Advertisement

A Six-Layer Digital Twin Architecture for a Manufacturing Cell

  • Anro Redelinghuys
  • Anton BassonEmail author
  • Karel Kruger
Conference paper
Part of the Studies in Computational Intelligence book series (SCI, volume 803)

Abstract

Industry 4.0, cyber-physical production systems (CPPS) and the Internet of Things (IoT) are current focuses in automation and data exchange in manufacturing, arising from the rapid increase of capabilities in information and communication technologies (ICTs) and the ubiquitous internet. A key enabler for the advances promised by CPPSs is the concept of a “digital twin”- the cyber representation of the physical twin, which in this paper is a manufacturing cell. This paper presents an architecture for such a digital twin that enables exchanging data and information between a remote emulation or simulation and the physical twin. The architecture comprises different layers, including a local data layer, an IoT Gateway layer, cloud-based databases and a layer containing emulations and simulations.

Keywords

Industrie 4.0 Cyber physical systems (CPS) Internet of Things (IoT) Digital twin OPC Tecnomatix 

References

  1. 1.
    Kagermann, H., Wahlster, W., Helbig, J.: Securing the future of German manufacturing industry: recommendations for implementing the strategic initiative INDUSTRIE 4.0. Acatech, Final Report Ind. 4.0 Work Group (2013)Google Scholar
  2. 2.
    Monostori, L.: Cyber-physical production systems: roots, expectations and R&D challenges. Procedia CIRP 17, 9–13 (2014)CrossRefGoogle Scholar
  3. 3.
    VDI/VDE: Cyber-physical systems: Chancen und Nutzen aus Sicht der Automation. Gesellschaft Mess und Autom. (GMA), Thesen und Handlungsfelder (2013)Google Scholar
  4. 4.
    Monostori, L., Kádár, B., Bauernhansl, T., Kondoh, S., Kumara, S., Reinhart, G., Sauer, O., Schuh, G., Sihn, W., Ueda, K.: Cyber-physical systems in manufacturing. CIRP Ann. Manuf. Technol. 65, 621–641 (2016)CrossRefGoogle Scholar
  5. 5.
    Shafto, M., Conroy, M., Doyle, R., Glaessgen, E.: DRAFT Modeling, Simulation, Information Technology and Processing Roadmap. Technol. Area (2010)Google Scholar
  6. 6.
  7. 7.
    Oracle: Digital Twins for IoT Applications: A Comprehensive Approach to Implementing IoT Digital Twins, Redwood Shores (2017)Google Scholar
  8. 8.
  9. 9.
    Waterman, P.J.: Manufacturing in the World of Industrie 4.0. http://www.digitaleng.news/de/manufacturing-in-the-world-of-industrie-4-0/
  10. 10.
    Grieves, M.: How a “Digital Twin” can warrant products are built as designed. https://www.mbtmag.com/article/2015/01/how-%E2%80%98digital-twin%E2%80%99-can-warrant-products-are-built-designed
  11. 11.
    Bagheri, B., Lee, J.: Big Future for Cyber-Physical Manufacturing Systems. http://www.designworldonline.com/big-future-for-cyber-physical-manufacturing-systems/
  12. 12.
  13. 13.
    Martin, J.: The Value of Automation and Power of the Digital Twin. https://newsignature.com/articles/value-automation-power-digital-twin/
  14. 14.
  15. 15.
    OPC Foundation: Update for IEC 62541 (OPC UA) Published. https://opcfoundation.org/news/opc-foundation-news/update-iec-62541-opc-ua-published/
  16. 16.
    OPC Foundation: OPC Unified Architecture Secure communication with IEC 62541 OPC UA. https://opcfoundation.org/wp-content/uploads/2014/05/OPC-UA_Security_EN.pdf
  17. 17.
    Hoppe, S.: There is no Industrie 4.0 without OPC UA. OPC Found. (2017)Google Scholar
  18. 18.
    Lee, J., Bagheri, B., Kao, H.A.: A cyber-physical systems architecture for industry 4.0-based manufacturing systems. Soc. Manuf. Eng. 3, 18–23 (2014)Google Scholar
  19. 19.
    Technopedia: What is Data Intelligence?. https://www.techopedia.com/definition/28799/data-intelligence
  20. 20.
  21. 21.
    Defuse Security: Salted Password Hashing-Doing it Right. https://crackstation.net/hashing-security.htm
  22. 22.

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Mechanical and Mechatronic EngineeringUniversity of StellenboschStellenboschSouth Africa

Personalised recommendations