Advertisement

Mineral Geothermobarometry

  • Vladimir V. ReverdattoEmail author
  • Igor I. Likhanov
  • Oleg P. Polyansky
  • Valentin S. Sheplev
  • Vasiliy Yu. Kolobov
Chapter
Part of the Springer Geology book series (SPRINGERGEOL)

Abstract

This chapter presents the most recent and comprehensive overview of a wide range of basic geothermobarometric techniques used in metamorphic petrology. This chapter provides specific mineralogical calibrations based on exchange equilibria involving the major or trace elements and net-transfer reactions, as well as geothermobarometry using multi-mineral equilibria based on internally consistent thermodynamic datasets, analysis of mineral zoning and P-T phase diagrams (petrogenetic grids and pseudosections). This chapter takes a look at the current possibilities and limitations, including the fields of application, errors associated with each method and presents a comparative analysis of different approaches using geothermobarometry and comparison of the results with natural observations. Methodologically, this chapter presents a comprehensive analysis of the most interesting and important methods and problems of geothermobarometry with recommendations for the use of certain petrological tools in reconstructing the P-T conditions of the formation and evolution of rocks.

References

  1. Aleksandrov IA (2010) Metamorficheskiye porody amfibolitovoy fatsii Dzhugdzhuro-Stanovoy skladchatoy oblasti: usloviya obrazovaniya i sostav protolitov (Metamorphic rocks of amphibolite facies of the Dzhugdzhuro-Stanovoy folded region: conditions of formation and composition of protolith). Dalnauka, VladivostokGoogle Scholar
  2. Anderson JL, Smith DR (1995) The effects of temperature and fO2 on the Al-in-hornblende barometer. Am Mineral 80:549–559CrossRefGoogle Scholar
  3. Anovitz LM (1991) Al zoning in pyroxene and plagioclase: window on the late prograde to early retrograde P-T paths in granulite terrains. Am Mineral 76:1328–1343Google Scholar
  4. Anovitz LM, Essene EJ (1987a) Phase equilibria in the system CaCO3–MgCO3–FeCO3. J Petrol 28:389–414CrossRefGoogle Scholar
  5. Anovitz LM, Essene EJ (1987b) Compatibility of geobarometers in the system CaO–FeO–Al2O3–SiO2–TiO2 (CFAST): implications for garnet mixing models. J Geol 95:633–645CrossRefGoogle Scholar
  6. Aranovich LY (1991) Mineral’nyye ravnovesiya mnogokomponentnykh tverdykh rastvo-rov (Mineral equilibria of multicomponent solid solutions). Nauka, MoscowGoogle Scholar
  7. Aranovich LY, Podlesskii KK (1989) Geothermobarometry of high-grade metapelites: simultaneously operating reactions. In: Yardley BWD, Daly JS, Cliff RA (eds) Evolution of metamorphic belts, vol 43. Geological Society Special Publications, Blackwell, London, pp 45–61CrossRefGoogle Scholar
  8. Aranovich LY, Berman RG (1997) A new garnet-orthopyroxene thermometer based on reversed Al2O3 solubility in FeO–Al2O3–SiO2 orthopyroxene. Am Mineral 82:345–353CrossRefGoogle Scholar
  9. Avchenko OV (1990) Mineral’nyye ravnovesiya v metamorficheskikh porodakh i problemy geobarotermometrii (Mineral equilibria in metamorphic rocks and the problems of geobarothermometry). Nauka, MoscowGoogle Scholar
  10. Avchenko OV, Chudnenko KV, Aleksandrov IA (2009) Osnovy fiziko-khimicheskogo modelirovaniya mineral’nykh sistem (The principles of physicochemical modeling of mineral systems). Nauka, MoscowGoogle Scholar
  11. Bea F, Montero P, Garuti G et al (1997) Pressure-dependence of rare earth element distribution in apphibolite- and granulite-grade garnets. A LA-ICP-MS study. Geost Newslett 21:253–270CrossRefGoogle Scholar
  12. Benisek A, Kroll H, Cemic L (2004) New developments in two-feldspar thermometry. Am Mineral 89:1496–1504CrossRefGoogle Scholar
  13. Benisek A, Dachs E, Kroll H (2010) A ternary feldspar-mixing model based on calorimetric data: development and application. Contrib Mineral Petrol 160:327–337CrossRefGoogle Scholar
  14. Berman RG (1991) Thermobarometry using multi-equilibribrium calculations: a new technique, with petrological applications. Can Mineral 29:833–856Google Scholar
  15. Berman RG, Aranovich LY (1996) Optimized standard state and solution properties of minerals. Contrib Mineral Petrol 126:1–24CrossRefGoogle Scholar
  16. Bhadra S, Bhattacharya A (2007) The barometer tremolite + tschermakite + 2 albite + 2 pargasite + 8 quartz: constraints from experimental data at unit silica activity, with application to garnet-free natural assemblages. Am Mineral 92:491–502CrossRefGoogle Scholar
  17. Bhattacharya A, Krishnakumar KR, Raith M et al (1991) An improved set of a—X parameters for Fe–Mg–Ca garnets and refinements of the orthopyroxene–garnet thermometer and the orthopyroxene-garnet-plagioclase-quartz barometer. J Petrol 32:629–656CrossRefGoogle Scholar
  18. Blundy JD, Holland TJB (1990) Calcic amphibole equilibria and new amphibole-plagioclase geothermometer. Contrib Mineral Petrol 104:208–224CrossRefGoogle Scholar
  19. Bohlen SR, Boettcher AL (1981) Experimental investigations and geological applications of orthopyroxene geobarometry. Am Mineral 66:951–964Google Scholar
  20. Bohlen SR, Liotta JJ (1986) A barometer for garnet amphibolites and garnet granulites. J Petrol 27:1025–1056CrossRefGoogle Scholar
  21. Bohlen SR, Wall VJ, Boettcher AL (1983a) Experimental investigation and application of garnet granulite equilibria. Contrib Mineral Petrol 83:52–61CrossRefGoogle Scholar
  22. Bohlen SR, Wall VJ, Boettcher AL (1983b) Experimental investigations and geologic applications of equilibria in the system FeO–TiO2–Al2O3–SiO2–H2O. Am Mineral 68:1049–1058Google Scholar
  23. Bowen NL (1940) Progressive metamorphism of siliceous limestone and dolomites. J Geol 48:225–274CrossRefGoogle Scholar
  24. Brey GP, Kohler T (1990) Geothermobarometry in four-phase lherzolites. II. New thermobarometers, and practical assessment of existing thermobarometers. J Petrol 31:1353–1378CrossRefGoogle Scholar
  25. Brey GP, Bulatov VK, Girnis AV et al (2008) Experimental melting of carbonated peridotite at 6–10 GPa. J Petrol 49:797–821CrossRefGoogle Scholar
  26. Brown EH (1977) The crossite content of Ca-amphibole as a guide to pressure of metamorphism. J Petrol 18:53–72CrossRefGoogle Scholar
  27. Bryndzia LT, Scott SD, Spry PG (1990) Sphalerite and hexagonal pyrrhotite geobarometer: correction in calibration and application. Econ Geol 85:408–411CrossRefGoogle Scholar
  28. Bucher K, Grapes R (2011) Petrogenesis of metamorphic rocks, 8th edn. Springer, Berlin, HeidelbergCrossRefGoogle Scholar
  29. Bucher-Nurminen KA (1987) A recalibration of the chlorite-biotite-muscovite geobarometer. Contrib Mineral Petrol 96:519–522CrossRefGoogle Scholar
  30. Buddington AF, Lindsley DH (1964) Iron-titanium oxide minerals and their synthetic equivalents. J Petrol 5:310–357CrossRefGoogle Scholar
  31. Canil D (1999) The Ni-in-garnet geothermometer: calibration at natural abundances. Contrib Mineral Petrol 136:240–246CrossRefGoogle Scholar
  32. Carmichael DM (1991) Univariant mixed-volatile reactions: pressure-temperature phase diagrams and reaction isograds. Can Mineral 29:741–754Google Scholar
  33. Carrington DP, Harley SL (1995) Partial melting and phase relations in high-grade metapelites: an experimental petrogenetic grid in the KFMASH system. Contrib Mineral Petrol 120:270–291CrossRefGoogle Scholar
  34. Carswell DA, Harley SL (1989) Mineral barometry and thermometry. In: Carswell DA (ed) Eclogites and related rocks. Blackie, Glasgow, pp 83–110Google Scholar
  35. Chatterjee ND, Flux S (1986) Thermodynamic mixing properties of muscovite-paragonite crystalline solutions at high temperatures and pressures, and their geological applications. J Petrol 27:677–693CrossRefGoogle Scholar
  36. Chatterjee ND, Johannes WS (1974) Thermal stability and standard thermodynamic properties of synthetic 2M1-muscovite, KAl2Al3Si3O10(OH)2. Contrib Mineral Petrol 48:89–114Google Scholar
  37. Cherniak DJ, Manchester J, Watson EB (2007) Zr and Hf diffusion in rutile. Earth Planet Sci Lett 261:267–279CrossRefGoogle Scholar
  38. Connolly JAD (1990) Multivariable phase-diagrams—an algorithm based on generalized thermodynamics. Am J Sci 290:666–718CrossRefGoogle Scholar
  39. Connolly JAD (2005) Computation of phase equilibria by linear programming: a tool for geodynamic modeling and its application to subduction zone decarbonation. Earth Planet Sci Lett 236:524–541CrossRefGoogle Scholar
  40. Dachs E (1998) PET: petrological elementary tools for mathematics. Comput Geosci 24:219–235CrossRefGoogle Scholar
  41. Dahl PS (1980) The thermal-compositional dependence of Fe2+–Mg distributions between coexisting garnet and pyroxene: applications to geothermometry. Am Mineral 65:852–866Google Scholar
  42. Dale J, Holland T, Powell R (2000) Hornblende-garnet-plagioclase thermobarometry: a natural assemblage calibration of the thermodynamics of hornblende. Contrib Mineral Petrol 140:353–362CrossRefGoogle Scholar
  43. David BTC, Boyd FR (1966) The join Mg2Si2O6–CaMgSi2O6 at 30 kbar and its application to pyroxene from kimberlites. J Geophys Res 71:3567–3576CrossRefGoogle Scholar
  44. Davidson PM, Lindsley DH (1985) Thermodynamic analysis of quadrilateral pyroxenes. Part II: model calibration from experiments and application to geothermometry. Contrib Mineral Petrol 91:390–404CrossRefGoogle Scholar
  45. De Capitani C, Petrakakis K (2010) The computation of equilibrium assemblage diagrams with Theriak/Domino software. Am Mineral 95:1006–1016CrossRefGoogle Scholar
  46. Dickenson MP, Hewitt D (1986) A garnet-chlotite geothermometer. Geol Soc Am Abstr 18:584Google Scholar
  47. Docka JA, Berg JH, Klewin K (1986) Geothermometry in the Kiglapait aureole. II. Evaluation of exchange thermometry in a well-constrained settings. J Petrol 27:605–626CrossRefGoogle Scholar
  48. Eckert JO, Newton RC, Kleppa OJ (1991) The H of reaction and recalibration of garnet-pyroxene-plagioclase-quartz geobarometers in the CMAS system by solution calorimetry. Am Mineral 76:148–160Google Scholar
  49. Elkins LT, Grove TL (1990) Ternary feldspar experiments and thermodynamic models. Am Mineral 75:544–559Google Scholar
  50. Engi M (1983) Equilibria involving Al–Cr spinel: Mg–Fe exchange with olivine. Experiments, thermodynamic analysis, and consequences for geothermometry. Am J Sci 283A:29–71Google Scholar
  51. Essene EJ (1989) The current status of thermobarometry in metamorphic rocks. In: Daly JS, Cliff RA, Yardley BWD (eds) Evolution of metamorphic belts. Geological Society Special Publication, Blackwell, Oxford, pp 1–44Google Scholar
  52. Essene EJ, Bohlen SR (1985) New garnet barometersin the system CaO–FeO–Al2O3–SiO2–TiO2 (CFAST). EOS Trans Am Geophys Union 66:386Google Scholar
  53. Eugster HP, Albee AL, Bence AE et al (1972) The two-phase region and excess mixing properties of paragonite-muscovite crystalline solutions. J Petrol 13:147–179CrossRefGoogle Scholar
  54. Faryad SW, Chakraborty S (2005) Duration of Eo-Alpine metamorphic events obtained from multicomponent diffusion modeling of garnet: a case study from the Eastern Alps. Contrib Mineral Petrol 150:306–318CrossRefGoogle Scholar
  55. Faulhaber S, Raith M (1991) Geothermometry and geobarometry of high-grade rocks: a case study on garnet-pyroxene granulites in southern Sri Lanka. Mineral Mag 55:33–56CrossRefGoogle Scholar
  56. Ferry JM, Spear FS (1978) Experimental calibration of the partitioning of Fe and Mg between biotite and garnet. Contrib Mineral Petrol 66:113–117CrossRefGoogle Scholar
  57. Ferry JM, Watson EB (2007) New thermodynamic models and revised calibrations for the Ti-in-zircon and Zr-in-rutile thermometers. Contrib Mineral Petrol 154:429–437CrossRefGoogle Scholar
  58. Fonarev VI, Konilov AN (1986) Experimental study of Fe–Mg distribution between biotite and orthopyroxene at P = 490. Contrib Mineral Petrol 93:227–235Google Scholar
  59. Fuhrman ML, Lindsley DH (1988) Ternary feldspar modeling and thermometry. Am Mineral 73:201–215Google Scholar
  60. Ganguly J (1979) Garnet and clinopyroxene solid solutions and geothermometry based on Fe-Mg distribution coefficient. Geochim Cosmochim Acta 43:1021–1029CrossRefGoogle Scholar
  61. Gasparik T (1984) Experimental study of subsolidus phase relations and mixing properties of pyroxene in the system CaO–Al2O3–SiO2. Geochim Cosmochim Acta 48:2537–2546CrossRefGoogle Scholar
  62. Gerya TV (2002) P-T-trendy i model’ formirovaniya granulitovykh kompleksov dokembriya (P-T trends and model of formation of Precambrian granulite complexes). Doctor of science dissertation, Moscow State University, MoscowGoogle Scholar
  63. Gerya TV, Perchuk LL (1990) GEOPATH: a new computer program for geothermobarometry and related calculations with the IBM PC computer. In: Abstracts of the 15th general meeting of IMA, Beijing, 28 June–3 July 1990Google Scholar
  64. Ghent ED (1976) Plagioclase-garnet-Al2SiO5-quartz: a potential geobarometer-geothrmometer. Am Mineral 61:710–714Google Scholar
  65. Ghent ED, Stout MZ (1981) Geobarometry and geothermometry of plagioclase-biotite- garnet-muscovite assemblages. Contrib Mineral Petrol 76:92–97CrossRefGoogle Scholar
  66. Ghiorso MS, Sack RO (1991) Thermochemistry of the oxide minerals. Rev Mineral 25:265–302Google Scholar
  67. Goldsmith JR, Heard HC (1961) Sub-solidus phase relations in the system CaCO3–MgCO3. J Geol 69:45–74CrossRefGoogle Scholar
  68. Graham CM, Powell R (1984) A garnet-hornblende geothermometer: calibration, testing, and application to the Pelona Schists, Southern California. J Metamorph Geol 2:13–21CrossRefGoogle Scholar
  69. Gratz R, Heinrich W (1997) Monazite-xenotime thermobarometry: experimental calibration of the miscibility gap in the system CePO4–YPO4. Am Mineral 82:772–780CrossRefGoogle Scholar
  70. Green NL, Usdansky SI (1986) Toward a practical plagioclase-muscovite thermometer. Am Mineral 71:1109–1117Google Scholar
  71. Griffin WL, Cousens DR, Ryan CD et al (1989) Ni in chrome pyrope garnets: a new geothermometer. Contrib Mineral Petrol 103:199–202CrossRefGoogle Scholar
  72. Haas H, Holdaway MJ (1973) Equilibria in the system Al2O3–SiO2–H2O involving the stability limits of pyrophyllite, and thermodynamic data of pyrophyllite. Am J Sci 273:348–357CrossRefGoogle Scholar
  73. Harley SL (2008) Refining the P-T records of UHT crustal metamorphism. J Metamorph Geol 26:125–154CrossRefGoogle Scholar
  74. Harley SL, Motoyoshi Y (2000) Al zoning in orthopyroxene in a sapphirine quartzite: evidence for >1120 °C UHT metamorphism in the Napier Complex, Antarctica, and implications for the entropy of sapphirine. Contrib Mineral Petrol 138:293–307CrossRefGoogle Scholar
  75. Harte B, Hudson NFC (1979) Pelite facies series and the temperatures and pressures of Dalradian metamorphism in eastern Scotland. In: Harris AL, Holland CH, Leake BE (eds) The caledonides of the British Isles, vol 8. Geologocal Society Special Publication, Blackwell, Oxford, pp 323–337Google Scholar
  76. Heinrich W, Rehs G, Franz G (1997) Monazite-xenotime miscibility gap thermometry. I. An empirical calibration. J Metamorph Geol 15:3–16CrossRefGoogle Scholar
  77. Hemingway BS, Krupka KM, Robie RA (1981) Heat capacities of the alkali feldspars between 350 and 1000 K from differential scanning calorimetry, the thermodynamic functions of the alkali feldspars from 298.15 to 1400 K, and the reaction quartz + jadeite = analbite. Am Mineral 66:1202–1215Google Scholar
  78. Hensen BJ, Green DH (1973) Experimental study of the stability of cordierite and garnet in pelitic compositions at high pressures and temperatures. III Synthesis of experimental data and geological application. Contib Mineral Petrol 38:151–166CrossRefGoogle Scholar
  79. Hodges KV, Spear FS (1982) Geothermometry, geobarometry and the Al2SiO5 triple point at Mt. Moosilauke, New Hampshire. Am Mineral 67:1118–1134Google Scholar
  80. Hodges KV, Crowley PD (1985) Error estimation and empirical geothermobarometry for pelitic system. Am Mineral 70:702–709Google Scholar
  81. Hodges KV, McKenna LW (1987) Realistic propagation of uncertainties in geologic thermobarometry. Am Mineral 72:671–680Google Scholar
  82. Hofmann AE, Baker MB, Eiler JM (2013) An experimental study of Ti and Zr partitioning among zircon, rutile, and granitic melt. Contrib Mineral Petrol 166:235–253CrossRefGoogle Scholar
  83. Hoisch TD (1989) A muscovite-biotite geothermometer. Am Mineral 74:565–572Google Scholar
  84. Hoisch TD (1990) Empirical calibration of six geobarometers for the mineral assemblage quartz + muscovite + biotite + plagioclase + garnet. Contrib Mineral Petrol 104:225–234CrossRefGoogle Scholar
  85. Hoisch TD (1991) Equilibria within the mineral assemblage quartz + muscovite + biotite + garnet + plagioclase and implications for the mixing properties of octahedrally coordinated cations in muscovite and biotite. Contrib Mineral Petrol 108:43–54CrossRefGoogle Scholar
  86. Holdaway MJ (1971) Stability of andalusite and the aluminum silicate phase diagram. Am J Sci 271:97–131CrossRefGoogle Scholar
  87. Holdaway MJ (2000) Application of new experimental and garnet Margules data to the garnet-biotite geothermometer. Am Mineral 85:881–892CrossRefGoogle Scholar
  88. Holdaway MJ, Lee SM (1977) Fe–Mg cordierite stability in high-grade pelitic rocks based on experimental, theoretical and natural observations. Contrib Mineral Petrol 63:175–198CrossRefGoogle Scholar
  89. Holdaway MJ, Dutrow BL, Hinton RW (1988) Devonian and Carboniferous metamorphism in West-Central Maine: the muscovite-almandine geobarometer and the staurolite problem revisited. Am Mineral 73:20–47Google Scholar
  90. Holdaway MJ, Mukhopadhyay B, Dyar MD et al (1997) Garnet-biotite geothermometry revised: new Margules parameters and a natural specimen data set from Maine. Am Mineral 82:582–595CrossRefGoogle Scholar
  91. Holland TJB (1979) Experimental determination of the reaction Paragonite = Jadeite + Kyanite + H2O, and internally consistent thermodynamic data for part of the system Na2O–Al2O3–SiO2–H2O, with application to eclogites and blueschists. Contib Mineral Petrol 68:292–301CrossRefGoogle Scholar
  92. Holland TJB, Blundy JD (1994) Non-ideal interactions in calcic amphiboles and their bearing on amphibole-plagioclase thermometry. Contrib Mineral Petrol 116:433–447CrossRefGoogle Scholar
  93. Holland TJB, Powell R (1998) An internally consistent thermodynamic data set for phases of petrological interest. J Metamorph Geol 16:309–343CrossRefGoogle Scholar
  94. Hollister LS, Grissom GC, Peters EK et al (1987) Confirmation of the empirical correlation of Al in hornblende with pressure of solidification of calc-alkaline plutons. Am Mineral 72:231–239Google Scholar
  95. Huang R, Audétat A (2012) The titanium-in-quartz (TitaniQ) thermobarometer: a critical examination and re-calibration. Geochim Cosmochim Acta 84:75–89CrossRefGoogle Scholar
  96. Huckenholz HG, Lindhuber W, Fehr KT (1981) Stability of grossular + quartz + wollastonite + anorthite: the effect of andradite and albite. N Jahrb Mineral Abh 142:223–247Google Scholar
  97. Hynes A, Forest RC (1988) Empirical garnet-muscovite geothermometry in low-grade metapelites, Selwyn Range (Canadian Rockies). J Metamorph Geol 6:297–309CrossRefGoogle Scholar
  98. Jamieson RA, Crow D (1987) Sphalerite geobarometry in metamorphic terranes: an appraisal with implications for metamorphic pressure in the Otago Schist. J Metamorh Geol 5:87–99CrossRefGoogle Scholar
  99. Johnson CA, Essene EJ (1982) The formation of garnet in olivine-bearing metagabbros from the Adirondacks. Contrib Mineral Petrol 81:240–251CrossRefGoogle Scholar
  100. Kaneko Y, Miyano T (2004) Recalibration of mutually consistent garnet-biotite and garnet-cordierite geothermometers. Lithos 73:255–269CrossRefGoogle Scholar
  101. Karpov IK (1981) Fiziko-khimicheskoye modelirovaniye v geokhimii (Physico-chemical modeling in geochemistry). Nauka, NovosibirskGoogle Scholar
  102. Karpov IK, Chudnenko KV, Kulik DA et al (2001) Minimizatsiya energii Gibbsa v geokhimicheskikh sistemakh metodom vypuklogo programmirovaniya (Minimization of Gibbs energy in geochemical systems by the method of convex programming). Geochemistry 39(11):1207–1219Google Scholar
  103. Kawasaki T, Matsui Y (1977) Partitioning of Fe2+ and Mg2+ between olivine and garnet. Earth Planet Sci Lett 37:159–166CrossRefGoogle Scholar
  104. Kawasaki T, Motoyoshi Y (2007) Solubility of TiO2 in garnet and orthopyroxene: Ti thermometer for ultrahigh-temperature granulites. Short research paper 038, US Geological Survey and National Academy and Sciences, USGS OF-2007-1047. http://dx.doi.org/10.3133/of2007-1047.srp038
  105. Kawasaki T, Osanai Y (2008) Empirical thermometer of TiO2 in quartz for ultrahigh-temperature granulites of East Antarctica. In: Satish-Kumar M, Motoyoshi Y, Osanai Y (eds) Geodynamic evolution of east Antarctica: a key to the east-west Gondwana connection, vol 308. Geologocal Society Special Publication, Blackwell, London, pp 419–430CrossRefGoogle Scholar
  106. Kelsey DE (2008) On ultrahigh-temperature crustal metamorphism. Gondwana Res 13:1–29CrossRefGoogle Scholar
  107. Kleemann U, Reinhardt J (1994) Garnet-biotite thermometry revisited: The effect of AlVI and Ti in biotite. Eur J Mineral 6:925–941CrossRefGoogle Scholar
  108. Kohler T, Brey GP (1990) Calcium exchange between olivine and clinopyroxene calibrated as a geothermobarometer for natural peridotites from 2 to 60 kb with applications. Geochim Cosmochim Acta 54:2375–2388CrossRefGoogle Scholar
  109. Kohn MJ, Spear FS (1989) Empirical calibration of geobarometers for the assemblage garnet + hornblende + plagioclase + quartz. Am Mineral 74:77–84Google Scholar
  110. Kohn MJ, Spear FS (1991) Error propagation for barometers. Am Mineral 76:138–147Google Scholar
  111. Kotov NV (1986) Termodinamicheskiye usloviya pozdnego diageneza i nachal’nogo metamorfizma (Thermodynamic conditions of late diagenesis and initial metamorphism). Nauka, Moscow, pp 90–103Google Scholar
  112. Koziol AM (1989) Recalibration of the garnet-plagioclase-Al2SiO5-quartz (GASP) geobarometer and application to natural parageneses. EOS Trans Am Geophys Union 70:493Google Scholar
  113. Koziol AM, Newton RC (1988) Redetermination of the garnet breakdown reaction and improvement of the plagiclase-garnet-Al2SiO5-quartz geobarometer. Am Mineral 73:216–223Google Scholar
  114. Koziol AM, Bohlen SR (1992) Solution properties of almandine-pyrope garnet as determined by phase equilibrium experiments. Am Mineral 77:765–773Google Scholar
  115. Kroll H, Evangelakakis C, Voll C (1993) Two-feldspar geothermometry: a review and revision for slowly cooled rocks. Contrib Mineral Petrol 114:510–518CrossRefGoogle Scholar
  116. Le Breton N, Thompson AB (1988) Fluid-absent (dehydration) melting of biotite in metapelites in the early stages of crustal anataxis. Contrib Mineral Petrol 99:226–237CrossRefGoogle Scholar
  117. Likhanov II (1988a) Chloritoid, staurolite and gedrite of the high-a lumina hornfelses of the Karatash pluton. Int Geol Rev 30(8):868–877CrossRefGoogle Scholar
  118. Likhanov II (1988b) Evolution of chemical composition of metapelite minerals during low-temperature contact metamorphism at the Karatash pluton. Int Geol Rev 30(8):878–887CrossRefGoogle Scholar
  119. Likhanov II, Reverdatto VV (2013) Mineral assemblages of the Al2SiO5 “triple point” in metapelites. Dokl Earth Sci 448(1):74–77CrossRefGoogle Scholar
  120. Likhanov II, Reverdatto VV (2014) P-T-t constraints on the metamorphic evolution of the Transangarian Yenisei Ridge: geodynamic and petrological implications. Russ Geol Geophys 55(3):299–322CrossRefGoogle Scholar
  121. Likhanov II, Reverdatto VV, Sheplev VS et al (2001) Contact metamorphism of Fe- and Al-rich graphitic metapelites in the Transangarian region of the Yenisei Ridge, eastern Siberia, Russia. Lithos 58:55–80CrossRefGoogle Scholar
  122. Likhanov II, Polyansky OP, Reverdatto VV et al (2004a) Evidence from Fe- and Al- rich metapelites for thrust loading in the Transangarian Region of the Yenisei Ridge, eastern Siberia. J Metamorph Geol 22:743–762CrossRefGoogle Scholar
  123. Likhanov II, Reverdatto VV, Selyatizky AY (2004b) Petrogenetic grid for ferruginous-aluminous metapelites in the K2O–FeO–MgO–Al2O3–SiO2–H2O system. Dokl Earth Sci 394(1):46–49Google Scholar
  124. Likhanov II, Reverdatto VV, Selyatizkii AY (2005) Mineral equilibria and P-T diagram for Fe- and Al-rich metapelites in the KFMASH system (K2O–FeO–MgO–Al2O3–SiO2–H2O). Petrology 13(1):73–83Google Scholar
  125. Likhanov II, Reverdatto VV, Kozlov PS et al (2015) P-T-t constraints on polymetamorphic complexes in the Yenisei Ridge, East Siberia: implications for Neoproterozoic paleocontinental reconstructions. J Asian Earth Sci 113:391–410CrossRefGoogle Scholar
  126. Liou JG, Maruyama S, Cho M (1987) Very low-grade metamorphism of volcanic and volcaniclastic rocks—mineral assemblages and mineral facies. In: Frey M (ed) Low temperature metamorphism. Blackie, Glasgow, pp 59–114Google Scholar
  127. Lusk J, Ford CE (1978) Experimental extension of the sphalerite geobarometer at 10 kbar. Am Mineral 63:516–519Google Scholar
  128. Mahar EM, Baker JM, Powell R et al (1997) The effect of Mn on mineral stability in metapelites. J Metamorphic Geol 15:223–238CrossRefGoogle Scholar
  129. Massonne HJ, Schreyer W (1987) Phengite geobarometry based on the limiting assemblage with K-feldspar, phlogopite, and quartz. Contrib Mineral Petrol 96:212–224CrossRefGoogle Scholar
  130. McCartey TC, Patino Douce AE (1998) Empirical calibration of the silica-tschermak’s-anorthite (SCAn) geobarometer. J Metamorph Geol 16:675–686CrossRefGoogle Scholar
  131. Mirwald PW, Scola M, Tropper P (2008) Experimental study on the incorporation of Na in Mg-cordierite in the presence of different fluids (Na(OH), NaCl–H2O, albite-H2O). Geophys Res Abstr 10:EGU2008-A-04149Google Scholar
  132. Moecher DP, Essene EJ, Anovitz LM (1988) Calculation of clinopyroxene-garnet-plagioclasequartz geobarometers and application to high grade metamorphic rocks. Contrib Mineral Petrol 100:92–106CrossRefGoogle Scholar
  133. Newton RC (1983) Geobarometry of high-grade metamorphic rocks. Am J Sci 283A:1–28Google Scholar
  134. Nickel KG, Green DH (1985) Empirical geothermobarometry for garnet peridotites and implications for the nature of the lithosphere, kimberlites and diamonds. Earth Planet Sci Lett 73:158–170CrossRefGoogle Scholar
  135. O’Neill HSC, Wood BJ (1979) An experimental study of Fe–Mg-partitioning between garnet and olivine and its calibration as a geothermometer. Contrib Mineral Petrol 70:59–70CrossRefGoogle Scholar
  136. Pactunc AD (1998) MODAN: an interactive computer program for estimating mineral quantities based on bulk composition. Comput Geosci 24:425–431CrossRefGoogle Scholar
  137. Paria P, Bhattacharya A, Sen A (1988) The reaction garnet + clinopyroxene + quartz = 2 orthopyroxene + anorthite: a potential geobarometer for granulites. Contrib Mineral Petrol l99:126–133Google Scholar
  138. Pattison DRM (1992) Stability of andalusite and sillimanite and the Al2SiO5 triple point: constraints from the Ballachulish aureole, Scotland. J Geol 100:423–446CrossRefGoogle Scholar
  139. Pattison DRM (2001) Instability of Al2SiO5 «triple point» assemblages in muscovite + biotite + quartz—bearing metapelites, with implications. Am Mineral 86:1414–1422CrossRefGoogle Scholar
  140. Pattison DRM, Newton RC (1989) Reversed experimental calibration of the garnet-clinopyroxene Fe–Mg exchange thermometer. Contrib Mineral Petrol 101:87–103CrossRefGoogle Scholar
  141. Pattison DRM, Chako T, Farquhar J et al (2003) Temperatures of granulite-facies metamorphism: constraints from experimental phase equilibria and thermo-barometry corrected from retrograde exchange. J Petrol 44:867–900CrossRefGoogle Scholar
  142. Perchuk LL (1970) Ravnovesiya porodoobrazuyushih mineralov (Equilibria of rock-forming minerals). Nauka, MoscowGoogle Scholar
  143. Perchuk LL (1989) Vzaimosoglasovanie nekotorykh Fe–Mg geotermomotrov na osnove zakona | Nernsta: revisiya (Mutual consistence between some Fe–Mg-geothermometers based on the Nernst law: revision). Geokhimiya 27(5):611–622Google Scholar
  144. Perchuk LL (1991) Derivation of a thermodynamically consistent set of geothermometers and geobarometers for metamorphic and magmatic rocks. In: Perchuk LL (ed) Progress in metamorphic and magmatic petrology. Cambridge University Press, Cambridge, pp 93–112CrossRefGoogle Scholar
  145. Perchuk LL, Gerya TV (1989) A set of internally consistent spinel-bearing geothermometers and geobarometers. In: Abstracts of the international symposium “Granulite metamorphism”, University of New South Wales, SydneyGoogle Scholar
  146. Perchuk LL, Lavrent’eva IV (1983) Experimental investigation of exchange equilibria in the system cordierite-garnet-biotite. In: Saxena SK (ed) Kinetics and equilibrium in mineral reactions. Springer, Heidelberg, pp 199–239CrossRefGoogle Scholar
  147. Perchuk LL, Ryabchikov ID (1976) Phasovye sootvetstviya v mineralnyh systemakh (Phase correspondences in mineral systems). Nedra, MoscowGoogle Scholar
  148. Perchuk LL, Gerya TV, van Reenen TV et al (2000) Comparable petrology and metamorphic evolution of the Limpopo (South Africa) and Lapland (Fennoscandia) high-grade terrains. Mineral Petrol 69:69–107CrossRefGoogle Scholar
  149. Perkins D, Chipera SJ (1985) Garnet-orthopyroxene-plagioclase-quartz barometry: refinement and application to the English River subprovince and the Minnesota River Valley. Contrib Mineral Petrol 89:69–80CrossRefGoogle Scholar
  150. Powell R (1985) Regression diagnostics and robust regression in geothermometer/geobarometer calibration: the garnet-clinopyroxene geothermometer revisited. J Metamorph Geol 3:231–243CrossRefGoogle Scholar
  151. Powell R, Evans JA (1983) A new geobarometer for the assemblage biotite-muscovite-chlorite-quartz. J Metamorphic Geol 1:331–336CrossRefGoogle Scholar
  152. Powell R, Holland TJB (1994) Optimal geothermometry and geobarometry. Am Mineral 79:120–133Google Scholar
  153. Powell R, Condliffe DM, Condliffe E (1984) Calcite-dolomite geothermometry in the system CaCO3–MgCO3–FeCO3: an experimental study. J Metamorph Geol 2:33–41CrossRefGoogle Scholar
  154. Pownceby MI, Wall VJ, O’Neill HSC (1987) Fe–Mn partitioning between garnet and ilmenite: experimental calibration and applications. Contrib Mineral Petrol 97:116–126CrossRefGoogle Scholar
  155. Pownceby MI, Wall VJ, O’Neill HStC (1991) An experimental study of the effect of Ca upon garnet—ilmenite Fe-Mn exchange equilibria. Am Mineral 76:1580–1588Google Scholar
  156. Pyle JM, Spear FS (2000) An empirical garnet (YAG)–xenotime thermometer. Contrib Mineral Petrol 138:51–58CrossRefGoogle Scholar
  157. Pyle JM, Spear FS, Rudnick RL et al (2001) Monazite-xenotine-garnet equilibrium in metapelites and a new monazite-garnet thermometer. J Petrol 42:2083–2107CrossRefGoogle Scholar
  158. Ravna EJK (2000a) Distribution of Fe2+ and Mg between coexisting garnet and hornblende in synthetic and natural systems: an empirical calibration of the garnet-hornblende Fe–Mg geothermometer. Lithos 53:265–277CrossRefGoogle Scholar
  159. Ravna EJK (2000b) The garnet–clinopyroxene Fe2+–Mg geothermometer: an updated calibration. J Metamorphic Geol 18:211–219CrossRefGoogle Scholar
  160. Ravna EJK, Paquin J (2003) Thermobarometric methodologies applicable to eclogites and garnet ultrabasites. In: Carswell DA, Compagnoni R (eds) High pressure metamorphism. European mineralogical union notes in mineralogy, vol 5. Eötvos University Press, Budapest, pp 229–259Google Scholar
  161. Ravna EJK, Terry MP (2004) Geothermobarometry of UHP and HP eclogites and schists—an evaluation of equilibria among garnet–clinopyroxene–kyanite–phengite–coesite/quartz. J Metamorph Geol 22:593–604CrossRefGoogle Scholar
  162. Rejebian VA, Harris AG, Huebner S (1987) Conodont color and textural alteration: an index to regional metamorphism, contact metamorphism, and hydrothermal alteration. Geol Soc Am Bull 99:471–479CrossRefGoogle Scholar
  163. Richardson SW, Gilbert MC, Bell PM (1969) Experimental determination of kyanite-andalusite and andalusite-sillimanite equilibria: the aluminum silicate triple point. Am J Sci 267:259–272CrossRefGoogle Scholar
  164. Sack RO (1980) Some constraints on the thermodynamic mixing properties of Fe–Mg ortho-pyroxenes and olivines. Contrib Mineral Petrol 71:257–269CrossRefGoogle Scholar
  165. Saxena SK (1976) Two-pyroxene geothermometer: a model with an approximate solution. Am Mineral 61:643–652Google Scholar
  166. Schmadicke E (2000) Phase relations in perodotic and pyroxenitic rocks in the model system CMASH and NCMASH. J Petrol 41:69–86CrossRefGoogle Scholar
  167. Schmidt MW (1992) Amphibole composition in tonalite as a function of pressure: an experimental calibration of the Al-in-hornblende barometer. Contrib Mineral Petrol 110:304–310CrossRefGoogle Scholar
  168. Scott SD (1973) Experimental calibration of the sphalerite geobarometer. Econ Geol 68:466–474CrossRefGoogle Scholar
  169. Scott SD (1976) Application of the sphalerite geobarometer to regionally metamorphosed terrains. Am Mineral 61:661–670Google Scholar
  170. Seitz H-M, Altherr R, Ludwig T (1999) Partitioning of transition elements between orthopyroxene and clynopyroxene in peridotitic and websteritic xenoliths: new empirical geothermometers. Geochim Cosmochim Acta 63:3967–3982CrossRefGoogle Scholar
  171. Selverstone J, Spear FS, Franz G et al (1984) High-pressure metamorphism in the SW Tauern Window, Austria: P-T paths from hornblende-kyanite-staurolite schists. J Petrol 25:501–531CrossRefGoogle Scholar
  172. Sengupta P, Dasgupta S, Bhattacharya PK et al (1990) An orthopyroxene-biotite geothermometer and its application in crustal granulites and mantle-derived rocks. J Metamorphic Geol 8:191–198CrossRefGoogle Scholar
  173. Shulters JC, Bohlen SR (1989) The stability of hercynite and hercynite-gahnite spinels in corundum- or quartz-bearing assemblages. J Petrol 30:1017–1031CrossRefGoogle Scholar
  174. Skublov S, Drugova G (2003) Patterns of trace-element distribution in calcic amphiboles as a function of metamorphic grade. Can Mineral 41:383–392CrossRefGoogle Scholar
  175. Spear FS (1986) PTPATH: a Fortran program to calculate pressure-temperature paths from zoned metamorphic garnets. Comput Geosci 12:247–266CrossRefGoogle Scholar
  176. Spear FS (1993) Metamorphic phase equilibria and pressure-temperature-time paths. Mineralogical Society of America Monograph, WashingtonGoogle Scholar
  177. Spear FS, Cheney JT (1989) A petrogenetic grid for pelitic schists in the system SiO2–Al2O3–FeO–MgO–K2O–H2O. Contrib Mineral Petrol 101:149–164CrossRefGoogle Scholar
  178. Spear FS, Selverstone J (1983) Quantitative P-T paths from zoned minerals: theory and tectonic application. Contrib Mineral Petrol 83:348–357CrossRefGoogle Scholar
  179. Spear FS, Peacock SM, Kohn MJ et al (1991) Computer programs for petrologic P-T-t path calculations. Am Mineral 76:2009–2012Google Scholar
  180. Stephenson NCN (1984) Two-pyroxene thermometry of Precambrian granulites from Cape Riche, Albany-Fraser Province, Western Australia. J Metamorph Geol 2:297–314CrossRefGoogle Scholar
  181. Stormer JC JC Jr (1983) The effects of recalculation on estimates of temperature and oxygen fugacity from analyses of multicomponent iron–titanium oxides. Am Mineral 68:586–594Google Scholar
  182. Taylor WR (1998) An experimental test of some geothermometer and geobarometer formulations for upper mantle peridotites with application to the thermobarometry of fertile lherzolite and garnet websterite. Neues Jahrb Mineral Abh 172:381–408Google Scholar
  183. Thomas JB, Watson EB, Spear FS et al (2010) TitaniQ under pressure: the effect of pressure and temperature on the solubility of Ti in quartz. Contrib Mineral Petrol 160:743–759CrossRefGoogle Scholar
  184. Thompson AB, Frey M (1984) Illite ‘crystallinity’ in the Western River Formation and its significance regarding the regional metamorphism of the early Proterozoic Goulburn Group, District of Mackenzie. Current Research, Part A. Geological Survey of Canada, Paper 84-1AGoogle Scholar
  185. Tiechmuller M (1987) Organic material and very low grade metamorphism. In: Frey M (ed) Low temperature metamorphism. Blackie, Glasgow, pp 114–161Google Scholar
  186. Tomkins HS, Powell R, Ellis DJ (2007) The pressure dependence of the zirconium-in-rutile-thermometer. J Metamorph Geol 25:703–713CrossRefGoogle Scholar
  187. Triboulet C (1992) The (Na–Ca) amphibole-albite-chlorite-epidote-quartz geothermobarometer in the system S-A–F–M–C–N–H2O. 1. An empirical calibration. J Metamorphic Geol 10:545–556CrossRefGoogle Scholar
  188. Vance D, Holland T (1993) A detailed isotopic and petrological study of a single garnet from the Gassetts schist, Vermont. Contrib Mineral Petrol 114:101–118CrossRefGoogle Scholar
  189. Vernon RH (1977) Relationships between microstructural and metamorphic assemblages. Tectonophysics 39:439–452CrossRefGoogle Scholar
  190. Vidal O, Parra T (2000) Exhumation paths of high pressure metapelites obtained from local equilibria for chlorite-phengite assemblages. Geol Mag 35:139–161Google Scholar
  191. Vidal O, Goffe B, Bousquet R et al (1999) Calibration and testing of an empirical chloritoid-chlorite Mg–Fe exchange thermometer and thermodynamic data for daphnite. J Metamorph Geol 17:25–39CrossRefGoogle Scholar
  192. Vielzeuf D (1983) The spinel and quartz associations in high grade xenoliths from Tallante (S.E. Spain) and their potential use in geothermometry and barometry. Contrib Mineral Petrol 82:301–311CrossRefGoogle Scholar
  193. Wan Z, Coogan LA, Canil D (2008) Experimental calibration of aluminium pertitioning between olivine and spinel as a geothermometer. Am Mineral 93:1142–1147CrossRefGoogle Scholar
  194. Wark DA, Watson EB (2006) TitaniQ: a titanium-in-quartz geothermometer. Contrib Mineral Petrol 152:743–754CrossRefGoogle Scholar
  195. Waters DJ, Martin HN (1993) Geobarometry in phengite-bearing eclogites. Terra Abstr 5:410–411Google Scholar
  196. Watson EB, Wark DA, Thomas JB (2006) Crystallization thermometers for zircon and rutile. Contrib Mineral Petrol 151:413–433CrossRefGoogle Scholar
  197. Will T, Okrush M, Schmaedicke E et al (1998) Phase relations in the greenschist- blueschist-amphibolite-eclogite facies in the system Na2O–CaO–FeO–MgO–Al2O3–SiO2–CO2–H2O (NCFMASH) with application to metamorphic rocks from Samos, Greece. Contrib Mineral Petrol 104:353–386CrossRefGoogle Scholar
  198. Wood BJ, Fraser DG (1976) Elementary thermodynamics for geologist. Oxford University Press, LondonGoogle Scholar
  199. Wu CM (2015) Revised empirical garnet-biotite-muscovite-plagioclase geobarometer in metapelites. J Metamorphic Geol 33:167–176CrossRefGoogle Scholar
  200. Wu CM (2017) Calibration of the Al2SiO5-quartz geobarometer for metapelites. J Metamorph Geol 35:993–998CrossRefGoogle Scholar
  201. Wu CM, Pan YS, Wang KY (1999) Refinement of the biotite-orthopyroxene geothermometer with applications. Acta Petrol Sinica 15:463–468Google Scholar
  202. Wu CM, Pan YS, Wang KY et al (2002) A report on a biotite-calcic hornblende geothermometer. Acta Geol Sinica 76:126–131Google Scholar
  203. Wu CM, Zhang J, Ren LD (2004) Empirical garnet-biotite-plagioclase-quartz (GBPQ) geobarometry in medium- to high-grade metapelites. J Petrol 45:1907–1921CrossRefGoogle Scholar
  204. Wu CM, Zhao GC (2006) Recalibration of the garnet–muscovite (GM) geothermometer and the garnet–muscovite–plagioclase–quartz (GMPQ) geobarometer for metapelitic assemblages. J Petrol 47:2357–2368CrossRefGoogle Scholar
  205. Wu CM, Zhao GC (2007a) A recalibration of the garnet-olivine geothermometer and a new geobarometer for garnet-olivine-plagioclase-bearing granulites. J Metamorphic Geol 25:497–505CrossRefGoogle Scholar
  206. Wu CM, Zhao GC (2007b) The metapelitic garnet–biotite–muscovite–aluminosilicate–quartz (GBMAQ) geobarometer. Lithos 97:365–372CrossRefGoogle Scholar
  207. Zack T, Moraes R, Kronz A (2004) Temperature dependence of Zr in rutile: empirical calibration of a rutile thermometer. Contrib Mineral Petrol 148:471–488CrossRefGoogle Scholar
  208. Zenk M, Schulz B (2004) Zoned Ca-amphiboles and related P-T evolution in metabasites from the classical Barrovian metamorphic zones in Scotland. Miner Mag 68:769–786CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Vladimir V. Reverdatto
    • 1
    Email author
  • Igor I. Likhanov
    • 2
  • Oleg P. Polyansky
    • 3
  • Valentin S. Sheplev
    • 4
  • Vasiliy Yu. Kolobov
    • 5
  1. 1.V.S. Sobolev Institute of Geology and GeophysicsSiberian Branch, Russian Academy of SciencesNovosibirskRussia
  2. 2.V.S. Sobolev Institute of Geology and GeophysicsSiberian Branch, Russian Academy of SciencesNovosibirskRussia
  3. 3.V.S. Sobolev Institute of Geology and GeophysicsSiberian Branch, Russian Academy of SciencesNovosibirskRussia
  4. 4.V.S. Sobolev Institute of Geology and GeophysicsSiberian Branch, Russian Academy of SciencesNovosibirskRussia
  5. 5.V.S. Sobolev Institute of Geology and GeophysicsSiberian Branch, Russian Academy of SciencesNovosibirskRussia

Personalised recommendations