Advertisement

Cyber-Physical Resource Scheduling in the Context of Industrial Internet of Things Operations

  • Radu F. Babiceanu
  • Remzi Seker
Conference paper
Part of the Studies in Computational Intelligence book series (SCI, volume 803)

Abstract

Industrial Internet of Things (IIoT) has become a broadly researched concept in the last several years. At its very foundation, the IIoT concept is the Internet-connection of Industrial Control Systems. This paper proposes a model for the manufacturing operations in an IIoT environment, where cyber-physical resources participate in a decentralized work scheduling process. Through the exchange of physical work-in-process and order information, the cyber-physical resources accomplish a common set of goals for the IIoT system, despite induced failures or delays at the processing resource and computational network levels. Holonic scheduling techniques are employed at the IIoT level, with part order, cyber-physical resource, and data network holon entities. The data network between remote processing locations is modelled as a software-defined network, with the control level working as the data network holon computational unit. A first cut, proof-of-concept, simulation was built to evaluate the capability of the system to offer effective decentralized scheduling and reconfigure the order sequences in the case of unexpected circumstances, such as cyber-physical resource processing delays, network cybersecurity attacks, or external order changes. It is expected that the combination of decentralized order scheduling and logically centralized order transport through Internet-based data networks will result in fast, reliable, and secure order processing and transmission across IIoT networks.

Keywords

Industrial Internet of Things Cyber-physical systems Holonic scheduling Manufacturing control 

References

  1. 1.
    Wu, D., Rosen, D.W., Wang, L., Schaefer, D.: Cloud-based design and manufacturing: a new paradigm in digital manufacturing and design innovation. Comput. Aided Des. 59, 1–14 (2015)CrossRefGoogle Scholar
  2. 2.
    Babiceanu, R.F., Seker, R.: Big data and virtualization for manufacturing cyber-physical systems: a survey of the current status and future outlook. Comput. Ind. 81, 128–137 (2016)CrossRefGoogle Scholar
  3. 3.
    Sood, S.K., Singh, K.D.: SNA based resource optimization in optical network using fog and cloud computing. Switch. Netw., Opt (2018).  https://doi.org/10.1016/j.osn.2017.12.007CrossRefGoogle Scholar
  4. 4.
    O’Donovan, P., Gallagher, C., Bruton, K., O’Sullivan, D.T.J.: A fog computing industrial cyber-physical system for embedded low-latency machine learning industry 4.0 applications. Manuf. Lett. (2018).  https://doi.org/10.1016/j.mfglet.2018.01.005CrossRefGoogle Scholar
  5. 5.
    Ahmed, E., Rehmani, M.H.: Mobile edge computing: opportunities, solution, and challenges. Future Gener. Comput. Syst. 70, 59–63 (2017)CrossRefGoogle Scholar
  6. 6.
    Wu, D., Liu, S., Zhang, L., Terpenny, J., Gao, R.X., Kurfess, T., Guzzo, J.A.: A fog computing-based framework for process monitoring and prognosis in cyber-manufacturing. J. Manuf. Syst. 43, 25–34 (2017)CrossRefGoogle Scholar
  7. 7.
    Ashibani, Y., Mahmoud, Q.H.: Cyber physical security: analysis, challenges and solutions. Comput. Secur. 68, 81–97 (2017)CrossRefGoogle Scholar
  8. 8.
    Sampigethaya, K., Poovendran, R.: Aviation cyber-physical systems: foundations for future aircraft and air transport. Proc. IEEE 101(8), 1855–1934 (2013)CrossRefGoogle Scholar
  9. 9.
    Hu, F., Lu, Y., Vasilakos, A.V., Hao, Q., Ma, R., Patil, Y., Zhang, T., Lu, J., Xiong, N.N.: Robust cyber-physical systems: concept, models, and implementation. Future Gener. Comput. Syst. 56, 449–475 (2016)CrossRefGoogle Scholar
  10. 10.
    Babiceanu, R.F., Seker, R.: Trustworthiness requirements for manufacturing cyber-physical systems. Procedia Manuf. 11, 973–981 (2017)CrossRefGoogle Scholar
  11. 11.
    Hofmann, E., Rusch, M.: Industry 4.0 and the current status as well as future prospects on logistics. Comput. Ind. 89, 23–34 (2017)CrossRefGoogle Scholar
  12. 12.
    Witkowski, K.: Internet of things, big data, industry 4.0—innovative solutions in logistics and supply chain management. Procedia Manuf. 182, 739–763 (2017)Google Scholar
  13. 13.
    Liu, X.F., Shahriar, M.R., Al Sunny, S.M.N., Leu, M.C., Hu, L.: Cyber-physical manufacturing cloud: architecture, virtualization, communication and testbed. J. Manuf. Syst. 43, 352–364 (2017)CrossRefGoogle Scholar
  14. 14.
    Penas, O., Plateaux, R., Patalano, S., Hammadi, M.: Multi-scale approach from mechatronic to cyber-physical systems for the design of manufacturing systems. Comput. Ind. 86, 52–69 (2017)CrossRefGoogle Scholar
  15. 15.
    Hatzivasilis, G., Fysarakis, K., Soultatos, O., Askoxylakis, I., Papaefstathiou, I., Demetriou, G.: The industrial internet of things as an enabler for a circular economy Hy-LP: a Novel IIoT protocol, evaluated on a wind park’s SDN/NFV-enabled 5G industrial network. Comput. Commun. 119, 127–137 (2018)CrossRefGoogle Scholar
  16. 16.
    Abdo, H., Kaouk, M., Flaus, J.-M., Masse, F.: A safety/security risk analysis approach of industrial control systems: a cyber bowtie—combining new version of attack tree with bowtie analysis. Comput. Secur. 72, 175–195 (2018)CrossRefGoogle Scholar
  17. 17.
    Babiceanu, R.F., Chen, F.F.: Development and applications of holonic manufacturing systems: a survey. J. Intell. Manuf. 17(1), 111–131 (2006)CrossRefGoogle Scholar
  18. 18.
    Babiceanu, R.F., Chen, F.F.: Manufacturing scheduling in decentralized holonic systems using artificial intelligence techniques. Int. J. Manuf. Technol. Manag. 11(3–4), 389–410 (2007)CrossRefGoogle Scholar
  19. 19.
    Bal, M., Hashemipour, M.: Implementation of holonic scheduling and control in flow-line manufacturing systems: die-casting study. Prod. Plan. Control 22(2), 108–123 (2011)CrossRefGoogle Scholar
  20. 20.
    Kreutz, D., Ramos, F.M.V., Verissiomo, P.E., Rothenberg, C.E., Azodolmolky, S., Uhlig, S.: Software-defined networking: a comprehensive survey. Proc. IEEE 103(1), 14–75 (2015)CrossRefGoogle Scholar
  21. 21.
    Jarraya, Y., Madi, T., Debbabi, M.: A survey and a layered taxonomy of software-defined networking. IEEE Commun. Surv. Tutor. 16(4), 1955–1982 (2014)CrossRefGoogle Scholar
  22. 22.
    Morreale, P.A., Anderson, J.M.: Software Defined Networking Design and Deployment. Taylor and Francis Group, Boca Raton (2015)Google Scholar
  23. 23.
    Jeschke, S., Brecher, C., Meisen, T., Ozdemir, D., Eschert, T.: Industrial internet of things and cyber manufacturing systems. In: Jeschke, S., Brecher, C., Song, H., Rawat, D.B. (eds.) Industrial Internet of Things Cyber Manufacturing Systems, pp. 3–19. Springer, Berlin (2017)CrossRefGoogle Scholar
  24. 24.
    Sullivan, D., Luiijf, E., Colbert, E.J.M.: Components of industrial control systems. In: Colbert, E.J.M., Kott, A. (eds.) Cyber-security of SCADA and Other Industrial Control Systems, pp. 15–28. Springer, Berlin (2016)CrossRefGoogle Scholar
  25. 25.
    Fitzgerald, J., Ingram, C., Romanovsky, A.: Concepts of dependable cyber-physical systems engineering: model-based approaches. In: Romanovsky, A., Ishikawa, F. (eds.) Trustworthy Cyber-Physical Engineering, pp. 1–22. Taylor and Francis, Boca Raton (2017)Google Scholar
  26. 26.
    Schmidt, R., Permin, E., Kerkhoff, J., Plutz, M., Bockmann, M.G.: Enhancing resiliency in production facilities through cyber physical systems. In: Jeschke, S., Brecher, C., Song, H., Rawat, D.B. (eds.) Industrial Internet of Things Cybermanufacturing Systems, pp. 287–313. Springer, Berlin (2017)CrossRefGoogle Scholar
  27. 27.
    Schilberg, D., Hoffmann, M., Schmitz, S., Meisen, T.: Interoperability in smart automation of cyber physical systems. In: Jeschke, S., Brecher, C., Song, H., Rawat, D.B. (eds.) Industrial Internet of Things Cybermanufacturing Systems, pp. 261–286. Springer, Berlin (2017)CrossRefGoogle Scholar
  28. 28.
    Evancich, N., Li, J.: Attacks on industrial control systems. In: Colbert, E.J.M., Kott, A. (eds.) Cyber-security of SCADA and Other Industrial Control Systems, pp. 95–110. Springer, Berlin (2016)CrossRefGoogle Scholar
  29. 29.
    Henry, M.H., Zaret, D.R., Carr, J.R., Gordon, D., Layer, R.M.: Cyber risk in industrial control systems. In: Colbert, E.J.M., Kott, A. (eds.) Cyber-security of SCADA and Other Industrial Control Systems, pp. 133–166. Springer, Berlin (2016)CrossRefGoogle Scholar
  30. 30.
    Langner, R.: Robust Control System Network: How to Achieve Reliable Control After Stuxnet. Momentum Press, New York (2012)Google Scholar
  31. 31.
    Macaulay, T., Singer, B.: Cybersecurity for Industrial Control Systems: SCADA, DCS, PLC, HMI, and SIS. Taylor & Francis Group, Boca Raton (2012)Google Scholar
  32. 32.
    Morariu, O., Morariu, C., Borangiu, T.: Resource, service, and product: real-time monitoring solution for service oriented holonic manufacturing systems. In: Borangiu, T., Trentesaux, D., Thomas, A. (eds.) Service Orientation in Holonic and Multi-agent Manufacturing and Robotics, Studies in Computational Intelligence, vol. 544, pp. 47–62. Springer, Berlin (2014)Google Scholar
  33. 33.
    Babiceanu, R.F., Seker, R.: Software-defined networking-based models for secure interoperability of manufacturing operations. In: Borangiu, T., Trentesaux, D., Thomas, A., Cardin, O. (eds.) Service Orientation in Holonic and Multi-agent Manufacturing, Studies in Computational Intelligence, vol. 762, pp. 243–252. Springer, Berlin (2018)CrossRefGoogle Scholar
  34. 34.
    Babiceanu, R.F., Seker, R.: Cybersecurity and resilience modeling for software-defined networks-based manufacturing applications. In: Borangiu, T., Trentesaux, D., Thomas, A., Leitao, P., Oliveira, J.B. (eds.) Service Orientation in Holonic and Multi-agent Manufacturing, Studies in Computational Intelligence, vol. 694, pp. 167–176. (2017)Google Scholar
  35. 35.
    Babiceanu, R.F., Seker, R.: Secure and resilient manufacturing operations inspired by software-defined networking. In: Borangiu, T., Thomas, A., Trentesaux, D. (eds.) Service Orientation in Holonic and Multi-agent Manufacturing, Studies in Computational Intelligence, vol. 640, pp. 285–294. Springer, Heidelberg (2016)CrossRefGoogle Scholar
  36. 36.
    Kim, D., Gil, J.-M.: Reliable and fault-tolerant software-defined network operations scheme for remote 3-D printing. J. Electron. Mater. 44(3), 804 (2015)CrossRefGoogle Scholar
  37. 37.
    Thames, L., Schaefer, D.: Software-defined cloud manufacturing for industry 4.0. Procedia CIRP 52, 12–17 (2016)CrossRefGoogle Scholar
  38. 38.
    Wan, J., Tang, S., Shu, Z., Li, D., Wang, S., Imran, M., Vasilakos, A.V.: Software-defined industrial internet of things in the context of industry 4.0. IEEE Syst. J. 16(20), 7373–7380 (2016)Google Scholar
  39. 39.
    Hakiri, A., Gokhale, A., Berthou, P., Schmidt, D.C., Gayraud, T.: Software-defined networking: challenges and research opportunities for future internet. Comput. Netw. 75, 453–471 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Electrical, Computer, Software, and Systems EngineeringEmbry-Riddle Aeronautical UniversityDaytona BeachUSA

Personalised recommendations