental tectonics: differences and similarities. Geophys J Int 178:1691–1722CrossRefGoogle Scholar
  36. Burov E, Yamato P (2008) Continental plate collision, P-T–t–z conditions and unstable vs. stable plate dynamics: insights from thermo-mechanical modeling. Lithos 103:178–204CrossRefGoogle Scholar
  37. Burov E, Jaupart C, Guillou-Frottier L (2003) Ascent and emplacement of buoyant magma bodies in brittle-ductile upper crust. J Geophys Res 108:2177CrossRefGoogle Scholar
  38. Burov E, Francois Th, Yamato Ph et al (2014) Mechanism of continental subduction and exhumation of HP and UHP rock. Gondwana Res 25:464–493CrossRefGoogle Scholar
  39. Carslaw HS, Jaeger JC (1959) Conduction of heat in solids, 2nd edn. Clarendon Press, OxfordGoogle Scholar
  40. Carter NL, Tsenn MC (1987) Flow properties of continental lithosphere. Tectonophysics 136:27–63CrossRefGoogle Scholar
  41. Chatterjee ND, Johannes WS (1974) Thermal stability and standard thermodynamic properties of synthetic 2M1- muscovite, KAl2Al3Si3O10(OH)2. Contrib Mineral Petrol 48:89–114CrossRefGoogle Scholar
  42. Chemenda AL, Mattauer M, Malavieille J et al (1995) A mechanism for syn-collisional deep rock exhumation and associated normal faulting: results from a physical modelling. Earth Planet Sci Lett 132:225–232CrossRefGoogle Scholar
  43. Chopra PN, Patterson MS (1984) The role of water in the deformation of dunite. J Geophys Res 89:7861–7876CrossRefGoogle Scholar
  44. Choukroune P, Ludden JN, Chardon D et al (1997) Archaean crustal growth and tectonic processes: a comparison of the Superior Province, Canada and the Dharwar Craton, India. Geol Soc Spec Publ 121:63–98. Blackwell, LondonGoogle Scholar
  45. Christensen UR (1992) An Eulerian technique for thermomechanical modeling of lithospheric extention. J Geophys Res 97:2015–2036CrossRefGoogle Scholar
  46. Clark SP (1966) Handbook of physical constants. Revised edition. Geol Soc Amer Memoir 97Google Scholar
  47. Cloos M (1993) Lithospheric buoyancy and collisiona1 oгogenesis: sulbduction of oceanic p 1ateaus, continenta1 margins, is1and arcs, spгeading ridges, and seamounts. Geol Soc Am Bull 105:715–737Google Scholar
  48. Coleman RG, Wang X (eds) (1995) Ultrahigh pressure metamorphism. Cambridge University Press, Cambridge, New York, Port Chester, Melbourne, SydneyGoogle Scholar
  49. Compton RR (1960) Contact metamorphism in the Santa Rosa Range, Nevada. Geol Soc Amer Bull 71:1383–1416CrossRefGoogle Scholar
  50. Condie KC (1981) Archean greenstone belts. Elsevier, AmsterdamGoogle Scholar
  51. Condie KC (2001) Mantle plumes and their record in earth history. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  52. Connolly JAD (1990) Multivariable phase-diagrams—an algorithm based on generalized thermodynamics. Am J Sci 290:666–718CrossRefGoogle Scholar
  53. Connolly JAD (2005) Computation of phase equilibria by linear programming: a tool for geodynamic modeling and its application to subduction zone decarbonation. Earth Planet Sci Lett 236:524–541CrossRefGoogle Scholar
  54. Conrad CP, Hager BH (1999) The thermal evolution of an earth with strong subduction zones. Geophys Res Lett 26:3041–3044CrossRefGoogle Scholar
  55. Copeland P, Harrison TM (1990) Episodic rapid uplift in the Himalaya revealed by 40Ar/39Ar analysis of detrital K-feldspar and muscovite, Bengal Fan. Geology 18:354–357CrossRefGoogle Scholar
  56. Crawford ML, Mark LE (1982) Evidence from metamorphic rocks for overthrusting. Pennsylvania Piedmont, USA. Can Mineral 20:333–347Google Scholar
  57. De Capitani C, Petrakakis K (2010) The computation of equilibrium assemblage diagrams with Theriak/Domino software. Am Mineral 95:1006–1016CrossRefGoogle Scholar
  58. De Yoreo JJ, Lux DR, Guidotti CV (1989a) A thermal model for Carboniferous metamorphism near the Sebago batholoth in western Maine. In: Tucker RD, Marvinney RG (eds) Igneous and metamorphic geology. Maine Geol Sur V, Augusta, ME, vol 3, pp 19–34Google Scholar
  59. De Yoreo JJ, Lux DR, Guidotti CV et al (1989b) The Acadian thermal history of western Maine. J Metamorph Geol 7:169–190CrossRefGoogle Scholar
  60. De Yoreo JJ, Lux DR, Guidotti CV (1991) Thermal modelling in low-pressure/high-temperature metamorphic belts. Tectonophysics 188:209–238CrossRefGoogle Scholar
  61. Delaney PT (1988) FORTRAN 77 programs for conductive cooling of dikes with tempera- ture-dependent thermal properties and heat of crystallization. Comput Geosci 14:181–212CrossRefGoogle Scholar
  62. Dobretsov NL (1974) Glaukofanslantsevyye i eklogit-glaukofanslantsevyye kompleksy SSSR (Glaucophane schists and eclogite-glaucophane schists complexes of the USSR). Nauka, NovosibirskGoogle Scholar
  63. Dobretsov NL (1981) Global’nyye petrologicheskiye protsessy (Global petrological processes). Nedra, MoscowGoogle Scholar
  64. Dobretsov NL (1991) Blueschist and eclogites: a possible plate tectonic mechanism for the emplacement from the upper mantle. Tectonophysics 186:253–268CrossRefGoogle Scholar
  65. Dobretsov NL (2000) Collision processes in Paleozoic foldbelts of Asia and exhumation mechanisms. Petrology 8(5):403–427Google Scholar
  66. Dobretsov NL (2010) Global geodynamic evolution of the Earth and global geodynamic models. Russ Geol Geophys 51(6):592–610CrossRefGoogle Scholar
  67. Dobretsov NL, Kirdyashkin AG (1991) Dynamics of subduction zones: models of accretionary wedge formation and exhumation of glaucophane schist and eclogites. Soviet Geol Geophys 32(3):9–20Google Scholar
  68. Dobretsov NL, Kirdyashkin AG (1994) Glubinnaya geodinamika (Deep-seated geodynamics). GEO, NovosibirskGoogle Scholar
  69. Dobretsov NL, Кirdyashkin AG (1994) Blueescltist belts of North Asia and models of subduction-accretion wedge. In: Coleman RG (ed) Reconstuction of Paleo-Asian ocean. VSP International Science Publication, Netherland, pp 91–106Google Scholar
  70. Dobretsov NL, Khlestov VV, Reverdatto VV et al (1972) The facies of metamorphism. Australian National University, Canberra, Publ, p 214Google Scholar
  71. Dobretsov NL, Khlestov VV, Sobolev VS (1973) The facies of regional metamorphism at moderate pressure. Australian National University, Canberra, Publ, p 236Google Scholar
  72. Dobretsov NL, Sobolev VS, Sobolev NV et al (1975) The facies of regional metamorphism at high pressure. Australian National University, Canberra, Publ, p 266Google Scholar
  73. Dobretsov NL, Sobolev NV, Shatsky VS (1989) Eklogity i glaukofanovyye slantsy v skladchatykh oblastyakh (Eclogites and glaucophane schists in folded areas). Nauka, Siberian Branch, NovosibirskGoogle Scholar
  74. Dodson MH (1973) Closure temperature in cooling geochronological and petrological systems. Contrib Mineral Petrol 40:259–274CrossRefGoogle Scholar
  75. Dortman MB (ed) (1984) Phisicheskie svoistva gornyh porod i poleznyh iskopaemyh (petrophisica) (Physical properties of rocks and minerals (petrophysics). Nedra, MoscowGoogle Scholar
  76. Droop GTR, Brodie KH (2012) Anatectic melt volumes in the thermal aureole of the Etive Complex, Scotland: the roles of fluid-present and fluid-absent melting. J Metamorph Geol 30.
  77. Duchkov AD, Lysak SV, Balobaev VT et al (eds) (1987) Teplovoe pole nedr Sibiri (Thermal field of Siberia interiors). Nauka, NovosibirskGoogle Scholar
  78. Dudarev AN, Kudryavtsev VA, Melamed VG et al (1972) Teploobmen v magmatogennykh protsessakh (Heat transfer in magmatic processes). Nauka, Siberian Branch, NovosibirskGoogle Scholar
  79. Elan R (1985) High grade contact metamorphism at the Lake Isabella north shore roof pendant, southern Sierra Nevada, California. Dissertation, University of Southern CaliforniaGoogle Scholar
  80. England PC, Richardson SW (1977) The influence of erosion upon the mineral facies of rocks from different metamorphic environments. J Geol Soc London 134:201–213CrossRefGoogle Scholar
  81. England PC, Thompson AB (1984) Pressure-temperature-time paths of regional metamorphism: heat transfer during the evolution of regions of thickened continental crust. J Petrol 25:894–928CrossRefGoogle Scholar
  82. Englebrecht JP (1990) Contact metamorphism processes related to the aureole of the Bushveld complex in Marico district, western Transvaal, South Africa. Geology 93:339–349Google Scholar
  83. Ernst WG (1973) Blueschist metamorphism and P-T regimes in active subduction zones. Tectonophysics 17:255–272CrossRefGoogle Scholar
  84. Ernst WG (1975) Systematics of large-scale tectonics and age progressions in Alpine and circum-Pasific blueschist belts. Tectonophysics 26:229–246CrossRefGoogle Scholar
  85. Ernst WG (1988) Tectonic history of subduction zones inferred from retrograde blueschist P-T paths. Geology 16:1081–1084CrossRefGoogle Scholar
  86. Eskola P (1948) The problem of mantled gneiss domes. Quart J Geol Soc London 104:461–476CrossRefGoogle Scholar
  87. Evans BW (1990) Phase relations of epidote-blueschists. Lithos 25:3–23CrossRefGoogle Scholar
  88. Faccenda M, Gerya TV, Burlini L (2009) Deep slab hydration induced by bending related variations in tectonic pressure. Nature Geosci 2:790–793CrossRefGoogle Scholar
  89. Ferry JM, Spear FS (1978) Experimental calibration of the partitioning of Fe and Mg between biotite and garnet. Contrib Mineral Petrol 66:113–117CrossRefGoogle Scholar
  90. Friedinger PJ, Reverdatto VV, Polyansky OP (1991) Metamophism of subsiding sediments in rift structures of the Earth’s crust (approach on the basis of model). Sov Geol Geophys 32(9):71–79Google Scholar
  91. Friedrich AM, Hodges KV, Bowring SA et al (1999) Geochronological constraints on the magmatic, metamorphic and thermal evolution of the Connemara Caledonides, western Ireland. J Geol Soc London 156:1217–1230CrossRefGoogle Scholar
  92. Fullagar D, Butler JR (1979) 325 to 265 Ma-old granitic plutons in the Piedmont of the south-eastern Appalachians. Am J Sci 279:161–185CrossRefGoogle Scholar
  93. Furlong KP, Hanson RB, Bower JR (1991) Modeling thermal regimes. In: Kerrick DM (ed) Contact metamorphism. Reviews in mineralogy, vol 26, Mineral Soc Am, Book Crafters Inc., Chelsea, Michigan, pp 437–505Google Scholar
  94. Gaiduk VV (1988) Vilyuyskaya srednepaleozoyskaya riftovaya sistema (The Middle Paleozoic Vilyui Rift System). YaF SO AN SSSR, YakutskGoogle Scholar
  95. Garagash IA, Ermakov VA (2004) A probable geodynamic model of the early earth. Dokl Earth Sci 394(1):73–77Google Scholar
  96. Gerya TV (2002) P-T-trendy i model’ formirovaniya granulitovykh kompleksov dokembriya (P-T trends and model of formation of Precambrian granulite complexes). Doctor of Science Dissertation. Moscow State University, MoscowGoogle Scholar
  97. Gerya TV (2010) Introduction to numerical geodynamic modelling. Cambridge University Press, CambridgeGoogle Scholar
  98. Gerya TV (2015) Tectonic overpressure and underpressure in lithospheric tectonics and metamorphism. J Metamorph Geol 33:785–800CrossRefGoogle Scholar
  99. Gerya TV, Burg J-P (2007) Intrusion of ultramafic magmatic bodies into the continental crust: numerical simulation. Phys Earth Planet Inter 160:124–142CrossRefGoogle Scholar
  100. Gibson RG, Speer JA (1986) Contact aureoles as constraints on regional P-T trajectories, an example from the northern Alabama Piedmont, USA. J Metamorph Geol 4:285–308CrossRefGoogle Scholar
  101. Glukhovskoy MZ, Moralev VM (1996) Geotektonika plyumov rannego dokembriya na primere evolyutsii Sunnaginskogo enderbitovogo kupola (Aldanskiy shchit) (Geotectonics of plumes of the Early Precambrian on the example of the evolution of the Sunnagin enderbite dome (Aldan Shield)). Geotectonika 6:81–93Google Scholar
  102. Golubev VS, Sharapov VN (1974) Dinamika endogennogo rudoobrazovaniya (Dynamics of endogenous ore formation). Nedra, MoscowGoogle Scholar
  103. Green DH (1967) High-temperature peridotite intrusions. In: Wyllie PJ (ed) Ultramafic and related rocks. Wiley, New York, pp 212–222Google Scholar
  104. Griffin WL, Sturt BA, O’Neill CJ et al (2013) Intrusion and contamination of high-temperature dunitic magma: the Nordre Bumandsfjord pluton, Seiland, Arctic Norway. Contrib Mineral Petrol 165:903–930CrossRefGoogle Scholar
  105. Grigor’eva LV, Shinkarev NF (1981) Usloviya obrazovaniya kupol’nykh struktur v Priladozh’ye (Emplacement Conditions of Dome-Shaped Structures of the Ladoga region). Izvestiya Akad Nauk SSSR, Ser Geol 3:41–50Google Scholar
  106. Guillot S, Hattori K, Agard Ph et al (2009) Exhumation processes in oceanic and continental subduction contexts: a review. In: Lallemand S, Funiciello F (eds) Subduction zone geodynamics. Springer, Berlin, pp 175–205CrossRefGoogle Scholar
  107. Hacker BR, Abers GA, Peacock SM (2003) Subduction factory 1. Theoretical mineralogy, densities, seismic wave speeds, and H2O contents. J Geophys Res 108(B1):2029.
  108. Hansen FD, Carter NL (1982) Creep of selected crustal rocks at 1000 MPa. Trans Amer Geophys Union 63:437Google Scholar
  109. Harley SL (1989) The origin of granulites: metamorphic perspective. Geol Mag 126:215–247CrossRefGoogle Scholar
  110. Harwood DS (1973) Bedrock geology of the Capsaptic and Arnold Pond quadrangles, west central Maine. US Geol Surv Bull 1346:90Google Scholar
  111. Hasenclever J, Morgan JP, Hort M et al (2011) 2D and 3D numerical models on compositionally buoyant diapirs in the mantle wedge. Earth Planet Sci Lett 311:53–68CrossRefGoogle Scholar
  112. Hayba DO, Ingebritsen SE (1997) Multiphase groundwater flow near cooling plutons. J Geophys Res 102:12235–12252CrossRefGoogle Scholar
  113. He B, Xu Y-G, Paterson S (2009) Magmatic diapirism of the Fangshan pluton, southwest of Beijing, China. J Struct Geol 31:615–626CrossRefGoogle Scholar
  114. Hermes OD, Murray DP (1988) Middle Devonian to Permian plutonism and volcanism in the N. American Appalachians. In: Harris AL, Fettes DJ (eds) The Caledonian Appalachian Orogeny, vol 38. Geological Society Special Publication, Blackwell, London, pp 559–571Google Scholar
  115. Herzberg C, Condie K, Korenaga J (2010) Thermal history of the earth and its petrological expression. Earth Planet Sci Lett 292:79–88CrossRefGoogle Scholar
  116. Hodge DS (1974) Thermal model for origin of granitic batholiths. Nature 251:297–299CrossRefGoogle Scholar
  117. Hodges KV (2005) Geochronology and thermochronology in orogenic system. In: Rudnick RL (ed) The crust. Holland HD, Turekian KK (eds) Treatise on geochemistry, vol 3. Elsevier, Oxford, pp 263–292Google Scholar
  118. Hoisch TD (1989) A muscovite-biotite geothermometer. Am Mineral 74:565–572Google Scholar
  119. Holdaway MJ (2000) Application of new experimental and garnet Margules data to the garnet-biotite geothermometer. Am Mineral 85:881–892Google Scholar
  120. Holdaway MJ, Lee SM (1977) Fe-Mg cordierite stability in high-grade pelitic rocks based on experimental, theoretical and natural observations. Contrib Mineral Petrol 63:175–198CrossRefGoogle Scholar
  121. Holland TJB, Powell R (1985) An internally consistent thermodynamic dataset with uncertainties and correlations: 2. Data and results. J Metamorph Geol 3:343–370Google Scholar
  122. Holland TJB, Powell R (1990) An enlarged and updated internally consistent thermodyna- mic dataset with uncertainties and correlations: the system K2O–Na2O–CaO–MgO–MnO–FeO–Fe2O3–Al2O3–TiO2–SiO2–C–H2–O2. J Metamorph Geol 8:89–124CrossRefGoogle Scholar
  123. Holland TJB, Powell R (1998) An internally consistent thermodynamic data set for phases of petrological interest. J Metamorph Geol 16:309–343CrossRefGoogle Scholar
  124. Holness MB (1999) Contact metamorphism and anatexis of Torridonian arkose by minor intrusions of the Rhum Igneous Complex, Inner Hebrides, Scotland. Geol Mag 136:527–542CrossRefGoogle Scholar
  125. Horai K (1971) Thermal conductivity of rock-forming minerals. J Geophys Res 76:1278–1308CrossRefGoogle Scholar
  126. Huerta AD, Royden LH, Hodges KV (1999) The effects of accretion, erosion and radiogenic heat on the metamorphic evolution of collisional orogens. J Metamorph Geol 17:349–366CrossRefGoogle Scholar
  127. Huismans RS, Podladchikov YY, Cloetingh SAPL (2001) Transition from passive to active rifting: relative importance of asthenospheric doming and passive extension of the lithosphere. J Geophys Res 106:11271–11292CrossRefGoogle Scholar
  128. Ingersoll LR, Zobel OJ (1913) An introduction to the mathematical theory of heat conduction with engineering and geological applications. Ginn and Co, BostonGoogle Scholar
  129. Jaeger JC (1957) The temperature in the neighbourhood of a cooling intrusive sheet. Am J Sci 255:305–318CrossRefGoogle Scholar
  130. Jaeger JC (1959) Temperatures outside a cooling intrusive sheet. Am J Sci 257:44–54CrossRefGoogle Scholar
  131. Jaeger JC (1964) Thermal effect of intrusions. Rev Geophys 2:443–466CrossRefGoogle Scholar
  132. Jaeger JC (1968) Cooling and solidification of igneous rocks. In: Hess HH and the late Poldervaart A (eds) Basalts. The Poldervaart treatise on rocks of basaltic composition. Interscience Publisher, New York-London-Sidney, pp 503–536Google Scholar
  133. Jamieson RA, Beaumont C (2013) On the origin of orogens. Geol Soc Am Bull 125:1671–1702. Scholar
  134. Jamieson RA, Beaumont C, Fullsack P et al (1998) Barrovian regional metamorphism: where’s the heat? In: Treloar PJ, O’Brien PJ (eds) What drives metamorphism and metamorphic reactions? special publication, vol 138. Geological Society, London, pp 23–45Google Scholar
  135. Jamieson RA, Beaumont C, Nguyen MH et al (2002) Interaction of metamorphism, deformation and exhumation in large convergent orogens. J Metamorph Geol 20:9–24CrossRefGoogle Scholar
  136. Jansen JBH, Schuiling RD (1976) Metamorphism on Naxos: petrology and geothermal gradients. Am J Sci 276:1225–1253CrossRefGoogle Scholar
  137. Jarrard RD (1986) Relations among subduction parameters. Rev Geophys 24:217–284CrossRefGoogle Scholar
  138. Jarvis GT, McKenzie DP (1980) Sedimentary basin formation with finite extension rates. Earth Planet Sci Lett 48:42–52CrossRefGoogle Scholar
  139. Jellinek AM, Kerr RC (1999) Mixing and compositional stratification produced by natural convection. 2. Applications to the differentiation of basaltic and silicic magma chambers and komatiite lava flows. J Geophys Res 104:7203–7218CrossRefGoogle Scholar
  140. Johannes W (1984) Beginning of melting in the granite system Qz–Or–Ab–An–H2O. Contrib Mineral Petrol 86:264–273CrossRefGoogle Scholar
  141. Johnson MRW, Harley SL (2012) Orogenesis: the making of mountains. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  142. Karabinos P, Ketchman R (1988) Thermal structure of active thrust belts. J Metamorph Geol 6:559–570CrossRefGoogle Scholar
  143. Karato S, Wu P (1993) Rheology of the upper mantle: a synthesis. Science 260:771–778CrossRefGoogle Scholar
  144. Katz RF, Weatherley SM (2012) Consequences of mantle heterogeneity for malt extraction. Earth Planet Sci Lett 335–336:226–237CrossRefGoogle Scholar
  145. Khain VE, Lomize MG (1995) Geotektonika s osnovami geodinamiki (Geotectonics with the basics of geodynamics). Moscow State University, MoscowGoogle Scholar
  146. Kirdyashkin AA, Kirdyashkin AG (2013) Interaction of a thermochemical plume with free convection mantle flows and its influence on mantle melting and recrystallization. Russ Geol Geophys 54(5):544–554CrossRefGoogle Scholar
  147. Kiselev AI, Yarmolyuk VV, Ivanov AV et al (2014) Middle Paleozoic basaltic and kimberlitic magmatism in the northwestern shoulder of the Vilyui Rift, Siberia: relations in space and time. Russ Geol Geophys 55(2):144–152CrossRefGoogle Scholar
  148. Kleemann U, Reinhardt J (1994) Garnet-biotite thermometry revisited: The effect of AlVI and Ti in biotite. Eur J Mineral 6:925–941CrossRefGoogle Scholar
  149. Klein EM (2003) Geochemistry of the igneous oceanic crust. In: Rudnick RL (ed) Treatise on geochemistry. Crust, vol 3, pp 433–463Google Scholar
  150. Kohn MJ (2008) P-T-t data from central Nepal support critical taper and repudiate large-scale channel flow of the Greater Himalayan Sequence. Geol Soc Amer Bull 120:259–273CrossRefGoogle Scholar
  151. Kohn MJ, Orange DL, Spear FS et al (1992) Pressure, temperature, and structural evolution of west-central New Hampshire: hot thrusts over cold basement. J Petrol 33:521–556CrossRefGoogle Scholar
  152. Kolobov VY, Likhanov II, Reverdatto VV (1992) Kontaktovo-metamorficheskiye porody (Contact-metamorphic rocks). In: Dobretsov NL, Bogatikov OA, Rosen OM (eds) Classification and nomenclature of metamorphic Rocks Nauka. Siberian Branch, Novosibirsk, pp 77–97Google Scholar
  153. Korenaga J (2003) Energetics of mantle convection and the fate of fossil heat. Geophys Res Lett 30:1437–1440Google Scholar
  154. Korikovsky SP (1995) Kontrastnyye modeli progradno-retrogradnoy evolyutsii meta-morfizma fanerozoyskikh skladchatykh poyasov v zonakh kollizii i subduktsii (Contrast models of the prograde-retrograde evolution of metamorphism of the Phanerozoic folded belts in zones of collision and subduction). Petrologiya 3(1):45–63Google Scholar
  155. Koritnig S (1955) Die Blaue Kuppe bei Eschwege mit ihren Kontacterscheinungen. Heidelberg Beitr Mineral Petrogr 4:504–521Google Scholar
  156. Korobeinikov SN, Polyansky OP, Likhanov II et al (2006) Mathematical modeling of overthrusting fault as a cause of andalusite–kyanite metamorphic zoning in the Yenisei Ridge. Dokl Earth Sci 408(4):652–656CrossRefGoogle Scholar
  157. Korobeinikov SN, Polyansky OP, Sverdlova VG et al (2008) Computer modeling of underthrusting and subduction under conditions of gabbro–eclogite transition in the mantle. Dokl Earth Sci 421(5):724–728CrossRefGoogle Scholar
  158. Korobeynikov SN (2000) Nelineynoye deformirovaniye tverdykh tel (Nonlinear Deformation of Solids). SO RAN Press, NovosibirskGoogle Scholar
  159. Korobeynikov SN, Reverdatto VV, Polyanskii OP et al (2009) Computer simulation of undrthrusting and subduction due to collision of slabs. Num Anal Applic 2(1):58–73CrossRefGoogle Scholar
  160. Korsman K, Korja T, Pajunen M et al (1999) The GGT/SVEKA transect—structure and evolution of the continental crust in the Paleoproterozoic Svecofennian orogen in Finland. Int Geol Rev 41:287–333CrossRefGoogle Scholar
  161. Kozakov IK, Glebovitsky VA, Bibikova EV et al (2002) Hercynian granulites of Mongolian and Gobian Altai: geodynamic setting and formation conditions. Dokl Earth Sci 386(7):781–785Google Scholar
  162. Kozakov IK, Didienko AN, Azimov PY et al (2011) Geodynamic settings and formation conditions of crystalline complexes in the South Altai and South Gobi metamorphic belts. Geotectonics 45(3):174–194CrossRefGoogle Scholar
  163. Koziol AM, Newton RC (1988) Redetermination of the garnet breakdown reaction and improvement of the plagiclase-garnet-Al2SiO5-quartz geobarometer. Am Mineral 73:216–223Google Scholar
  164. Krebs M, Maresch WV, Schertl H-P et al (2008) The dynamics of intra-oceanic subduction zones: A direct comparison between fossil petrological evidence (Rio San Juan Complex, Dominican Republic) and numerical simulation. Lithos 103:106–137CrossRefGoogle Scholar
  165. Kremenetsky AA, Milanovsky SY, Ovchinnikov LN (1989) A heat generation model for the continental crust based on deep drilling in the Baltic Shied. Tectonophysics 159:231–246CrossRefGoogle Scholar
  166. Kronenberg AK, Tullis J (1984) Flow strength of quartz aggregates: grain size and pressure effects due to hydrolytic weakening. J Geophys Res 89:4281–4297CrossRefGoogle Scholar
  167. Kruckenberg SC, Vangervaeghe O, Ferre EC et al (2011) Flow of partially molten crust and the internal dynamics of a migmatite dome, Naxos, Greece. Tectonics 30.
  168. Kusznir NJ, Park RG (1984) The strength of intraplate lithosphere. J Phys Earth Planet Int 36:224–235CrossRefGoogle Scholar
  169. Kuzmin MI, Yarmolyuk VV, Kravchinsky VA (2010) Phanerozoic hot spot traces and paleogeographic reconstructions of the Siberian continent based on interaction with the African large low shear velocity province. Earth-Sci Rev 102:29–59CrossRefGoogle Scholar
  170. Lachenbruch AH, Sass JH (1978) Models of an extending lithosphere and heat flow in the Basin and Range Province. Cenozoic Tectonics und Regional Geophysics of the Western Cordillera. Geol Soc Am Mem 152:209–250Google Scholar
  171. Landau LD, Lifshitz EM (1986) Gidrodinamika (Hydrodynamics), 3rd edn. Nauka, MoscowGoogle Scholar
  172. Lazaro C, Garcia-Casco A, Rojas Agramonte Y et al (2009) Fifty-five-million-year history of oceanic subduction and exhumation at the northern edge of the Carribean plate (Sierra del Convento mélange, Cuba). J Metamorph Geol 27:19–40CrossRefGoogle Scholar
  173. Le Breton N, Thompson AB (1988) Fluid-absent (dehydration) melting of biotite in metapelites in the early stages of crustal anataxis. Contrib Mineral Petrol 99:226–237CrossRefGoogle Scholar
  174. Lee MK (1986) A new gravity survey of the Lake district and three-dimensional model of the granite batholith. J Geol Soc London 143:425–435CrossRefGoogle Scholar
  175. Leonov YuG (2004) Kharakternyye osobennosti stroyeniya i razvitiya nekotorykh tipov osadochnykh basseynov (Characteristic features of the structure and development of some types of sedimentary basins). In: Leonov YuG, Volozh YuA (eds) Sedimentary basins: methods of study, structure and evolution. Nauch Mir, Moscow, pp 38–60Google Scholar
  176. Lepezin GG (1972) Metamorfizm fatsii epidotovıh amfibolitov (Metamorphism of the facies of epidote amphibolites). Nauka, MoscowGoogle Scholar
  177. Li ZH, Gerya TV, Burg P (2010) Influence of tectonic overpressure on P-T paths of HP-UHP rocks in continental collision zones: Thermomechanical modelling. J Metamorph Geol 28:227–247CrossRefGoogle Scholar
  178. Likhanov II, Reverdatto VV (2002) Mass transfer during andalusite replacement by kyanite in Al- and Fe-rich metapelites in the Yenisei Range. Petrology 10(5):479–494Google Scholar
  179. Likhanov II, Reverdatto VV (2011) Neoproterozoic collisional metamorphism in overthrust terranes of the Transangarian Yenisei Ridge, Siberia. Int Geol Rev 53:802–845CrossRefGoogle Scholar
  180. Likhanov II, Reverdatto VV, Memmi I (1994) Short-range mobilization of elements in the biotite zone of contact aureole of the Kharlovo gabbro intrusion (Russia). Eur J Mineral 6:133–144CrossRefGoogle Scholar
  181. Likhanov II, Ten AA, Reverdatto VV et al (1996) Low-grade metamorphism of clays at the contacts of andesite plugs in Turkmenistan (western Badkhys). Transactions (Doklady) Earth Sci 346(1):78–81Google Scholar
  182. Likhanov II, Polyanskii OP, Kozlov PS et al (2000) Replacement of andalusite by kyanite with increasing pressure at a low geothermal gradient in metapelites of the Enisei Ridge. Dokl Earth Sci 375(9):1411–1416Google Scholar
  183. Likhanov II, Polyanskii OP, Reverdatto VV et al (2001) Metamorphic evolution of high-alumina metapelites near the Panimba overthrust (Yenisei Range): mineral associations, P-T conditions, and tectonic model. Geol Geofiz 42(8):1205–1220Google Scholar
  184. Likhanov II, Polyansky OP, Reverdatto VV et al (2004) Evidence from Fe- and Al- rich metapelites for thrust loading in the Transangarian Region of the Yenisei Ridge, eastern Siberia. J Metamorph Geol 22:743–762CrossRefGoogle Scholar
  185. Likhanov II, Kozlov PS, Popov NV et al (2006) Collision metamorphism as a result of thrusting in the Transangara region of the Yenisei Ridge. Dokl Earth Sci 411(1):1313–1317CrossRefGoogle Scholar
  186. Likhanov II, Reverdatto VV, Kozlov PS et al (2008a) Collision metamorphism of Precambrian complexes in the Transangarian Yenisei Range. Petrology 16(2):136–160CrossRefGoogle Scholar
  187. Likhanov II, Reverdatto VV, Verschinin AE (2008b) Fe- and Al-rich metapelites of the Teya sequence, Yenisei Range: geochemistry, protoliths and the behavior of their matter during metamorphism. Geochem Int 46(1):17–36CrossRefGoogle Scholar
  188. Likhanov II, Reverdatto VV, Kozlov PS (2011) The Teya polymetamorphic complex in the Transangarian Yenisei Ridge: an example of metamorphic superimposed zoning of low- and medium-pressure facies series. Dokl Earth Sci 436(2):213–218CrossRefGoogle Scholar
  189. Likhanov II, Reverdatto VV, Kozlov PS (2012) U-Pb and 40Ar-39Ar evidence for Grenvillian activity in the Yenisei ridge during formation of the Teya metamorphic complex. Geochem Int 50(6):551–557CrossRefGoogle Scholar
  190. Likhanov II, Nozhkin AD, Reverdatto VV et al (2014) Grenville tectonic events and evolution of the Yenisei Ridge at the western margin of the Siberian craton. Geotectonics 48(5):371–389CrossRefGoogle Scholar
  191. Likhanov II, Régnier J-L, Santosh M (2018) Blueschist facies fault tectonites from the western margin of the Siberian Craton: implications for subduction and exhumation associated with early stages of the Paleo-Asian Ocean. Lithos 304–307:468–488CrossRefGoogle Scholar
  192. Liou JG, Hacker BR, Zhang RY (2000) Into the forbidden zone. Science 287:1215–1216CrossRefGoogle Scholar
  193. Lister GS, Etheridge MA, Symonds PA (1991) Detachment models for the formation of passive continental margins. Tectonics 10:1038–1064CrossRefGoogle Scholar
  194. Little TA, Hacker BR, Gordon SM et al (2011) Diapiric exhumation of Earth’s youngest (UHP) eclogites in the gneiss domes of the D’Entrecasteaux Islands, Papua New Guinea. Tectonophysics 510:39–68CrossRefGoogle Scholar
  195. Ljubimova EA (1968) Termika Zemli i Luny (Thermics of Earth and Moon). Nauka, MoscowGoogle Scholar
  196. Logatchev NA, Rogozhina VA, Solonenko VP et al (1978) Deep structure and evolution of the Baikal rift zone. In: Ramberg IB, Neumann ER (eds) Tectonisc and geophysics of continental rifts. Norwell MaS Reidel, pp 49–62Google Scholar
  197. Long SP, McQuarrie N, Tobgay T et al (2012) Variable shortening rates in the eastern Himalayan thrust belt, Bhutan: insights from multiple thermochronologic and geochronologic data sets tied to kinematic reconstructions. Tectonics 31(5). 03155
  198. Loosveld RJH, Etheridge MA (1990) A model for low-pressure facies metamorphism during crustal thickening. J Metamorph Geol 8:257–267CrossRefGoogle Scholar
  199. Lovering TS (1935) Theory of heat conduction applied to geological problems. Geol Soc Amer Bull 46:69–94CrossRefGoogle Scholar
  200. Lovering TS (1936) Heat conduction in dissimilar rocks and the use of thermal models. Geol Soc Amer Bull 47:87–100CrossRefGoogle Scholar
  201. Lovering TS (1955) Temperatures in and near intrusions. Econ Geol 50:249–281CrossRefGoogle Scholar
  202. MacKenzie DB (1960) High-temperature alpine-type peridotite from Venezuela. Geol Soc Amer Bull 71(3):303–318CrossRefGoogle Scholar
  203. Mancktelow NS (2008) Tectonic pressure: theoretical concepts and models. Lithos 103:149–177. In: Abstracts of the international symposium “Large Igneous Provinces of Asia, Mantle Plumes and Metallogeny”, Novosibirsk, 13–16 Aug 2007. Publ. House of SB RAS, Novosibirsk, pp 39–42Google Scholar
  204. Martin H (1994) The Archean grey gneisses and the genesis of continental crust. In: Condie KC (ed) Archean crustal evolution. Elsevier, Amsterdam, pp 205–259CrossRefGoogle Scholar
  205. Maruyama S, Liou JG, Terabayashi M (1996) Blueschists and eclogites of the world and their exhumation. Int Geol Rev 38:485–594CrossRefGoogle Scholar
  206. Masaitis VL (2007) Devonian basalts of Siberian platform, and their heterogeneous mantle sources. In: Abstracts of the international symposium “Large Igneous Provinces of Asia, Mantle Plumes and Metallogeny”, Novosibirsk, 13–16 August 2007. Publishing house of SB RAS, Novosibirsk, p 39–42Google Scholar
  207. Masaitis VL, Mikhailov MV, Selivanovskaya TV (1975) Vulkanism i tektonika Patomsko-Viluyiskogo srednepaleozoiskogo avlakogena (Volcanism and tectonics of the middle Paleozoic Patom-Vilyui aulacogen). Nedra, MoscowGoogle Scholar
  208. Mason R (1978) Petrology of the metamorphic rocks. George Allen and Unwin, LondonGoogle Scholar
  209. Mathew G, De Sarkar S, Pande K et al (2013) Thermal metamorphism of the Arunachal Himalaya, India: Raman thermometry and thermochronological constraints on the tectono-thermal evolution. Int J Earth Sci 102:1911–1936CrossRefGoogle Scholar
  210. McCarthy TS, Fripp REP (1980) The crystallization history of a granitic magma, as revealed by trace element abundances. J Geol 88:211–224CrossRefGoogle Scholar
  211. McLelland JM, Isachsen YW (1985) Geological evolution of the Adirondack mountains: a review. In: Tobi AC, Touret JLR (eds) The deep Proterozoic crust in the North Atlantic provinces. NATO ASI series (Series C. Mathematical and physical sciences). vol 158. Springer, Dordrecht, pp 175–215Google Scholar
  212. McKenzie D (1978) Some remarks on the development of sedimentary basins. Earth Planet Sci Lett 40:25–32CrossRefGoogle Scholar
  213. McKenzie D, Bickle MJ (1988) The volume and composition of melt generated by extension of lithosphere. J Petrol 29:625–679Google Scholar
  214. Mei S, Bai W, Hiraga T et al (2002) Influence of melt on the creep behavior of olivine-basalt aggregates under hydrous conditions. Earth Planet Sci Lett 201:491–507CrossRefGoogle Scholar
  215. Milliard Y (1959) Les massifs metamorphiques et ultrabasiques de la zone paleozoique interne du Rif. Notes du service Geol du Maroc 18(147):125–160Google Scholar
  216. Mints MV, Glaznev VN, Konilov AN et al (1996) Ranniy dokembriy severo-vostoka Baltiyskogo shita (Early Precambrian of the northeast Baltic shield: paleogeodynamics, structure and evolution of the continental crust). Nauchnyi Mir, MoscowGoogle Scholar
  217. Miyashiro A (1961) Evolution of metamorphic belts. J Petrol 2:277–311CrossRefGoogle Scholar
  218. Miyashiro A (1973) Metamorphism and metamorphic belts. Allen and Unwin, LondonCrossRefGoogle Scholar
  219. Mohan MR, Satyanarayanan M, Santosh M, Sylvester PJ, Tubrett M, Lam R (2013) Neoarchean suprasubduction zone arc magmatism in southern India: geochemistry, zircon U-Pb geochronology and Hf isotopes of the Sittampundi anotthosite complex. Gondwana Res 23:539–557Google Scholar
  220. Montel J-M, Kornprobst J, Vielzeuf D (2000) Preservation of old U-Th-Pb ages in shielded monazite: example from the Beni Bousera Hercynian kinzigites (Marocco). J Metamorphic Geol 18:335–342CrossRefGoogle Scholar
  221. Montelli R, Nolet G, Dahlen FA et al (2004) Finite- frequency tomography reveals a variety of plums in the mantle. Science 303:338–343CrossRefGoogle Scholar
  222. Moretti I, Froidevaux C (1986) Thermomechanical models of active rifting. Tectonics 5:501–511CrossRefGoogle Scholar
  223. Morozov YuA, Gaft DE (1985) O prirode granitogneisovyh kupolov Severnogo Priladozya (On the nature of granite-gneiss domes of the Northern Ladoga region). In: Ez VV (ed) Structure and petrology of the precambrian complexes. IFZ AN SSSR, MoscowGoogle Scholar
  224. Mossakovskii AA, Ruzhentsev SV, Samygin SG et al (1993) Centralnio-asiatskiy skladchtyi poyas: geodinamicheskaya evoluciya i istoriya formirovaniya (Central Asian fold belt: geodynamic evolution and the history of formation). Geotectonika no 6:3–33Google Scholar
  225. Mukherjee S (2013) Channel flow extrusion model to constrain dynamic viscosity and Prandtl number of the Higher Himalayan Shear Zone. Int J Earth Sci 102:1811–1835CrossRefGoogle Scholar
  226. Nabelek PI, Hofmeister AM, Whittington AG (2012) The influence of temperature-dependent thermal diffusivity on the conductive cooling rates of plutons and temperature–time paths in contact aureoles. Earth Planet Sci Lett 317(318):157–164CrossRefGoogle Scholar
  227. Nakada M (1994) Convective coupling between ductile lower crust and upper mantle and its tectonic implications. Geophys J Int 118:579–603CrossRefGoogle Scholar
  228. Nell J (1985) The Bushveld metamorphic aureole in the Potgietersrus area, evidence for a two- stage metamorphic event. Econ Geol 80(4):1129–1152CrossRefGoogle Scholar
  229. Nenakhov VM (2001) Geodinamicheskie osobennosti rannego arheya (Geodynamic features of the early Archean). Geotectonika no 1:3–15Google Scholar
  230. Newton RC, Haselton HT (1981) Thermodynamics of the garnet-plagioclase-Al2SiO5- quartz geobarometer. In: Newton RC, Navrotsky A, Wood BJ (eds) Advances in physical geochemistry, vol 1. Springer, New-York, pp 131–147Google Scholar
  231. Norlander BH, Whitney DL, Teyssier Ch et al (2002) Partial melting and decompression of the Thor Odin dome, Shuswap metamorphic core complex. Lithos 61:103–125CrossRefGoogle Scholar
  232. Norton D, Knight J (1977) Transport phenomena in hydrothermal systems: cooling plutons. Amer J Sci 277:937–981CrossRefGoogle Scholar
  233. Nozhkin AD, Krendelev FP, Myronov AG (1975) Radioaktivniye elementy v dokembrii Eniseyskogo kriazha (Radioactive elements in Precambrian of Yenisei Range). In: Kuznetsov VA (ed) Radioactive elements in rocks. Nauka, Novosibirsk, pp 183–189Google Scholar
  234. Nozhkin AD, Turkina OM, Bibikova EV et al (1999) Riphean granite-gneiss domes of the Yenisei Ridge: geological structure and U-Pb isotope age. Geol Geofiz 40(9):1284–1292Google Scholar
  235. Obata M (1980) The Ronda peridotite: garnet-, spinel-, and plagioclase – lherzolite facies and the P-T trajectories of a high-temperature mantle intrusion. J Petrol 21:533–572CrossRefGoogle Scholar
  236. Okay AI (2002) Jadeite–chloritoid–glaucophane–lawsonite blueschists in north-west Turkey: unusually high P/T ratios in continental crust. J Metamorphic Geol 20:757–768CrossRefGoogle Scholar
  237. Oxburgh ER, Turcotte DL (1974) Membrane tectonics and the East African Rift. Earth Planet Sci Lett 22:l33–140CrossRefGoogle Scholar
  238. Parker EC, Davis PM, Evans JR et al (1984) Upwarp of anomalous asthenosphere beneath the Rio Grande Rift. Nature 312:354–356CrossRefGoogle Scholar
  239. Patchett PJ (1992) Isotopic studies of Proterozoic crustal growth and evolution. In: Condie KC (ed) Proterozoic crustal evolution. Developments in Precambrian geology, vol 10. Elsevier, Amsterdam, p 481–508Google Scholar
  240. Paterson SR, Tobisch OT (1992) Rates and progress in magmatic arcs: implications for the timing and nature of pluton emplacement and wall rock deformation. J Struct Geol 14:291–300CrossRefGoogle Scholar
  241. Paterson SR, Vernon RH, Fowler TK (1991) Aureole tectonics. In: Kerrick DM (ed) Contact metamorphism. Reviews in mineralogy, vol 26. Mineral Soc Amer, Washington, pp 673–722Google Scholar
  242. Pattison DRM (1991) P-T-a(H2O) conditions in the thermal aureole. Equilibrium and kinetics in contact metamorphism. In: Voll G, Töpel J, Pattison DRM et al (eds) The Ballachulish igneous complex and its aureole. Springer, Heidelberg, pp 327–350Google Scholar
  243. Pattison DRM (1992) Stability of andalusite and sillimanite and the Al2SiO5 triple point: constraints from the Ballachulish aureole, Scotland. J Geol 100:423–446Google Scholar
  244. Pattison DRM (2001) Instability of Al2SiO5 « triple point » assemblages in muscovite + biotite + quartz – bearing metapelites, with implications. Am Mineral 86:1414–1422CrossRefGoogle Scholar
  245. Pattison DRM, Tracy RJ (1991) Phase equilibria and thermobarometry of metapelites. In: Kerrick DM (ed) Contact metamorphism. Reviews in mineralogy, vol 26. Mineral Soc Amer, Washington, pp 105–206Google Scholar
  246. Peacock SM (1989) Numerical constraints on rates of metamorphism, fluid production, and fluid flux during regional metamorphism. Geol Soc Amer Bull 101:476–485CrossRefGoogle Scholar
  247. Peacock SM (1992) Blueschist facies metamorphism, shear heating and P-T-t paths in subduction shear zones. J Geophys Res 97:17693–17707Google Scholar
  248. Peacock SM (1993) The importance of blueschist-eclogite dehydration reactions in subducting oceanic crust. Geol Soc Amer Bull 105:684–694CrossRefGoogle Scholar
  249. Pearson DG, Davies GR, Nixon PH (1995) Orogenic ultramafic rocks of UHP (diamond facies) origin. In: Coleman RG, Wang X (eds) Ultrahigh pressure metamorphism. Cambridge University Press, Cambridge, pp 456–510CrossRefGoogle Scholar
  250. Pecher A (1989) The metamorphism in the central Himalaya. J Metamorphic Geol 7:31–41CrossRefGoogle Scholar
  251. Pekhovich AI, Zhidkikh VM (1976) Raschety teplovogo regima tverdykh tel (Calculations of the thermal regime of solids). Energiya, LeningradGoogle Scholar
  252. Persikov ES (1984) Vyazkost magmaticheskih rasplavov (Viscosity of igneous melts). Nauka, MoscowGoogle Scholar
  253. Pertsev NN (1977) Vysokotemperaturnyi metamorfizm i metasomatoz karbonatnykh porod (High-temperature metamorphism and metasomatism of carbonate rocks). Nauka, MoscowGoogle Scholar
  254. Petford N (1996) Dykes or diapirs? Trans Royal Soc Edinburgh Earth Sci 87:105–114. Scholar
  255. Petrini K, Podladchikov Yu (2000) Lithospheric pressure-depth relationship in compressive regions of thickened crust. J Metamorphic Geol 18:67–77CrossRefGoogle Scholar
  256. Pitcher WS, Berger AR (1972) The geology of Donegal. A study of granite emplacement and unroofing. Wiley, New YorkGoogle Scholar
  257. Pitcher WS, Sinha RC (1958) The petrochemistry of the Ardara aureole. Quart J Geol Soc London 113:393–408CrossRefGoogle Scholar
  258. Platt JP (1986) Dynamics of orogenic wedges and the uplift of high-pгessure metamorphic rocks. Bull Geol Soc Amer 97:1037–1053CrossRefGoogle Scholar
  259. Pleuger J, Podladchikov YY (2014) A purely structural restoration of the NFP20-East cross section and potential tectonic overpressure in the Adula nappe (central Alps). Tectonics 33:656–685CrossRefGoogle Scholar
  260. Pollack HN (1997) Thermal characteristics of the Archaean. In: de Wit MJ, Ashwal LD (eds) Greenstone belts. Oxford monograph on geology and geophysics, vol 35. Oxford University Press, New York, pp 223–232Google Scholar
  261. Polyansky OP, Efremov VN (1989) Diagnostics of dome-like structures of the Northern Ladoga region on the basis of thermodynamic data and tectonophysical analysis. Sov Geol Geophys 30(4):36–39Google Scholar
  262. Polyansky OP, Reverdatto VV (2002) Fluid convection in sediment-hosted reservoirs due to thermal action of dikes and sills. Russ Geol Geophys 43(1):25–39Google Scholar
  263. Polyansky OP, Volkov PK (1990) Model of metamorphism at advection processes. Geologiya i Geofizika no 2:29–36Google Scholar
  264. Polyanskii OP, Reverdatto VV, Anan’ev VA (2000) Evolution of the rift sedimentary basin as an indicator of geodynamic setting (on example of the Enisei-Khatanga depression). Dokl Akad Nauk SSSR 370(1):71–75Google Scholar
  265. Polyanskii OP, Reverdatto VV, Sverdlova VG (2002) Convection of two-phase fluid in a layered porous medium driven by the heat of magmatic dikes and sills. Geochem Int 40(S1):S69–S81Google Scholar
  266. Polyansky OP, Reverdatto VV, Khomenko AV et al (2003) Modeling of fluid flow and heat transfer induced by basaltic near-surface magmatism in the Lena-Tunguska petroleum basin (eastern Siberia, Russia). J Geochem Explor 78–79:687–692CrossRefGoogle Scholar
  267. Polyansky OP, Babichev AV, Reverdatto VV et al (2009) Computer modeling of granite magma diapirism in the Earth’s crust. Doklady Earth Sci 429(8):1380–1384CrossRefGoogle Scholar
  268. Polyansky OP, Babichev AV, Korobeynikov SN et al (2010a) Computer modeling of granite gneiss diapirism in the Earth’s crust: Controlling factors, duration, and temperature regime. Petrology 18(4):432–446CrossRefGoogle Scholar
  269. Polyansky OP, Korobeynikov SN, Sverdlova VG et al (2010b) The influence of crustal rheology on plate subduction based on numerical modeling results. Doklady Earth Sci 430(2):158–162CrossRefGoogle Scholar
  270. Polyansky OP, Sukhorukov VP, Travin AV et al (2011) Tectonic interpretation of the thermochronological data and P-T conditions of rock metamorphism in the Bodonchin zone complex (Mongolian Altai). Russ Geol Geophys 52(9):991–1006CrossRefGoogle Scholar
  271. Polyansky OP, Korobeynikov SN, Babichev AV et al (2012) Formation and upwelling of mantle diapirs through the cratonic lithosphere: numerical thermomechanical modeling. Petrology 20(2):120–137CrossRefGoogle Scholar
  272. Polyansky OP, Prokop’ev AV, Babichev AV et al (2013) The rift origin of the Vilyui basin (East Siberia), from reconstructions of sedimentation and mechanical mathematical modeling. Russ Geol Geophys 54(2):121–137CrossRefGoogle Scholar
  273. Polyansky OP, Korobeinikov SN, Babichev AV et al (2014) Numerical modeling of mantle diapirism as a cause of intracontinental rifting. Izvestiya, Physics Solid Earth 50(6):839–852CrossRefGoogle Scholar
  274. Polyansky OP, Babichev AV, Sukhorukov VP et al (2015) A thermotectonic numerical model of collisional metamorphism in the Mongolian Altai. Doklady Earth Sci 465(1):1164–1167CrossRefGoogle Scholar
  275. Polyansky OP, Reverdatto VV, Babichev AV et al (2016) The mechanism of magma ascent through the solid lithosphere and relation between mantle and crustal diapirism: numerical modeling and natural examples. Russ Geol Geophys 57(6):843–857CrossRefGoogle Scholar
  276. Polyansky OP, Prokopiev AV, Koroleva OV et al (2017) Temporal correlation between dyke swarms and crustal extension in the middle Palaeozoic Vilyui rift basin, Siberian platform. Lithos 282–283:45–64CrossRefGoogle Scholar
  277. Powell R, Holland TJB (1994) Optimal geothermometry and geobarometry. Am Mineral 79:120–133Google Scholar
  278. Preiss WV (1987) The Adelaide geosyncline: late Proterozoic stratigraphy, sedimentation, palaeontology and tectonics. Geol Surv South Australia Bull no 53:411–426Google Scholar
  279. Ranalli G (1995) Rheology of the Earth. Chapman & Hall, LondonGoogle Scholar
  280. Reiners PW (2009) Nonmonotonic thermal histories and contrasting kinetics of multiple thermochronometers. Geochim Cosmochim Acta 73(12):3612–3629CrossRefGoogle Scholar
  281. Reverdatto VV (1970) Ob izochemicheckoy prirode kontaktovogo metamorfisma (On the isochemical nature of contact metamorphism). Geologiya i Geofisika no 5:53–63Google Scholar
  282. Reverdatto VV (1973) The facies of contact metamorphism. Australian National University Publ no 233, CanberraGoogle Scholar
  283. Reverdatto VV (1973b) Velichiny geotermicheskih gradientov pri regionalnom metamorfizme (The values of geothermal gradients in regional metamorphism). Geologiya i Geofisika no 8:36–43Google Scholar
  284. Reverdatto VV Kalinin AS (1989a) Two-dimensional models of metamorphism and anatexis in folded regions of the crust. 1. Model of magmatic intrusive. Geologiya i Geofizika 30(6):54–58Google Scholar
  285. Reverdatto VV, Kalinin AS (1989b) Two-dimensional models of metamorphism and anatexis in folded regions of the Earth’s crust. 2. Model of fluid flow. Geologiya i Geofizika 30(8):37–42Google Scholar
  286. Reverdatto VV, Kalinin AS (1990) Two-dimensional models of metamorphism and anatexis in folded belts of Earth’s crust. 3. Combined fluid-magmatic model, comparison with other models, and analysis of the problem. Geologiya i Geofizika 31(6):1–8Google Scholar
  287. Reverdatto VV, Melenevskij VN (1983) Magmatic heat as a factor of hydrocarbon generation; the case of the basaltic sills. Geol Geofiz 24(6):13–21Google Scholar
  288. Reverdatto VV, Polyansky OP (1992) Evolution of PT-parameters in the alternative models of metamorphism. Dokl Akad Nauk SSSR 325(5):1017–1020Google Scholar
  289. Reverdatto VV, Polyansky OP (2004) Modelling of the thermal history of metamorphic zoning in the Connemara region (western Ireland). Tectonophysics 379:77–91CrossRefGoogle Scholar
  290. Reverdatto VV, Sheplev VS (1998) Geodynamic factors of metamorphism and their modeling: review and analysis of the problem. Russ Geol Geophys 39(12):1664–1677Google Scholar
  291. Reverdatto VV, Sharapov VN, Melamed VG (1970) The controls and selected peculiari- ties of the origin of contact metamorphic zonation. Contrib Mineral Petrol 29:310–337CrossRefGoogle Scholar
  292. Reverdatto VV, Sharapov VN, Slobodskoy RM (1972) Some questions of analytical simulation of contact metamorphism. Contrib Mineral Petrol 36:195–206CrossRefGoogle Scholar
  293. Reverdatto VV, Sharapov VN, Lavrent’ev Y et al (1974) Investigations in isochemical contact metamorphism. Contrib Mineral Petrol 48:287–299CrossRefGoogle Scholar
  294. Reverdatto VV, Melenevskii VN, Melamed VG (1982) Contact-metamorphism of the rocks containing dispersed organic-matter - time and temperature as factors of hydrocarbon generation in the case of parallel basaltic sills. Dokl Akad Nauk SSSR 266(4):952–955Google Scholar
  295. Reverdatto VV, Polyansky OP, Ananyev VA (1992) Model estimates of paleotemperatures and burial metamorphism during rifting processes. Dokl Akad Nauk SSSR 323(5):921–924Google Scholar
  296. Reverdatto VV, Sheplev VS, Polyansky OP (1995) Burial metamorphism and evolution of rift troughs—a model approach. Petrology 3(1):31–37Google Scholar
  297. Rey PF, Teyssieur C, Whitney DL (2009) Extension rates, crustal melting, and core complex dynamics. Geology 37:391–394CrossRefGoogle Scholar
  298. Robin CMI, Bailey RC (2009) Simultaneous generation of Archean crust and subcratonic roots by vertical tectonics. Geology 37(6):523–526CrossRefGoogle Scholar
  299. Rosenberg CL, Handy MR (2005) Experimental deformation of partially melted granite revisited: implications for the continental crust. J Metamorph Geol 23:19–28CrossRefGoogle Scholar
  300. Ross DC (1985) Mafic gneissic complex (batholithic root?) in the southernmost Sierra Nevada, California. Geology 13:288–291CrossRefGoogle Scholar
  301. Rozen OM, Shchipansky AA, Turkina OM (2008) Geodinamika ranney Zemli: evoluciya i ustoychivost’ geologicheskih processov (ofiolity, ostrovnye dugi, cratony, osadochnye basseiny) (Geodynamics of the Early Earth: the evolution and stability of geological processes (ophiolites, island arcs, cratons, sedimentary basins)). Nauchnyi Mir, MoscowGoogle Scholar
  302. Ruppel C (1995) Extensional processes in continental lithosphere. J Geophys Res 100(B12):24187–24215CrossRefGoogle Scholar
  303. Ruppel C, Hodges KV (1994) Pressure-temperature-time paths from two-dimensional thermal models: prograde, retrograde and inverted metamorphism. Tectonics 13:17–44CrossRefGoogle Scholar
  304. Sajeev K, Windley BF, Hegner E et al (2013) High-temperature, high-pressure granulites (retrogressed eclogites) in the central region of the Lewissian, NW Scotland: crustal-scale subduction in the Neoarchaean. Gondwana Res 23:526–538CrossRefGoogle Scholar
  305. Sams DB, Saleeby JB (1988) Geology and petrotectonic significance of crystalline rocks of the southernmost Sierra Nevada, California. In: Ernst WG (ed) Metamorphism and crustal evolution, Western United States. Rubey vol 7. Prentice-Hall, Englewood Cliffs NJ, pp 865–893Google Scholar
  306. Sandiford M, van Kranendonk MJ, Bodorkos S (2004) Conductive incubation and the origin of dome-and-keel structure in Archean granite-greenstone terrains: a model based on the eastern Pilbara Craton, Western Australia. Tectonics 23.
  307. Schumacher JC, Schumacher R, Robinson P (1989) Acadian metamorphism in central Massachusetts and southwestern New Hampshire: evidence for contrasting P-T trajectories In: Daly JS, Cliff RA, Yardley BWD (eds) Evolution of metamorphic belts, vol 43. Geol Soc Spec Publ, pp 453–460Google Scholar
  308. Schmalholz SV, Podladchikov YY (2013) Tectonic overpressure in weak crustal-scale shear zones and implications for the exhumation of high pressure rocks. Geophys Res Lett 40:1984–1988CrossRefGoogle Scholar
  309. Schmalholz SM, Duretz T, Schenker FL et al (2014) Kinematics and dynamics of tectonic nappes: 2-D numerical modelling and implications for high and ultra-high pressure tectonism in the Western Alps. Tectonophysics 631:160–175CrossRefGoogle Scholar
  310. Searle PM, Stephenson B, Walker J et al (2007) Restoration of the Western Himalaya: implications for metamorphic protoliths, thrust and normal faulting, and channel flow models. Episodes 30(4):242–257Google Scholar
  311. Sengor AMC, Burke K (1978) Relative timing of rifting and volcanism on the earth and its tectonic implications. Geophys Res Lett 5:419–421CrossRefGoogle Scholar
  312. Sharapov VN, Averkin YuA (1990) Dinamika teplo- i massoperenosa v ortomagmaticheskih fluidnyh sistemah (Dynamics of heat and mass transfer in orthomagmatic fluid systems). Nauka, NovosibirskGoogle Scholar
  313. Sharapov VN, Akimtsev VA, Dorovsky VN et al (2000) Dinamika razvitiya rudno-magmatitcheskih sistem zon spredinga (Dynamics of development of ore-magmatic systems of spreading zones). Publishing house of SB RAS, NovosibirskGoogle Scholar
  314. Sheplev VS, Reverdatto VV (1994) The investigation of a model of rifting process. Dokl Akad Nauk SSSR 334(1):103–105Google Scholar
  315. Shi Y, Wang C (1987) Two-dimensional modeling of the P-T-paths of regional metamorphism in simple overthrust terraines. Geology 15:1048–1051CrossRefGoogle Scholar
  316. Shimizu M (1986) The Tokuwa batholith, central Japan, – an example of occurrence of ilmenite—series and magnetite—series granitoids in a batholith. The University Museum Bull no 28, The University of Tokyo, TokyoGoogle Scholar
  317. Shmonov VM, Vitovtova VM, Zharikov AV (2002) Fluidnaya pronitsaemost’ porod zemnoi kory (Fluid permeability of rocks of the Earth’s crust). Nauchniy Mir, MoscowGoogle Scholar
  318. Siegesmund S, Becker JK (2000) Emplacement of the Ardara pluton (Ireland): new constraints from magnetic fabrics, rock fabrics and age dating. Int J Earth Sci 89(2):307–327CrossRefGoogle Scholar
  319. Simonov VA, Sakiev KS, Volkova NI et al (2008) Conditions of formation of the Atbashi Ridge eclogites (South Tien Shan). Russ Geol Geophys 49(11):803–815CrossRefGoogle Scholar
  320. Sklyarov EV (2006) Exhumation of metamorphic complexes: basic mechanisms. Russ Geol Geophys 47(1):68–72Google Scholar
  321. Sklyarov EV, Gladkochub DP, Donskaya TV et al (2001) Metamorfizm i tektonika (Metamorphism and Tectonics). Internet Engineering, MoscowGoogle Scholar
  322. Sobolev NV, Shatsky VS (1987) Inclusions of carbon minerals in garnets from metamorphic rocks. Geologiya i Geofisika 28(8):1–18Google Scholar
  323. Sobolev AV, Sobolev SV, Kuzmin DV et al (2009) Siberian meimechites: origin and relation to flood basalts and kimberlites. Russ Geol Geophys 50(12):999–1033CrossRefGoogle Scholar
  324. Sommer H, Krӧner A (2013) Ultra-high temperature granulite-facies metamorphic rocks from the Mozambique belt of SW Tanzania. Lithos 170–171:117–143CrossRefGoogle Scholar
  325. Sorokov DS, Ginsburg GD (eds) (1974) Yenisei-Khatangskaya neftegazonosnaya oblast’ (Yenisei-Khatanga oil and gas province). Sci Res Inst Geol Arctic, LeningradGoogle Scholar
  326. Spear FS (1993) Metamorphic phase equilibria and pressure-temperature-time paths. Mineralogical Society of America Monograph, WashingtonGoogle Scholar
  327. Spear FS, Kohn MJ, Harrison TM (1989) A thermal model for west-central New Hampshire. Geol Soc Am, 1989 Annual Meeting 21:67–68Google Scholar
  328. Spear FS, Hickmott DD, Selverstone J (1990) Metamorphic consequences of thrust emplacement, Fall Mountain, New Hampshire. Geol Soc Am Bull 102:1344–1360CrossRefGoogle Scholar
  329. Spear FS, Kohn MJ, Cheney JT et al (2002) Metamorphic, thermal and tectonic evolution of Central New England. J Petrol 43:2097–2120CrossRefGoogle Scholar
  330. Spear FS, Peacock SM, Kohn MJ et al (1991) Computer programs for petrologic P-T-t path calculations. Am Mineral 76:2009–2012Google Scholar
  331. Spry AH, Solomon M (1964) Columnar buchites at Apsley, Tasmania. Quart J Geol Soc London 120:519–545CrossRefGoogle Scholar
  332. Strehlau J, Meissner R (1987) Estimation of crustal viscosities and shear stresses from an extrapolation of experimental steady state flow data. In: Fuchs K, Froidevaux C (eds) Compositions, structure and dynamics of the lithosphere-astenosphere system, Geodyn Ser, vol 16. AGU, Washington, pp 69–87Google Scholar
  333. Stüwe K (2002) Geodynamics of the lithosphere. Springer, HeidelbergCrossRefGoogle Scholar
  334. Sukhorukov VP, Polyansky OP, Krylov AA et al (2016) Reconstruction of the metamorphic P-T path from the garnet zoning in aluminous schists from the Tsogt Block, Mongolian Altai. Petrology 24(4):409–432CrossRefGoogle Scholar
  335. Tapponnier P, Molnar P (1979) Active faulting and Cenozoic tectonics of the Tian Shan, Mongolia and Baikal regions. J Geophys Res 84(B7):3425–3459CrossRefGoogle Scholar
  336. Toé W, Vanderhaeghe O, André-Mayer A-S et al (2013) From migmatites to granites in the Pan-African Damara orogenic belt, Namibia. J African Earth Sci 85:62–74CrossRefGoogle Scholar
  337. Thompson A, Schulmann K, Jezek J (1997) Extrusion tectonics and elevation of lower crustal metamorphic rocks on convergent orogens. Geology 25:491–494CrossRefGoogle Scholar
  338. Thybo H, Artemieva IM (2013) Moho and magmatic underplating in continental lithosphere. Tectonophysics 609:605–619CrossRefGoogle Scholar
  339. Turcotte DL, Emerman SH (1983) Mechanism of active and passive rifting. Tectonophysics 94:39–50CrossRefGoogle Scholar
  340. Turcotte DL, Schubert G (1982) Geodynamics. Applications of continuum physics to geological problems. Wiley, New YorkGoogle Scholar
  341. Turner FJ (1968) Metamorphic petrology. Mineralogical and field aspects. McGraw-Hill, New YorkGoogle Scholar
  342. Turner FJ (1973) Buoyancy effects in fluids. (Cambridge monographs on mechanics and applied mathematics). Cambridge University Press, Cambridge.
  343. Turner FJ, Verhoogen J (1951) Igneous and metamorphic petrology, 2nd edn. McGraw-Hill, New YorkGoogle Scholar
  344. Van der Wal D, Vissers RLM (1993) Uplift and emplacement of upper mantle rocks in the western Mediterranean. Geology 21:1119–1122CrossRefGoogle Scholar
  345. Van Kranendonk MJ, Collins WJ, Hickman A et al (2004) Critical tests of vertical vs. horizontal tectonic models for the Archaean East Pilbara Granite-Greenstone Terrane, Pilbara Craton, Western Australia. Precambrian Res 131:173–211CrossRefGoogle Scholar
  346. Vanderhaeghe O (2004) Structural development of the Naxos migmatite dome. In: Whitney DL, Teyssier C, Siddoway CS (eds) Gneiss domes in orogeny. Geol Soc Am Special Paper, vol 380. pp 211–228Google Scholar
  347. Veevers JJ (1984) Phanerozoic earth history of Australia. Oxford geol sci ser no 2. Clarendon Press, OxfordGoogle Scholar
  348. Volkova NI, Sklyarov EV (2007) High-pressure complexes of Central Asian Fold Belt: geologic setting, geochemistry, and geodynamic implications. Russ Geol Geophys 48(1):83–90CrossRefGoogle Scholar
  349. Volkova NI, Tarasova EN, Polyanskii NV et al (2008) High-pressure rocks in the serpentinite melange of the Chara zone, Eastern Kazakhstan: Geochemistry, petrology, and age. Geochem Intern 46(4):386–401CrossRefGoogle Scholar
  350. Volkova NI, Stupakov SI, Babin GA et al (2009) Mobility of trace elements during subduction metamorphism as exemplified by the blueschists of the Kurtushibinsky Range, Western Sayan. Geochem Intern 47(4):380–392CrossRefGoogle Scholar
  351. Volkova NI, Travin AV, Yudin DS (2011) Ordovician blueschist metamorphism as a reflection of accretion-collision events in the Central Asian orogenic belt. Russ Geol Geophys 52(1):72–84CrossRefGoogle Scholar
  352. Voll G, Töpel J, Pattison DRM et al (1991) Equilibrium and kinetics in contact metamorphism. The Ballachulish igneous complex and its aureole. Springer, HeidelbergCrossRefGoogle Scholar
  353. Vrijmoed JC, Podladchikov YY, Andersen TB et al (2009) An alternative model for ultra-high pressure in the Svartberget Fe-Ti garnet-peridotite, Western Gneiss Region, Norway. Eur J Mineral 21:1119–1133CrossRefGoogle Scholar
  354. Walter MJ (2003) Melt extraction and compositional variability in mantle lithosphere. In: RW Carlson (ed) Treatise in geochemistry. The mantle and core, vol 2. Holland HD, Turekian KK (eds) Elsevier-Pergamon, Oxford, pp 363–394Google Scholar
  355. Watson JV (1978) Precambrian thermal regimes. Philosoph transact Royal Soc London 288:431–440CrossRefGoogle Scholar
  356. Weinberg RF, Podladchikov Y (1994) Diapiric ascent of magmas through power crust and mantle. J Geophys Res 99(B5):9543–9559CrossRefGoogle Scholar
  357. Weissel JK, Karner GD (1989) Flexural uplift of rift flanks due to mechanical unloading of the lithosphere during extension. J Geophys Res 94(B10):13919–13950CrossRefGoogle Scholar
  358. Wells PRA (1979) Chemical and thermal evolution of Archean sialic crust, southern West Greenland. J Petrol 20:187–226CrossRefGoogle Scholar
  359. Wernicke B (1985) Uniform-sense normal simple shear of the continental lithosphere. Can J Earth Sci 22:108–125CrossRefGoogle Scholar
  360. Wernicke B, Burchfiel BC (1982) Modes of extensional tectonics. J Struct Geol 4:105–115CrossRefGoogle Scholar
  361. White R, McKenzie D (1989) Magmatism at rift zones: the generation of volcanic continental margins and flood basalts. J Geophys Res 94(B10):7685–7729CrossRefGoogle Scholar
  362. Whitney DL, Miller RB, Paterson SR (1999) P-T-t evidence for mechanisms of vertical tectonic motion in a contractional orogen: north-western US and Canadian Cordillera. J Metamorphic Geol 17:75–90CrossRefGoogle Scholar
  363. Wilde SA, Valley JW, Peck WH et al (2001) Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Gyr ago. Nature 409:175–178CrossRefGoogle Scholar
  364. Wu CM, Zhang J, Ren LD (2004) Empirical garnet-biotite-plagioclase-quartz (GBPQ) geobarometry in medium- to high-grade metapelites. J Petrol 45:1907–1921Google Scholar
  365. Xiao W, Windley BF, Badarch G et al (2004) Paleozoic accretionary and convergent tectonics of the southern Altaids: implications for the growth of Central Asia. J Geol Soc London 161:339–342CrossRefGoogle Scholar
  366. Yardley BWD, Barber JP, Gray JR (1987) The metamorphism of the Dalradian rocks of western Ireland and its relation to tectonic setting. Philosoph Transact R Soc London 321:243–270CrossRefGoogle Scholar
  367. Yarmolyuk VV, Kozlovsky AM, Kuzmin MI (2016) Zoned magmatic areas and anorogenic batholith formation in the Central Asian Orogenic Belt (by the example of the Late Paleozoic Khangai magmatic area). Russ Geol Geophys 57(3):357–370CrossRefGoogle Scholar
  368. Yin A, Dubey CS, Kelty TK et al (2010) Geologic correlation of the Himalayan orogen and Indian craton: part 2. Structural geology, geochronology and tectonic evolution of the Eastern Himalaya. Geol Soc Amer Bull 122:360–395CrossRefGoogle Scholar
  369. Zen E, White WS, Hadley JB et al (1968) Studies of Appalachian geology, northern and marine. Wiley, New YorkGoogle Scholar
  370. Zhang J, Wei C, Chu H (2015) Blueschists metamorphism and its tectonic implication of Late Paleozoic-Early Mesozoic metabasites in the mélange zones, central Inner Mongolia, China. J Asian Earth Sci 97:352–364CrossRefGoogle Scholar
  371. Zlobin VA, Kulikov AA, Bobrov VA (1975) Zakonomernosti raspredeleniya radioaktivnykh elementov v dokembriyskih otlozheniyah Eniseyskogo kryazha (Objective laws of distribution of radioactive elements in Precambrian suits of Yenisei Range). In: Kuznetsov VA (ed) Radioactive elements in rocks. Nauka, Novosibirsk, pp 198–203Google Scholar
  372. Zorin YuA (1981) The Baikal rift: an example of the intrusion of asthenospheric material into lithosphere as the cause of disruption of lithospheric plates. Tectonophysics 73:91–104CrossRefGoogle Scholar
  373. Zwart HJ (1969) Metamorphic facies series in the European orogenic belts and their bearing on the causes of orogeny. Geol Assoc Canada Special Paper 5:7–16Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Vladimir V. Reverdatto
    • 1
    Email author
  • Igor I. Likhanov
    • 2
  • Oleg P. Polyansky
    • 3
  • Valentin S. Sheplev
    • 4
  • Vasiliy Yu. Kolobov
    • 5
  1. 1.V.S. Sobolev Institute of Geology and GeophysicsSiberian Branch, Russian Academy of SciencesNovosibirskRussia
  2. 2.V.S. Sobolev Institute of Geology and GeophysicsSiberian Branch, Russian Academy of SciencesNovosibirskRussia
  3. 3.V.S. Sobolev Institute of Geology and GeophysicsSiberian Branch, Russian Academy of SciencesNovosibirskRussia
  4. 4.V.S. Sobolev Institute of Geology and GeophysicsSiberian Branch, Russian Academy of SciencesNovosibirskRussia
  5. 5.V.S. Sobolev Institute of Geology and GeophysicsSiberian Branch, Russian Academy of SciencesNovosibirskRussia

Personalised recommendations