Advertisement

Protection and Conservation of Animals and Vegetation

  • Joseph Awange
  • John Kiema
Chapter
Part of the Environmental Science and Engineering book series (ESE)

Abstract

This chapter presents ways in which geoinformatics could be useful in supporting management and conservation efforts of animals and vegetation . Ways in which animals and vegetation impact on the environment, and vice versa, i.e., the ways in which the environment impact, through human-induced anthropogenic activities, on the animals and vegetation are considered. Specific emphasis on how geoinformatics could support these efforts through monitoring, thereby enabling remedial measures to be undertaken are presented.

References

  1. 1.
    Fuller MR, Millspaugh JJ, Church KE, Kenward RE (2005) Wildlife radio telemetry. In: Braun CE (ed) Techniques for wildlife investigations and management, 6th edn, pp 377–417. The Wildlife Society, Bethesda, MDGoogle Scholar
  2. 2.
    Tomkiewicz SM, Fuller MR, Kie JG, Bates KK (2010) Global positioning system and associated technologies in animal behaviour and ecological research. Philos Trans R Soc B 365:2163–2176.  https://doi.org/10.1098/rstb.2010.0090CrossRefGoogle Scholar
  3. 3.
    Cagnacci F, Boitani L, Powell PA, Boyce MS (eds) (2010) Challenges and opportunities of using GPS-based location data in animal ecology. Philos Trans R Soc B 365:2155.  https://doi.org/10.1098/rstb.2010.0098
  4. 4.
    Craighead FC (1982) Track of the grizzly. Random House, New York, NYGoogle Scholar
  5. 5.
    Craighead JJ, Sumner JS, Mitchell JA (1995) The grizzly bears of Yellowstone: their ecology in the Yellowstone ecosystem. Island Press, New York, NYGoogle Scholar
  6. 6.
    Hebblewhite M, Haydon DT (2010) Distinguishing technology from biology: a critical review of the use of GPS telemetry data in ecology. Philos Trans R Soc B 365:2303–2312.  https://doi.org/10.1098/rstb.2010.0087CrossRefGoogle Scholar
  7. 7.
    Barbari M, Conti L, Koostra BK, Masi G, Sorbetti Guerri F, Workman SR (2006) The use of global positioning and geographical information systems in the management of extensive cattle grazing. Biosyst Eng 95(2):271–280.  https://doi.org/10.1016/j.biosystemseng.2006.06.012CrossRefGoogle Scholar
  8. 8.
    Urbano F, Cagnacci F, Clement C, Dettki H, Cameron A, Neteler M (2010) Wildlife tracking data management: a new vision. Philos Trans R Soc B 365:2177–2185.  https://doi.org/10.1098/rstb.2010.0081CrossRefGoogle Scholar
  9. 9.
    Steede-Terry K (2000) Integrating GIS and the global positioning system. ESRI Press, CaliforniaGoogle Scholar
  10. 10.
    Chester CC (2006) Landscape vision and the Yellowstone to Yukon conservation initiative. In: Chester CC (ed) Conservation across borders: biodiversity in an interdependent world. Island Press, Washington, DC, pp 134–157Google Scholar
  11. 11.
    Berger J (2004) The last mile: how to sustain long-distance migration in mammals. Conserv Biol 18:320–331.  https://doi.org/10.1111/j.1523-1739.2004.00548.xCrossRefGoogle Scholar
  12. 12.
    Eshiamwata G (2012) Monitoring habitat at key biodiversity sites in Africa using remote sensing: land cover change at important Bird Areas in Eastern Africa. Ph.D, UoNGoogle Scholar
  13. 13.
    Awange JL, Aseto O, Ong’ang’a O (2004) A case study on the impact of Giraffes in Ruma National Park in Kenya. J Wildl Rehabil 27:16–21Google Scholar
  14. 14.
    Hebblewhite M (2009) Linking wildlife populations with ecosystem change: state-of-the-art satellite ecology for national-park science. ParkScience 26(1). Accessed on 25 Sept 2011 from http://www.nature.nps.gov/ParkScience/index.cfm?ArticleID=280Google Scholar
  15. 15.
    Awange JL, Ong’ang’a O (2006) Lake Victoria-ecology, resource of the Lake Basin and environment. Springer, BerlinGoogle Scholar
  16. 16.
    Environment Canada (2008) Scientific review for the identification of critical habitat for Woodland Caribou (Rangifer tarandus caribou), Boreal Population, in Canada. August 2008. Ottawa, Environment Canada. 72 pp. plus 180 pp AppendicesGoogle Scholar
  17. 17.
    Janssen V (2012) Indirect tracking of drop bears using GNSS technology. Aust Geogr 43(4):445–452.  https://doi.org/10.1080/00049182.2012.731307CrossRefGoogle Scholar
  18. 18.
    Holopainen M, Leino O, Kämäri H, Talvitie M (2006) Drought damage in the park forests of the city of Helsinki. Urban Forest Urban Greening 4:75–83.  https://doi.org/10.1016/j.ufug.2005.11.002CrossRefGoogle Scholar
  19. 19.
    Wessels K, Steenkamp K, von Maltitz G, Archibald S (2011) Remotely-sensed vegetation phenology for describing and predicting the biomes of South Africa. Appl Veg Sci 14:49–66CrossRefGoogle Scholar
  20. 20.
    Tucker CJ (1980) Remote sensing of leaf water content in the near infrared. Remote Sens Environ 10:23–32CrossRefGoogle Scholar
  21. 21.
    Tucker CJ (1979) Red and photographic infrared linear combinations for monitoring Vegetation. Remote Sens Environ 8(2):127–150.  https://doi.org/10.1016/0034-4257(79)90013-0CrossRefGoogle Scholar
  22. 22.
    James LF, Young JA, Sanders K (2003) A new approach to monitoring rangelands. Arid Land Res Manage 17:319–328.  https://doi.org/10.1080/15324980390225467CrossRefGoogle Scholar
  23. 23.
    Fearnside PM, Laurance WF (2003) Determination of deforestration rates of the world’s humid tropical forests. Science 299:10–15CrossRefGoogle Scholar
  24. 24.
    Houghton RA (2005) Above ground forest biomass and the global carbon balance. Glob Change Biol 11:945–958CrossRefGoogle Scholar
  25. 25.
    Malhi Y, Grace J (2000) Tropical forests and atmospheric carbon dioxide. Trends Ecol Evol 15:332–337CrossRefGoogle Scholar
  26. 26.
    Gibbs HK, Brown S, Niles JO, Foley JA (2007) Monitoring and estimating tropical forest carbon stocks: making REDD a reality. Environ Res Lett 2:045023Google Scholar
  27. 27.
    Kumi-Boateng B (2012) A spatio-temporal based estimation of vegetation changes in the Tarkwa mining area of Ghana. Doctor of Philosophy. Dissertation. University of Mines and Technology, Ghana, p 165Google Scholar
  28. 28.
    Sirait M, Prasodjo S, Podger N, Flavelle A, Fox J (1994) Mapping customary land in east Kalimantan, Indonesia: a tool for forest management. Ambio Stockholm AMBIO 23(7):411–417Google Scholar
  29. 29.
    Raven Environmental Services (2008) Mapping and GIS/GPS technology services. http://www.ravenenvironmental.com/mapping.aspx. Accessed on 06 Mar 2008Google Scholar
  30. 30.
    Brondizio ES, Moran EF, Mausel P, Wu Y (2005) Land use change in the Amazon estuary: patterns of caboclo settlement and landscape management. Human Ecol 22:249–278CrossRefGoogle Scholar
  31. 31.
    Abdalati W, Zwally HJ, Bindschadler B, Csatho B, Farrell SL, Fricker HA, Harding D, Kwok R, Lefsky M, Markus T, Marshak A, Neumann T, Palm S, Schutz B, Smith B, Spinhirne J, Webb C (2010) The ICESat-2 laser altimetry mission. Proc IEEE 98(5):735–751.  https://doi.org/10.1109/JPROC.2009.2034765CrossRefGoogle Scholar
  32. 32.
    Harding DJ, Carabajal CC (2005) ICESat waveform measurements of within-footprint topographic relief and vegetation vertical structure. Geophys Res Lett 32:L21S10.  https://doi.org/10.1029/2005GL023471CrossRefGoogle Scholar
  33. 33.
    Ozesmi SL, Bauer ME (2002) Satellite remote sensing of wetlands. Wetlands Ecol Manage 10:381–402CrossRefGoogle Scholar
  34. 34.
    Lowry J, Hess L, Rosenqvist A (2009) Mapping and monitoring wetlands around the world Using ALOS PALSAR: the ALOS Kyoto and carbon initiative wetlands products. In: Jones S, Reinke K (eds) Innovations in remote sensing and photogrammetry. Lecture Notes in Geoinformation and Cartography. Springer, Berlin, pp 129–144Google Scholar
  35. 35.
    Brooks RP, Wardrop DH, Cole CA (2006) Inventorying and monitoring wetland condition and restoration on a watershed basin with examples from Spring Creek Watershed, Pennsylvania, USA. Environ Manage 38:673–687CrossRefGoogle Scholar
  36. 36.
    Emerton L, Kekulandala LDCB (2003) Assessment of the economic value of Muthurajawela wetland. Occasional Papers of IUCN Sri Lanka, no. 4Google Scholar
  37. 37.
    Jonson RM, Barson MM (1993) Remote sensing of Australian wetlands: an evaluation of landsat TM for inventory and classification. Aust J Mar Fresh Water Resour 44:235–252CrossRefGoogle Scholar
  38. 38.
    Jensen JR, Christensen EJ, Sharitz R (1984) Nontidal wetland mapping in south Carolina using airborne multi-spectral scanner data. Remote Sens Environ 16:1–12CrossRefGoogle Scholar
  39. 39.
    Han M, Sun Y, Xu S (2007) Characteristics and driving factors of marsh changes in Zhalong wetland of China. Environ Monit Assess 127:363–381CrossRefGoogle Scholar
  40. 40.
    Munyati C (2000) Wetland change detection on the Kafue Flats, Zambia, by classification of a multitemporal remote sensing image dataset. Int J Remote Sens 21:1787–1806CrossRefGoogle Scholar
  41. 41.
    Ausseil AE, Dymond JR, Shephard JD (2007) Rapid mapping and prioritisation of wetland sites in the Manawatu-Wanganui region, New Zealand. Environ Manage 39:316–325CrossRefGoogle Scholar
  42. 42.
    Welch R, Remillard M, Doran RF (1995) GIS database development for South Florida’s National Parks and preserves. Photogram Eng Remote Sens 61:1371–1381Google Scholar
  43. 43.
    Kasischke ES, Bourgeau-Chavez LL (1997) Monitoring south Florida wetlands using ERS-1 SAR imagery. Photogram Eng Remote Sens 63:281–291Google Scholar
  44. 44.
    Costa M (2004) Use of SAR satellites for mapping zonation of vegetation communities in the Amazon floodplain. Int J Remote Sens 25(10):1817–1835CrossRefGoogle Scholar
  45. 45.
    Costa M, Niemann O, Novo E, Ahern F, Mantovani J (2002) Biophysical Properties and mapping of aquatic vegetation during the hydrological cycle of the Amazon floodplain using JERS-1 and RADARSAT. Int J Remote Sens 23(7):1401–1426CrossRefGoogle Scholar
  46. 46.
    Townsend PA, Walsh SJ (1998) Modeling floodplain inundation using an integrated GIS with radar and optical remote sensing. Geomorphology 21:295–312CrossRefGoogle Scholar
  47. 47.
    Chopra R, Verma VK, Sharma PK (2001) Mapping, monitoring and conservation of Harike wetland ecosystem, Punjab India through remote sensing. Int J Remote Sens 22:89–98CrossRefGoogle Scholar
  48. 48.
    Johnson R, Wichern D (2007) Applied multivariate statistical analysis, 6th edn. Prentice Hall, Upper Saddle River, N.JGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Spatial SciencesCurtin UniversityPerthAustralia
  2. 2.Department of Geospatial and Space TechnologyUniversity of Nairobi NairobiKenya

Personalised recommendations