Advertisement

Integration of Distributed Manufacturing Nodes in Smart Factory

  • Miha PipanEmail author
  • Jernej Protner
  • Niko Herakovič
Conference paper
Part of the Studies in Computational Intelligence book series (SCI, volume 803)

Abstract

In this paper, we propose a new approach for the integration of distributed manufacturing networks in the Smart Factory with encapsulation of production/assembly processes in unified node structure. Standard MES and ERP systems are based on the centralization of all data and execution of decision-making algorithms in cloud server. However, the newest IT trends use new decentralised management systems to store data and execute decision-making algorithms to shorten the response time of the network and increase security and data change traceability. Using the guidelines of newest IT trends, we propose a new decentralized production concept that can bring the same benefits as IT technologies.

Keywords

Manufacturing Distributed systems Local services Communication protocols Data flow 

References

  1. 1.
    Herakovič, N.: Some technological challenges of Industry 4.0 (in Slovenian language). Vent. J. 22, 10–16 (2016)Google Scholar
  2. 2.
    Vaidya, S., Ambad, P., Bhosle, S.: Industry 4.0—a glimpse. Procedia Manuf. 20, 233–238 (2018)CrossRefGoogle Scholar
  3. 3.
    Fernández-Miranda, S.S., Marcos, M., Peralta, M.E., Aguayo, F.: The challenge of integrating Industry 4.0 in the degree of mechanical engineering. Procedia Manuf. 13, 1229–1236 (2017)CrossRefGoogle Scholar
  4. 4.
    Thames, L., Schaefer, D.: Software-defined cloud manufacturing for Industry 4.0. Procedia CIRP 52, 12–17 (2016)CrossRefGoogle Scholar
  5. 5.
    Yang, L.: Industry 4.0: a survey on technologies, applications and open research issues. J. Ind. Inf. Integr. 6, 1–10 (2017)Google Scholar
  6. 6.
    Poonpakdee, P., Koiwanit, J., Yuangyai, C.: Decentralized network building change in large manufacturing companies towards Industry 4.0. Procedia Comput. Sci. 110, 46–53 (2017)CrossRefGoogle Scholar
  7. 7.
    Trappey, A.J.C., Trappey, C.V., Govindarajan, U.H., Chuang, A.C., Sun, J.J.: A review of essential standards and patent landscapes for the Internet of Things: a key enabler for Industry 4.0. Adv. Eng. Inform. 33, 208–229 (2017)CrossRefGoogle Scholar
  8. 8.
    Lanotte, R., Merro, M.: A semantic theory of the Internet of Things. Inf. Comput. 259, 72–101 (2018)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Kahani, M., Beadle, P.H.W.: Decentralised approaches for network management. ACM SIGCOMM Comput. Commun. Rev. 27, 36–47 (1997)CrossRefGoogle Scholar
  10. 10.
    Schleipen, M., Gilani, S.-S., Bischoff, T., Pfrommer, J.: OPC UA & Industry 4.0—enabling technology with high diversity and variability. Procedia CIRP 57, 315–320 (2016)CrossRefGoogle Scholar
  11. 11.
    Marcon, P., Zezulka, F., Vesely, I., Szabo, Z., Roubal, Z., Sajdl, O., Gescheidtova, E., Dohnal, P.: Communication technology for Industry 4.0. Prog. Electromagn. Res. 2017, 1694–1697 (2017)Google Scholar
  12. 12.
    VID/VDE: Reference architecture model Industrie 4.0 (RAMI4.0). Igarss 28 (2015)Google Scholar
  13. 13.
    Schlechtendahl, J., Keinert, M., Kretschmer, F., Lechler, A., Verl, A.: Making existing production systems Industry 4.0-ready. Prod. Eng. Res. Dev. 9, 143–148 (2014)CrossRefGoogle Scholar
  14. 14.
    Nayyar, A.: Internet of Things: the protocols landscape (2017). http://opensourceforu.com/2017/07/internet-things-protocols-landscape/
  15. 15.
    Santos, D.F.S., Almeida, H.O., Perkusich, A.: A personal connected health system for the Internet of Things based on the constrained application protocol. Comput. Electr. Eng. 44, 122–136 (2015)CrossRefGoogle Scholar
  16. 16.
    Postcapes. IoT standards and protocols. https://www.postscapes.com/internet-of-things-protocols/. Accessed 1 Apr 2018
  17. 17.
    Waleed, G.M., Ahmad, R.B.: Security protection using simple object access protocol (SOAP) messages techniques. In: Proceedings of 2008 International Conference on Electronic Design, December 1–3, Penang, Malaysia (2008)Google Scholar
  18. 18.
    National Instruments. Why OPC UA matters. http://www.ni.com/white-paper/13843/en/ (2017). Accessed 3 Apr 2018
  19. 19.
    Pfrommer, J., Grüner, S. and Palm, F.: Hybrid OPC UA and DDS: combining architectural styles for the industrial internet. In: Proceedings of 2016 IEEE World Conference on Factory Communication Systems (WFCS), 3–6 May, Aveiro, Portugal (2016)Google Scholar
  20. 20.
  21. 21.
    Pereira, T., Barreto, L., Amaral, A.: Network and information security challenges within Industry 4.0 paradigm. Procedia Manuf. 13, 1253–1260 (2017)CrossRefGoogle Scholar
  22. 22.
    Rüßmann, M., Lorenz, M., Gerbert, P., Waldner, M., Justus, J., Engel, P., Harnisch, M.: Industry 4.0: The Future of Productivity and Growth in Manufacturing Industries. Boston Consulting Group, Boston (2015)Google Scholar
  23. 23.
    Pauker, F., Frühwirth, T., Kittl, B., Kastner, W.: A systematic approach to OPC UA information model design. Procedia CIRP 57, 321–326 (2016)CrossRefGoogle Scholar
  24. 24.
    Cisco. Communication structures for Industry 4.0. Cisco and/or its affiliates (2016)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Faculty of Mechanical EngineeringUniversity of LjubljanaLjubljanaSlovenia

Personalised recommendations