Cloud-Based Additive Manufacturing as a Strategy for Product Variety: A Simulation Study

  • Ian M. Cavalcante
  • Enzo M. Frazzon
  • Fernando A. Forcellini
Conference paper
Part of the Studies in Computational Intelligence book series (SCI, volume 803)


Recent research has shown the benefits of Additive Manufacturing (AM) as a tool for rapid prototyping. This paper proposes a holistic and quantitative view of 3D printing as a tool to manufacture end products. Within the context of Industry 4.0, the adoption of 3D printing to manufacture end parts has been encouraged and it is becoming feasible due to the integration of this technology with cyber-physical systems. Two test cases are conducted using discrete event simulations in two production systems, i.e. additive manufacturing and rapid tooling, given the same economic conditions. The comparison is made in different conditions of demand and product variety. The impact of these variations is observed in terms of lead time and product variety rate. The benefit observed in AM is the immunity to product variety and the drawback is the limitation of processing large volumes. In addition, the results reinforce the value of data-driven decision-making for practitioners through the use of factory virtualization.


3D printing Injection modelling Rapid prototyping Cloud manufacturing 


  1. 1.
    Achillas, C., Tzetzis, D., Raimondo, M.O.: Alternative production strategies based on the comparison of additive and traditional manufacturing technologies. Int. J. Prod. Res. 55(12), 3497–3509 (2017)CrossRefGoogle Scholar
  2. 2.
    Åhlström, P., Westbrook, R.: Implications of mass customization for operations management: an exploratory survey. Int. J. Oper. Prod. Manag. 19(3), 262–275 (1999)CrossRefGoogle Scholar
  3. 3.
    Albrecht, F., Kleine, O., Abele, E.: Planning and optimization of changeable production systems by applying an integrated system dynamic and discrete event simulation approach. Procedia CIRP 17, 386–391 (2014)CrossRefGoogle Scholar
  4. 4.
    ASTM Committee F42 on Additive Manufacturing Technologies, & ASTM Committee F42 on Additive Manufacturing Technologies. Subcommittee F42. 91 on Terminology (2012). Standard Terminology for Additive Manufacturing Technologies. ASTM InternationalGoogle Scholar
  5. 5.
    Columbus, L.: Why 3D Printing Adoption is Accelerating Globally. Forbes (2015).
  6. 6.
    ElMaraghy, H., Schuh, G., ElMaraghy, W., Piller, F., Schönsleben, P., Tseng, M., Bernard, A.: Product variety management. Cirp Ann. 62(2), 629–652 (2013)CrossRefGoogle Scholar
  7. 7.
    Franchetti, M., Kress, C.: An economic analysis comparing the cost feasibility of replacing injection molding processes with emerging additive manufacturing techniques. Int. J. Adv. Manuf. Technol. 88(9–12), 2573–2579 (2017)CrossRefGoogle Scholar
  8. 8.
    Gibson, I., Rosen, D.W., Stucker, B.: Additive Manufacturing Technologies. Springer, New York (2010)CrossRefGoogle Scholar
  9. 9.
    Hopkinson, N., Dicknes, P.: Analysis of rapid manufacturing using layer manufacturing processes for production. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 217(1), 31–39 (2003)CrossRefGoogle Scholar
  10. 10.
    Hu, S.J.: Evolving paradigms of manufacturing: from mass production to mass customization and personalization. Procedia CIRP 7, 3–8 (2013)CrossRefGoogle Scholar
  11. 11.
    Jain, S., Fong Choong, N., Maung Aye, K., Luo, M.: Virtual factory: an integrated approach to manufacturing systems modeling. Int. J. Oper. Prod. Manag. 21(5/6), 594–608 (2001)CrossRefGoogle Scholar
  12. 12.
    Kans, M., Ingwald, A.: Business model development towards service management 4.0. Procedia CIRP 47, 489–494 (2016)CrossRefGoogle Scholar
  13. 13.
    Karania, R., Kazmer, D.: Low volume plastics manufacturing strategies. J. Mech. Des. 129(12), 1225–1233 (2007)CrossRefGoogle Scholar
  14. 14.
    Mai, J., Zhang, L., Tao, F., Ren, L.: Customized production based on distributed 3D printing services in cloud manufacturing. Int. J. Adv. Manuf. Technol. 84(1–4), 71–83 (2016)CrossRefGoogle Scholar
  15. 15.
    Makerbot: Replicator+ desktop 3D printer (2017).
  16. 16.
    Mellor, S., Hao, L., Zhang, D.: Additive manufacturing: a framework for implementation. Int. J. Prod. Econ. 149, 194–201 (2014)CrossRefGoogle Scholar
  17. 17.
    Monostori, L., Kdr, B., Bauernhansl, T., Kondoh, S., Kumara, S., Reinhart, G., Sauer, O., Schuh, G., Sihn, W., Ueda, K.: Cyber-physical systems in manufacturing. CIRP Ann. 65(2), 621–641 (2016)CrossRefGoogle Scholar
  18. 18.
    Mourtzis, D., Papakostas, N., Mavrikios, D., Makris, S., Alexopoulos, K.: The role of simulation in digital manufacturing: applications and outlook. Int. J. Comput. Integr. Manuf. 28(1), 3–24 (2015)CrossRefGoogle Scholar
  19. 19.
    Noble, J., Walczak, K., Dornfeld, D.: Rapid tooling injection molded prototypes: a case study in artificial photosynthesis technology. Procedia CIRP 14, 251–256 (2014)CrossRefGoogle Scholar
  20. 20.
    Petrovic, V., Vicente Haro Gonzalez, J., Jordá Ferrando, O., Delgado Gordillo, J., Ramón Blasco Puchades, J., Portolés Griñan, L.: Additive layered manufacturing: sectors of industrial application shown through case studies. Int. J. Prod. Res. 49(4), 1061–1079 (2011)Google Scholar
  21. 21.
    Qu, T., Lei, S.P., Wang, Z.Z., Nie, D.X., Chen, X., Huang, G.Q.: IoT-based real-time production logistics synchronization system under smart cloud manufacturing. Int. J. Adv. Manuf. Technol. 84(1–4), 147–164 (2016)CrossRefGoogle Scholar
  22. 22.
    Schniederjans, D.G.: Adoption of 3D-printing technologies in manufacturing: a survey analysis. Int. J. Prod. Econ. 183, 287–298 (2017)CrossRefGoogle Scholar
  23. 23.
    Stratasys: Demonstration of an effective design validation tool for 3D printed injection molds (3DPIM) (2017).
  24. 24.
    Tako, A.A., Robinson, S.: The application of discrete event simulation and system dynamics in the logistics and supply chain context. Decis. Support. Syst. 52(4), 802–815 (2012)Google Scholar
  25. 25.
    Tao, F., Cheng, Y., Da Xu, L., Zhang, L., Li, B.H.: CCIoT-CMfg: cloud computing and internet of things-based cloud manufacturing service system. IEEE Trans. Ind. Inform. 10(2), 1435–1442 (2014)CrossRefGoogle Scholar
  26. 26.
    Tao, F., Zuo, Y., Da Xu, L., Zhang, L.: IoT-based intelligent perception and access of manufacturing resource toward cloud manufacturing. IEEE Trans. Ind. Inform. 10(2), 1547–1557 (2014)CrossRefGoogle Scholar
  27. 27.
    Thames, L., Schaefer, D.: Software-defined cloud manufacturing for industry 4.0. Procedia CIRP 52, 12–17 (2016)CrossRefGoogle Scholar
  28. 28.
    Turner, C.J., Hutabarat, W., Oyekan, J., Tiwari, A.: Discrete event simulation and virtual reality use in industry: new opportunities and future trends. IEEE Trans. Hum. Mach. Syst. 46(6), 882–894 (2016)CrossRefGoogle Scholar
  29. 29.
    Weller, C., Kleer, R., Piller, F.T.: Economic implications of 3D printing: market structure models in light of additive manufacturing revisited. Int. J. Prod. Econ. 164, 43–56 (2015)CrossRefGoogle Scholar
  30. 30.
    Wu, D., Greer, M.J., Rosen, D.W., Schaefer, D.: Cloud manufacturing: drivers, current status, and future trends. In: ASME 2013 International Manufacturing Science and Engineering Conference collocated with the 41st North American Manufacturing Research Conference (2013)Google Scholar
  31. 31.
    Wu, D., Greer, M.J., Rosen, D.W., Schaefer, D.: Cloud manufacturing: strategic vision and state-of-the-art. J. Manuf. Syst. 32(4), 564–579 (2013)CrossRefGoogle Scholar
  32. 32.
    Xu, X.: From cloud computing to cloud manufacturing. Robot. Comput. Integr. Manuf. 28(1), 75–86 (2012)CrossRefGoogle Scholar
  33. 33.
    Zanardini, M., Bacchetti, A., Zanoni, S., Ashourpour, M.: Additive manufacturing applications in the domain of product service system: an empirical overview. Procedia CIRP 47, 543–548 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Ian M. Cavalcante
    • 1
  • Enzo M. Frazzon
    • 2
  • Fernando A. Forcellini
    • 1
  1. 1.Mechanical Engineering DepartmentFederal University of Santa CatarinaFlorianópolisBrazil
  2. 2.Industrial and Systems Engineering DepartmentFederal University of Santa CatarinaFlorianópolisBrazil

Personalised recommendations