Advertisement

Disaster Monitoring and Management

  • Joseph Awange
  • John Kiema
Chapter
Part of the Environmental Science and Engineering book series (ESE)

Abstract

Since time immemorial, natural disasters have continued to plague the history of mankind. They have varied in type, frequency, coverage and severity ranging from earthquakes, landslides, droughts, floods, tornadoes, hurricanes, tsunamis, volcanic eruptions etc. Over the last century, the frequency, severity and impact of natural disasters has increased substantially.

References

  1. 1.
    Jayaraman V, Chandrasekhar MG, Rao UR (1997) Managing the Natural Disasters from Space Technology Inputs. Elsevier Science Ltd., Great BritainCrossRefGoogle Scholar
  2. 2.
    Bankoff G, Frerks G, Hilhorst D (Eds) (2003) Mapping vulnerability: disasters, development and people. ISBN ISBN 1-85383-964-7Google Scholar
  3. 3.
    Wisner B, Blaikie P, Cannon T, Davis I (2004) At risk - natural hazards, people’s vulnerability and disasters. Routledge, Wiltshire. ISBN ISBN 0-415-25216-4Google Scholar
  4. 4.
    Ballesteros LF (2008) What determines a disaster? 54 Pesos, Sep 2008:54 Pesos 11 Sep 2008. http://54pesos.org/2008/09/11/what-determines-a-disaster/ (Accessed on 12/05/2011)
  5. 5.
    Alexander D (2002) Principles of emergency planning and management. Terra publishing, Harpended. ISBN ISBN 1-903544-10-6Google Scholar
  6. 6.
    Terhorst A, Moodley D, ISimonis I, Frost P, McFerren G, Roos S, van den Bergh F, (2008) Using the sensor web to detect and monitor the spread of vegetation fires in southern Africa. In: Nittel S, Labrinidis A, Stefanidis A (eds) GeoSensor Networks, vol 4540. Lecture Notes in Computer Science. Springer, Berlin, pp 239–251Google Scholar
  7. 7.
    Agutu N, Awange JL, Zerihun A, Ndehedehe C, Kuhn M, Fukuda Y (2017) Assessing multi-satellite remote sensing, reanalysis, and land surface models’ products in characterizing agricultural drought in East Africa. Remote Sens Environ 194:287302.  https://doi.org/10.1016/j.rse.2017.03.041CrossRefGoogle Scholar
  8. 8.
    Awange JL, Aluoch J, Ogallo L, Omulo M, Omondi P (2007) Frequency and severity of drought in the Lake Victoria region (Kenya) and its effects on food security. Clim Res 33:135–142.  https://doi.org/10.3354/cr033135CrossRefGoogle Scholar
  9. 9.
    Barrett CB (2002) Food security and food assistance programs. In: Gardner B, Rausser G (eds) Handbook of agricultural economics, vol 2. Elsevier Science, Amsterdam, pp 2103–2190Google Scholar
  10. 10.
    Kadomura H (1994) Climate changes, drought, desertification and land degradation in the Sudano-Sahelian region: a historic geographical perspective. In: Kadomura H (ed) Savannization process in tropical Africa. Tokyo Metropolitan University, II, Country briefs, pp 203–228Google Scholar
  11. 11.
    Steede-Terry K (2000) Integrating GIS and the global positioning system. ESRI Press, CaliforniaGoogle Scholar
  12. 12.
    James LF, Young JA, Sanders K (2003) A New approach to monitoring rangelands. Arid Land Res Manage 17:319–328.  https://doi.org/10.1080/15324980390225467CrossRefGoogle Scholar
  13. 13.
    Nittel S, Stefanidis A, Cruz I, Egenhofer M, Goldin D, Howard A, Labrinidis A, Madden S, Voisard A, Worboys M (2004) Report from the first workshop on Geo Sensor Networks. ACM SIGMOD Record 33(1)Google Scholar
  14. 14.
    Worboys M, Duckham M (2006) Monitoring qualitative spatiotemporal change for geosensor networks. Int J Geographi Inf Sci 20(10):1087–1108.  https://doi.org/10.1080/13658810600852180CrossRefGoogle Scholar
  15. 15.
    Stefanidis A (2006) The emergence of geoSensor networks. Directions Magazine. http://www.directionsmag.com/articles/the-emergence-of-geosensor-networks/123208 (Accessed on 22/01/2011)
  16. 16.
    Bill R (2011) Precise positioning in ad hoc geosensor newtorks. http://www.ikg.uni-hannover.de/geosensor/Lecture/Wednesday/Session1/sess1_bill.pdf (Accessed on 22/01/2011)
  17. 17.
    Ailamaki A, Faloutsos C, Fischbeck P, Small M, VanBriesen J (2003) An environmental sensor network to determine drinking water quality and security. SIGMOD Record 32(4):47–52.  https://doi.org/10.1145/959060.959069CrossRefGoogle Scholar
  18. 18.
    Brenner C (2011) Geo Sensor Networks-When and How? http://dgk.auf.uni-rostock.de/uploads/media/2_2-Brenner.pdf (Accessed on 22/01/2011)
  19. 19.
    Nittel S, Labrinidis A, Stefanidis A (eds) (2008) GeoSensor Networks, vol 4540. Lecture Notes in Computer Science vol. Springer, Berlin, pp 1–6Google Scholar
  20. 20.
    Hammond WC, Brooks BA, Bürgmann R, Heaton T, Jackson M, Lowry AR, Anandakrishnan S (2011) Scientific value of real-time Global Positioning System data. Eos 92(15):125–126.  https://doi.org/10.1029/2011EO150001CrossRefGoogle Scholar
  21. 21.
    Allenbach B, Andreoli R, Battiston S, Bestault C, Clandillon S, Fellah K, Henry JB, Meyer C, Scius H, Tholey N, Ysou H, de Fraipont P (2005) Rapid EO disaster mapping service: added value, feedback and perspectives after 4 Years of Charter Actions. In: IGARSS05 Proceedings: 4373-4378Google Scholar
  22. 22.
    Voigt S, Riedlinger T, Reinartz P, Knzer C, Kiefl R, Kemper T, Mehl H (2005) Experience and Perspective of Providing Satellite Based Crisis Information, Emergency Mapping and Disaster Monitoring Information to Decision Makers and Relief Workers. In: Zlatanova S, Fendel E (eds) van Oosterom P. Springer, Geoinformation for Disaster Management, pp 519–531Google Scholar
  23. 23.
    Buehler YA, Kellenber TW (2007) Development of processing chains for rapid mapping with satellite data. In Geomatics solutions for disaster management. In: Li J, Zlatanova S, Fabbri A (eds) Lecture Notes in Geoinformation and Cartography. Springer Verlag. pp 16-36Google Scholar
  24. 24.
    Jeyaseelan AT (2004) Droughts and Floods Assessment and Monitoring Using Remote Sensing and GIS. Satell Remote Sens GIS Appl Agric Meteorol 291-313Google Scholar
  25. 25.
    Zhanga J, Zhoub C, Xua K, Watanabe M (2002) Flood disaster monitoring and evaluation in China. Env Hazards 4:33–43.  https://doi.org/10.1016/S1464-2867(03)00002-0CrossRefGoogle Scholar
  26. 26.
    Leavitt WM, Kiefer JJ (2006) Infrastructure interdependency and the creation of a normal disaster: the case of Hurricane Katrina and the City of New Orleans. J Public Works Manag Policy 10(4):306–314CrossRefGoogle Scholar
  27. 27.
    Scofield RA, Achutuni R (1996) The satellite forecasting funnel approach for predicting flash floods. Remote Sens Rev 14:251–282CrossRefGoogle Scholar
  28. 28.
    Webster TL, Forbes DL, Dickie S, Shreenan R (2004) Using topographic LiDAR to map flood risk from storm-surge events for Charlottetown, Prince Edward Island, Canada. Can J Remote Sens 30:64–76CrossRefGoogle Scholar
  29. 29.
    Awange JL, Fukuda Y (2003) On possible use of GPS-LEO satellite for flood forecasting. Accepted to the international civil engineering conference on sustainable development in the 21st century “The civil engineer in development” 12-16 August 2003 Nairobi, KenyaGoogle Scholar
  30. 30.
    Baker HC, Dodson AH, Penna NT, Higgins M, Offiler D (2001) Ground-based GPS water vapour estimation: potential for meteorological forecasting. J Atmos Solar-Terrestrial Phys 63(12):1305–1314CrossRefGoogle Scholar
  31. 31.
    US Army Corps of Engineers (2007) NAVSTAR Global Positioning System surveying. Eng Des Manual EM 1110-1-1003Google Scholar
  32. 32.
    Crétaux J-F, Leblanc M, Tweed S, Calmant S and Ramillien G (2007) Combining of Radar and laser altimetry, MODIS Remote Sensing and GPS for the monitoring of flood events: application to the flood plain of the Diamantina river. Geophys Res Abs 9:07496. SRef-ID: 1607-7962/gra/EGU2007-A-07496Google Scholar
  33. 33.
    Trenberth KE (1997) The definition of El Niño. Bulletin of the Am Meteorol Soc 78:2771–2777CrossRefGoogle Scholar
  34. 34.
    Trenberth K, Guillemot C (1996) Evaluation of the atmospheric moisture and hydrological cycle in the NCEP Reanalyses. NCAR Technical Note TN-430, DecemberGoogle Scholar
  35. 35.
    Becker M, Llowel W, Cazenave A, Güntner A, Crétaux J-F (2010) Recent hydrological behaviour of the East African Great Lakes region inferred from GRACE, satellite altimetry and rainfall observations. C R Geosci 342(3):223–233.  https://doi.org/10.1016/j.crte.2009.12.010CrossRefGoogle Scholar
  36. 36.
    Garcia-Garcia D, Ummenhofer CC, Zlotnicki V (2011) Australian water mass variations from GRACE data linked to Indo-Pacific climate variability. Remote Sens Env 115:2175–2183.  https://doi.org/10.1016/j.rse.2011.04.007CrossRefGoogle Scholar
  37. 37.
    Ummenhofer C, England M, McIntosh P, Meyers G, Pook M, Risbey J, Gupta A, Taschetto A (2009) What causes southeast Australiaś worst droughts? Geophys Res Lett 36:L04706.  https://doi.org/10.1029/2008GL036801CrossRefGoogle Scholar
  38. 38.
    Istomina MN, Kocharyan AG, Lebedeva IP (2005) Floods: genesis, socioeconomic and environmental impacts. J Water Resources 32(4):349–358CrossRefGoogle Scholar
  39. 39.
    Forootan E, Awange J, Kusche J, Heck B, Eicker A (2012) Independent patterns of water mass anomalies over Australia from satellite data and models. Remote Sens Env 124:427–443.  https://doi.org/10.1016/j.rse.2012.05.023CrossRefGoogle Scholar
  40. 40.
    Awange JL, Mpelasoka F, Goncalves R (2016) When every drop counts: Analysis of Droughts in Brazil for the 1901–2013 period. Sci Total Env 566–567:1472–88.  https://doi.org/10.1016/j.scitotenv.2016.06.031CrossRefGoogle Scholar
  41. 41.
    DMCN (Drought Monitoring Centre Nairobi), (2002) Factoring of weather and climate information and products into disaster management policy. A contribution to strategies for disaster reduction in Kenya, UNDP, Government of Kenya and WMO, NairobiGoogle Scholar
  42. 42.
    Adger WN, Huq S, Brown K, Conway D, Hulme M (2003) Adaptation to climate change in the developing world. Prog Dev Stud 3:179–195.  https://doi.org/10.1191/1464993403ps060oaCrossRefGoogle Scholar
  43. 43.
    Phoon SY, Shamseldin AY, Vairavamoorthy K (2004) Assessing impacts of climate change on Lake Victoria Basin, Africa: people-centred approaches to water and environmental sanitation. In: 30th Water Engineering and Development Centre (WEDC) International Confirence Vientiane, Lao PDR, pp 392-397Google Scholar
  44. 44.
    Awange JL, Ogallo L, Kwang-Ho B, Were P, Omondi P, Omute P, Omulo M (2008) Falling Lake Victoria Water Levels: Is Climate a Contribution Factor? J Clim Change 89:287–297.  https://doi.org/10.1007/s10584-008-9409-xCrossRefGoogle Scholar
  45. 45.
    Khandu, (2008) GPS remote sensing of the australian tropopause. Curtin University of Technology, Honours dissatetionGoogle Scholar
  46. 46.
    Privette JL, Fowler C, Wick GA, Baldwin D, Emery WJ (1995) Effects of orbirtal drift on advanced very high resolution radiometer products: normalized difference vegetation index and sea surface temperature. Remote Sens Environ 53(3):164–171.  https://doi.org/10.1016/0034-4257(95)00083-DCrossRefGoogle Scholar
  47. 47.
    Hatfield JL, Prueger JH, Kustas WP (2004) Remote sensing of dryland crops. In: Ustin S (ed) Remote sensing for natural resources and environmental monitoring: Manual of remote sensing, vol 4, 3rd edn. Wiley, New Jersey, pp 531–568Google Scholar
  48. 48.
    Nicholson SE, Davenport ML, Malo AR (1990) A comparison of the vegetation response to rainfall in the Sahel and East Africa, using normalized difference vegetation index from NOAA AVHRR. Climatic Change 17(2–3):209–241.  https://doi.org/10.1007/BF00138369CrossRefGoogle Scholar
  49. 49.
    Omute P, Corner R, Awange JL (submitted) NDVI monitoring of Lake Victoria water level and drought. Water Resource ManagementGoogle Scholar
  50. 50.
    Chen JL, Wilson CR, Tapley BD, Yang ZL, Niu GY (2009) 2005 drought event in the Amazon River basin as measured by GRACE and estimated by climate models. J Geophys Res 114:B05404.  https://doi.org/10.1029/2008JB006056CrossRefGoogle Scholar
  51. 51.
    Uriel K (1998) Landscape Ecology and Epidemiology of Vector-Borne Diseases: Tools for Spatial Analysis. J Med Entomol 35(4):435–445CrossRefGoogle Scholar
  52. 52.
    Bonner MR, Han D, Nie J, Rogerson P, Vena JE, Freudenheim Jo L (2003) Positional accuracy of geocoded addresses in epidemiologic research. Epidemiology 14:408–412.  https://doi.org/10.1097/01.EDE.0000073121.63254.c5CrossRefGoogle Scholar
  53. 53.
    Hay SI, Lennon JJ (1999) Deriving meteorological variables across Africa for the study and control of vector-borne disease: a comparison of remote sensing and spatial interpolation of climate. Trop Med Int Health 4:58–71CrossRefGoogle Scholar
  54. 54.
    Herbreteau V, Salem G, Souris M (2007) Thirty years of use and improvement of remote sensing applied to epidemiology: from early promises to lasting frustration. Health & Place 13:400–403CrossRefGoogle Scholar
  55. 55.
    Lian M, Warner RD, Alexander JL, Dixon KR (2007) Using geographic information systems and spatial and space-time scan statistics for a populationbased risk analysis of the 2002 equine West Nile epidemic in six contiguous regions of Texas. Int J Health Geographics 6, 42; available at www.ij-healthgeographics.com/content/6/1/42
  56. 56.
    Snow (2010) GIS Analyses of Dr. Snow’s Map. http://www.udel.edu/johnmack/frec480/cholera/cholera2.html (Accessed on 02/04/2010)
  57. 57.
    Kamik V, Algermissen ST (1978) Seismic Zoning- Chapter in the Assessment and Mitigation of Earthquake Risk. UNESCO, Paris, pp 1–47Google Scholar
  58. 58.
    Dalton R (2007) GPS could offer better fault line mapping. Nature News.  https://doi.org/10.1038/news070521-9. http://www.nature.com/news/2007/070521/full/news070521-9.html (Accessed on 25/09/2011)
  59. 59.
    Hofman-Wellenhof B, Lichtenegger H, Collins J (2001) Global Positioning System: theory and practice, 5th edn. Springer, WienCrossRefGoogle Scholar
  60. 60.
    Hofman-Wellenhof B, Lichtenegger H, Wasle E (2008) GNSS Global Navigation Satellite System: GPS. GLONASS; Galileo and more, Springer, WienGoogle Scholar
  61. 61.
    Jia M (2005) Crustal deformation from the Sumatra-Andaman Earthquake. Geoscience Australia’s analysis of the largest earthquake since the beginning of modern space geodesy. Ausgeo news issue:80Google Scholar
  62. 62.
    Larson KM (2009) GPS seismology. J Geodesy 83:227–233.  https://doi.org/10.1007/s00190-008-0233-xCrossRefGoogle Scholar
  63. 63.
    Seidel DJ, Randel WJ (2006) Variability and trends in the global tropopause estimated from radiosonde data. J Geophys Res 111,  https://doi.org/10.1029/2006JD007363
  64. 64.
    Cruz A, Laneve G, Cerra D, Mielewczyk M, Garcia MJ, Santilli G, Cadau E, Joyanes G (2007) On the application of nighttime sensors for rapid detection of areas impacted by disasters. In Geomatics solutions for disaster management. In: Li J, Zlatanova S, Fabbri, A (eds) Lecture Notes in Geoinformation and Cartography. Springer Verlag, pp 16-36Google Scholar
  65. 65.
    Hammond WC, Brooks BA, Bürgmann R, Heaton T, Jackson M, Lowry AR, and Anandakrishnan S (2010) The scientific value of high-rate, low-latency GPS data, a white paper. http://www.unavco.org/community_science/science_highlights/2010/realtimeGPSWhitePaper2010.pdf. Accessed 6 June 2011
  66. 66.
    Al-Khudhairy DHA, Caravaggi I, Glada S (2005) Structural damage assessments from IKONOS data using change detection, object-oriented segmentation, and classification techniques. Photogram Eng Remote Sens 71:825837CrossRefGoogle Scholar
  67. 67.
    Kouchi K, Yamazaki F, Kohiyama M, Matsuaka M, Muraoka N (2004) Damage detection from Quickbird high-resolution Satellite images for the 2003 Boumerdes, Algeria Earthquake. Proceeding., pp 215–226Google Scholar
  68. 68.
    Yamazaki F, Kouchi K, Kohiyama M, Muraoka N, Matsuoka M (2004) Earthquake damage detection using high-resolution satellite images. Proceedings of IEEE 200 International Geoscience and Remote Sensing Symposium, IEEE CD-ROM:4pGoogle Scholar
  69. 69.
    Yamazaki F, Yano Y, Matsuoka M (2005) Visual damage interpretation of buildings in Bam City using QuickBird images. Earthq Spectra 21(1):329–336CrossRefGoogle Scholar
  70. 70.
    Ogawa N, Yamazaki F (2000) Photo-interpretation of buildings damage due to earthquakes using aerial photographs., p 8pGoogle Scholar
  71. 71.
    Turker M, Cetinkaya B (2005) Automatic detection of earthquake-damaged buildings using DEMs created from pre- and post-earthquake stereo aerial photographs. Int J Remote Sens 26(4):823–832CrossRefGoogle Scholar
  72. 72.
    Hasegawa H, Yamazaki F, Matsuoka M, Seikimoto I (2000) Determination of building damage due to earthquakes using aerial television images., p 8pGoogle Scholar
  73. 73.
    Bitelli G, Camassi R, Gusella L, Mognol A (2004) Image change detection on urban areas: the earthquake case. Proceedings of the ISPRS XXth Congress, Istanbul 35(B7):692–697Google Scholar
  74. 74.
    Mehdi R, Gruen A (2007) Automatic Classification of Collapsed Buildings Using Object and Image Space Features. In Geomatics solutions for disaster management. In: Li J, Zlatanova S, Fabbri A (eds) Lecture Notes in Geoinformation and Cartography. Springer Verlag, pp 135–148Google Scholar
  75. 75.
    Miura H, Midorikawa S (2006) Updating GIS building inventory data using high-resolution satellite images for earthquake damage assessment: Application to metro Manila. Philippines, Earthquake Spectra 22:151–168CrossRefGoogle Scholar
  76. 76.
    Yamaguchi N, Yamazaki F (2001) Estimation of strong motion distribution in the 1995 Kobe earthquake based on building damage data. Earthq Eng Struct Dyn 30(6):787–801CrossRefGoogle Scholar
  77. 77.
    Matsuzaka S (2006) GPS network experience in japan and its usefulness. Seventeenth United Nations Regional Cartographic Conference. Geographical Survey Institute, Bangkok ThailandGoogle Scholar
  78. 78.
    Sagiya T (2005) In: Space Planets, ( 56), (eds), p xxix-xliGoogle Scholar
  79. 79.
    Church JA, Gregory JM, Huybrechts P, Kuhn M, Lambeck K, Nhuan MT, Qin D, Woodworth PL (2001) Changes in Sea Level. In: Houghton JT, Ding Y, Griggs DJ, Noguer M, Van der Linden PJ, Dai X, Maskell K, Johnson CA (eds) Climate change 2001: the scientific basis: contribution of working group I to the third assessment report of the intergovernmental panel on climate change, Cambridge University Press. Cambridge, New York, pp 639–694Google Scholar
  80. 80.
    Pugh D (2004) Changing sea levels. Effect of tides, weather and climate. Univeristy Press, CambridgeGoogle Scholar
  81. 81.
    Lowe ST, LaBrecque JL, Zuffada C, Romans LJ, Young L, Hajj GA (2002) First spaceborne observation of an earth-reflected GPS signalGoogle Scholar
  82. 82.
    Geoscience Australia (2008) Need for the geodetic component for absolute sea level monitoring. http://www.ga.gov.au/geodesy/slm/spslcmp/ (Accessed on 11/12/2008)
  83. 83.
    Warrick RA, Le Provost C, Meier MF, Oerlemans J, Woodworth PL (1996) Changes in Sea Level. In: Climate Change 1995, The Science of Climate Change, Houghton JT, Meira Filho LG, Callander BA, Harris N, Klattenberg A, Maskell K (eds) Cambridge University Press, pp 359–405Google Scholar
  84. 84.
    Antonov JI, Levitus S, Boyer TP (2002) Steric sea level variations during 1957–1994: Importance of salinity. J Geophys Res (Oceans) 107(C12):8013.  https://doi.org/10.1029/2001JC000964CrossRefGoogle Scholar
  85. 85.
    Mitrovica JX, Tamisiea ME, Davis JL, Milne GA (2001) Recent mass balance of polar ice sheets inferred from patterns of global sea-level change. Nature 409:1026–1029.  https://doi.org/10.1038/35059054CrossRefGoogle Scholar
  86. 86.
    Bamber JL, Riva REM, Vermeersen BLA, LeBrocq AM (2009) Reassessment of the potential sea-level rise from a collapse of the West Antarctic ice sheet. Science 324:901–903.  https://doi.org/10.1126/science.1169335CrossRefGoogle Scholar
  87. 87.
    Dickey JO, Bentley CR, Bilham R, Carton JA, Eanes RJ, Herring TA, Kaula WM, Lagerloef GSE, Rojstaczer S, Smith WHF, Van Den Dool HM, Wahr JM, Zuber MT (1996) Satellite gravity and the geosphere. national research council report. National Academies Press. Washington, DC, 112 pGoogle Scholar
  88. 88.
    Titus JG, Park RA, Leatherman S, Weggel R, Greene MS, Treehan M, Brown S, Gaunt C, Yohe G (1991) Greenhouse effect and sea level rise: The cost of holding back the sea. Coast Manag 19:171–204CrossRefGoogle Scholar
  89. 89.
    Hirt C, Gruber T, Featherstone WE (2011) Evaluation of the first GOCE static gravity field models using terrestrial gravity, vertical deflections and EGM2008, quasigeoid heights. J Geod 85:723–740.  https://doi.org/10.1007/s00190-011-0482-y
  90. 90.
    Rius A, Aparicio JM, Cardellach E, Martín-Neira M, Chapron B (2002) Sea surface state measured using GPS reflected signals. Geophys Res Lett 29(23):21–22.  https://doi.org/10.1029/2002GL015524CrossRefGoogle Scholar
  91. 91.
    Rocken C, Kelecy TM, Born GH, Young LE, Purcell GH, Wolf SK (1990) Measuring precise sea level from a buoy using the Global Positioning System. Geophys Res Lett 17(12):2145–2148CrossRefGoogle Scholar
  92. 92.
    Kelecy TM, Born GH, Parke ME, Rocken C (1994) Precise mean sea level measuring using global positioning system. J Geophys Res 99(c4):7951–7959CrossRefGoogle Scholar
  93. 93.
    Born GH, Parke ME, Axelrad P, Gold KL, Johnson J, Key KW, Kubitschek DG, Christensen EJ (1994) Calibration of the TOPEX altimeter using a GPS buoy. J Geophys Res 99(C12):24517–24526CrossRefGoogle Scholar
  94. 94.
    Leuliette EW, Nerem RS, Mitchum GT (2004) Calibration of TOPEX/Poseidon and Jason Altimeter Data to Construct a Continuous Record of Mean Sea Level Change. Mar Geodesy 27(1):79–94.  https://doi.org/10.1080/01490410490465193CrossRefGoogle Scholar
  95. 95.
    Watson C, Coleman R, White N, Church J, Govind R (2003) Absolute Calibration of TOPEX/Poseidon and Jason-1 Using GPS Buoys in Bass Strait. Australia. Marine Geodesy 26(3–4):285–304.  https://doi.org/10.1080/01490410390256745CrossRefGoogle Scholar
  96. 96.
    Snay R, Soler T (2008) Continuously operating reference station (CORS): history, applications, and future enhancements. J Surveying Eng 134(4):95–104.  https://doi.org/10.1061/(ASCE)0733-9453(2008)134:4(95)
  97. 97.
    Snay R, Cline M, Dillinger W, Foote R, Hilla S, Kass W, Ray J, Rohde J, Sella G, Soler T (2007) Using global positioning system-derived crustal velocities to estimate rates of absolute sea level change from North American tide gauge records. J Geophys Res 112:B04409.  https://doi.org/10.1029/2006JB004606CrossRefGoogle Scholar
  98. 98.
    Crétaux J-F, Jelinski W, Calmant S, Kouraev A, Vuglinski V, Bergé-Nguyen M, Gennero M-C, Nino F, Abarca Del Rio R, Cazenave A, Maisongrande P (2011) SOLS: a lake database to monitor in the Near real-time water level and storage variations from remote sensing data. Adv Space Res 47:1497–1507.  https://doi.org/10.1016/j.asr.2011.01.004CrossRefGoogle Scholar
  99. 99.
    GITEWS (German Indonesian Tsunami Early Warning System) (2008) A New Approach in Tsunami-Early Warning. Press-Information embargo: 11.11.2008, 10:00 CET. http://www.gitews.de/fileadmin/documents/content/press/GITEWS_operationell_eng_nov-2008.pdf (Accessed on 10/12/2008)
  100. 100.
    Helm A, Montenbruck O, Ashjaee J, Yudanov S, Beyerle G, Stosius R, Rothacher M (2007) GORS - A GNSS Occultation, Reflectometry and Scatterometry Space Receiver. In: Proceedings of the 20th International Technical Meeting of the Satellite Division of The Institute of Navigation ION GNSS 2007, Fort Worth, Texas, Sept. 25–28, pp. 2011-2021Google Scholar
  101. 101.
    Cruden D, Varnes D (1996) Landslide types and processes. In: Turner K, Schuster R (eds) Landslides investigation and mitigation, transportation research board special Report 247. National Academy Press, Washington D.C., pp 36–75Google Scholar
  102. 102.
    Malamud B, Turcotte D, Guzzetti F, Reichenbach P (2004) Landslide inventories and their statistical properties. Earth Surface Processes Land 29:687–711CrossRefGoogle Scholar
  103. 103.
    Wills C, McCrink T (2002) Comparing Landslide Inventories: The Map Depends on the Method. Env Eng Geosci VIII 4:279–293CrossRefGoogle Scholar
  104. 104.
    Motagh M, Djamour Y, Walter TR, Wetze H, Zschau J, Arabi S (2007) Land subsidence in Mashhad Valley, northeast Iran: results from InSAR, levelling and GPS. Geophysical Journal International 168:518–526.  https://doi.org/10.1111/j.1365-246X.2006.03246.xCrossRefGoogle Scholar
  105. 105.
    Schenk A (2006) Interpreting surface displacement in Tehran / Iran region observed by Differential Synthetic Aperture Radar Interferometry (DINSAR). Diplomarbeit, Technische Universität Berlin, Institut für Angewandte Geowissenschaften Fachgebiet Angewandte GeophysikGoogle Scholar
  106. 106.
    Poland JF (1984) Guidebook to studies of land subsidence due to water withdrawal. UNESCO, Technical reportGoogle Scholar
  107. 107.
    McKean J, Buechel S, Gaydos L (1991) Remote sensing and landslide hazard assessment. Photogram Eng Remote Sens 57(9):1185–1193Google Scholar
  108. 108.
    Rood K (1984) An aerial photograph inventory of the frequency and yield of mass wasting on the Queen Charlotte Islands. BC Ministry of Forests, Land Management Report, British Columbia, p 34Google Scholar
  109. 109.
    Sauchyn D, Trench N (1978) Landsat applied to landslide mapping. Photogrammetric Engineering and Remote Sensing 44:735–741Google Scholar
  110. 110.
    Barlow J, Franklin SE (2007) Mapping Hazardous Slope Processes Using Digital Data. In Geomatics solutions for disaster management. In: Li J, Zlatanova S, Fabbri A (eds) Lecture Notes in Geoinformation and Cartography. Springer Verlag, 74–90Google Scholar
  111. 111.
    Barlow J, Franklin S, Martin Y (2006) High spatial resolution satellite imagery, DEM derivatives, and image segmentation for the detection of mass wasting processes. Photogram Eng Remote Sens 72(6):687–692CrossRefGoogle Scholar
  112. 112.
    Zhang Q, Zhao C, Ding X, Peng J (2007) Monitoring Xian Land Subsidence Evolution by Differential SAR Interferometry. In Geomatics solutions for disaster management. In: Li J, Zlatanova S, Fabbri A (eds) Lecture Notes in Geoinformation and Cartography. Springer Verlag, pp 91–102Google Scholar
  113. 113.
    Malet JP, Maquaire O, Calais E (2002) The use of Global Positioning System techniques for the continuous monitoring of landslides: application to the Super-Sauze earthflow (Alpes-de-Haute-Provence, France). Geomorphology 43(1–2):33–54.  https://doi.org/10.1016/S0169-555X(01)00098-8CrossRefGoogle Scholar
  114. 114.
    Gili JA, Corominas J, Rius J (2000) Using Global Positioning Techniques in Landslide Monitoring. Eng Geol 155(3):167–192CrossRefGoogle Scholar
  115. 115.
    Xue Z, Li G, Li Z, Wu X, Wei J (2007) Monitoring Xian Land Subsidence Evolution by Differential SAR Interferometry. In Geomatics solutions for disaster management. In: Li, J, Zlatanova, S, Fabbri, A (eds) Lecture Notes in Geoinformation and Cartography. Springer Verlag, pp 427-437Google Scholar
  116. 116.
    Bancroft S (1985) An algebraic solution of the GPS equations. IEEE Trans Aerosp Electron Syst AES-21:56-59Google Scholar
  117. 117.
    Mitrovica JX, Gomez N, Clark PU (2009) The Sea-Level Fingerprint of West Antarctic collapse. Science 323(5915):753.  https://doi.org/10.1126/science.1166510CrossRefGoogle Scholar
  118. 118.
    Rizos C (2001) Alternatives to current GPS-RTK services and some implications for CORS infrastructure and operations. GPS Solution 11(3):151–158CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Spatial SciencesCurtin UniversityPerthAustralia
  2. 2.Department of Geospatial and Space TechnologyUniversity of Nairobi NairobiKenya

Personalised recommendations