Advertisement

Dynamic Postponement in Off-Site/On-Site Construction Operations in the Face of On-Site Disruptions

  • Brian RobertsonEmail author
  • Raj Srinivasan
  • Duncan McFarlane
Conference paper
Part of the Studies in Computational Intelligence book series (SCI, volume 803)

Abstract

Off-site construction operations can be subject to downstream construction site disruptions. These disruptions - such as forecasted high wind conditions which will limit on-site crane movements for example - delay on-site construction and impact on the effectiveness of the off-site production of construction modules. In this paper we propose a new disruption management strategy of Dynamic Postponement. Simulation Based Optimisation by use of a Genetic Algorithm is used to determine the optimal balance between on/off-site work to maximise performance. This method is applied to an industrial case study. Finally, an outline of how Dynamic Postponement can be treated as an agent based system is provided.

Keywords

Off-site construction Disruption management Dynamic postponement Genetic algorithm Discrete event simulation Agent system 

References

  1. Al-bazi, A., Dawood, N.: Simulation-based genetic algorithms for construction supply chain management: off-site precast concrete production as a case study. OR Insight 25(3), 165–184 (2012).  https://doi.org/10.1057/ori.2012.7CrossRefGoogle Scholar
  2. Alvanchi, A., et al.: Off-site construction planning using discrete event simulation. J. Archit. Eng. 18(2), 114–122 (2012). http://www.scopus.com/inward/record.url?eid=2-s2.0-84862581085&partnerID=40&md5=fa90e0e8330aa95adf5de153a8a85001
  3. Anvari, B., Angeloudis, P., Ochieng, W.Y.: A multi-objective GA-based optimisation for holistic Manufacturing, transportation and assembly of precast construction. Autom. Constr. 71(Part 2), 226–241 (2016).  https://doi.org/10.1016/j.autcon.2016.08.007CrossRefGoogle Scholar
  4. Arashpour, M., et al.: Off-site construction optimization: sequencing multiple job classes with time constraints. Autom. Constr. 71(Part 2), 262–270 (2016)CrossRefGoogle Scholar
  5. Arashpour, M., et al.: Optimal process integration architectures in off-site construction: theorizing the use of multi-skilled resources. Archit. Eng. Des. Manag. 14(1–2), 46–59 (2018).  https://doi.org/10.1080/17452007.2017.1302406CrossRefGoogle Scholar
  6. Arashpour, M., et al.: Optimization of process integration and multi-skilled resource utilization in off-site construction. Autom. Constr. 50(C), 72–80 (2015)CrossRefGoogle Scholar
  7. Aytug, H., et al.: Executing production schedules in the face of uncertainties: a review and some future directions. Eur. J. Oper. Res. 161(1), 86–110 (2005)MathSciNetCrossRefGoogle Scholar
  8. Building Research Estabilishment: Modern Methods of Construction-MMC (2009). https://www.bre.co.uk/filelibrary/pdf/rpts/BeAware_MMC_Sector_Report_02Mar09.pdf
  9. Hamdan, S.B., et al.: Simulation based multi-objective cost-time trade-off for multi-family residential off-site construction. In: Proceedings of Winter Simulation Conference, pp. 3391–3401, February 2016Google Scholar
  10. Hosseini, M.R., et al.: Critical evaluation of off-site construction research: a scientometric analysis. Autom. Constr. 87(2017), 235–247 (2018).  https://doi.org/10.1016/j.autcon.2017.12.002CrossRefGoogle Scholar
  11. Johnsson, H., Meiling, J.H.: Defects in offsite construction: timber module prefabrication. Constr. Manag. Econ. 27(7), 667–681 (2009)CrossRefGoogle Scholar
  12. Juan, A.A., et al.: A simheuristic algorithm for solving the permutation flow shop problem with stochastic processing times. Simul. Model. Pract. Theory 46, 101–117 (2014).  https://doi.org/10.1016/j.simpat.2014.02.005CrossRefGoogle Scholar
  13. Kempton, J., Syms, P.: Modern methods of construction. Struct. Surv. 27(1), 36–45 (2009). www.emeraldinsight.com/doi/abs/10.1108/02630800910941674
  14. Li, S., et al.: The impact of supply chain management practices on competitive advantage and organizational performance. Omega 34(2), 107–124 (2006)CrossRefGoogle Scholar
  15. Martinez, J.C.: Methodology for conducting discrete-event simulation studies in construction engineering and management. J. Constr. Eng. Manag. 136(1), 3–16 (2009)CrossRefGoogle Scholar
  16. Melanie, M.: An Introduction to Genetic Algorithms. A Bradford Book. MIT Press, Cambridge (1996). ISBN: 9780262133166Google Scholar
  17. O’Connor, J.T., O’Brien, W.J., Choi, J.O.: Industrial project execution planning: modularization versus stick-built. Pract. Period. Struct. Des. Constr. 21(1), 401 (2016). http://ascelibrary.org/doi/10.1061/%28ASCE%29SC.1943-5576.0000270
  18. Pan, W., Gibb, A.G.F., Dainty, A.R.J.: Perspectives of UK housebuilders on the use of offsite modern methods of construction. Constr. Manag. Econ. 25(2), 183–194 (2007)CrossRefGoogle Scholar
  19. Ribas, I., Leisten, R., Framinan, J.M.: Review and classification of hybrid flow shop scheduling problems from a production system and a solutions procedure perspective. Comput. Oper. Res. 37(8), 1439–1454 (2010)MathSciNetCrossRefGoogle Scholar
  20. Sankar, S.S., Ponnanbalam, S.G., Rajendran, C.: A multiobjective genetic algorithm for scheduling a flexible manufacturing system. Int. J. Adv. Manuf. Technol. 22(3–4), 229–236 (2003)CrossRefGoogle Scholar
  21. Srivastava, U.K., et al.: Quantitative Techniques for Managerial Decisions. Wiley, Hoboken (1989)Google Scholar
  22. Venables, T., Courtney, R.: Modern methods of construction in Germany: playing the off-site rule. Report of a DTI Global Watch Mission (2004). http://www3.imperial.ac.uk/pls/portallive/docs/1/40872.PDF
  23. Yang, B., Geunes, J.: Predictive-reactive scheduling on a single resource with uncertain future jobs. Eur. J. Oper. Res. 189(3), 1267–1283 (2008)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Brian Robertson
    • 1
    Email author
  • Raj Srinivasan
    • 1
  • Duncan McFarlane
    • 1
  1. 1.Department of EngineeringUniversity of CambridgeCambridgeUK

Personalised recommendations