Advertisement

Implementing Industrial Control Automation for Holonic Manufacturing Systems Based on the Production Unit Architecture

  • Luis Alberto Cruz SalazarEmail author
  • Oscar Amaury Rojas Alvarado
  • Edgar Chacón
Conference paper
Part of the Studies in Computational Intelligence book series (SCI, volume 803)

Abstract

To satisfy the complex needs of a production process control, many architectures have been proposed which regularly can be classified into hierarchical (e.g. ISA 95 standard), heterarchical (e.g. multi-agent systems) and holonic or semiheterarchical, based on the holarchy notion (self-regulating holons organization with “smart” properties). A manufacturing system under the holonic approach (HMS) is considered part of the Intelligent Manufacturing Systems (IMS) implying that the HMS are defined as highly distributed organizations. The goal of these organizations is to decentralize manufacturing into individual entities called holons, which are autonomous, cooperative and intelligent. A. Koestler defines the concept of Holon as a self-similar or fractal, stable and coherent structure consisting of several holon-shaped sub-structures. Thus, no elements in the holarchy can self-develop without their subordinated parts or components. This characteristic ensures that HMS are stable structures that can resist disturbances. Applying this concept results in control processes that are generalized in terms of the next-generation manufacturing systems. The state of the art reveals that traditional manufacturing systems and HMS approaches are characterized by the Production Unit (PU). Examples of HMS proposed during the last decades with their strengths and weaknesses are summarized hereafter. Finally, the goal of this research is to analyze, design, and validate a holonic PU (HPU) model of intelligent control based on HMS. Primary results show an implementation of a decentralized industrial automation. There are given HPU information models in order to establish a control architecture for manufacturing systems to support real-time plant operation.

Keywords

Holonic manufacturing systems Holon Industrial automation Production unit 

References

  1. 1.
    Chacón, E., Besembel, I., Hennet, J.C.: Coordination and optimization in oil and gas production complexes. Comput. Ind. 53(1), 17–37 (2004)CrossRefGoogle Scholar
  2. 2.
    Langer, G., Sorensen, C., Stylios, C., Groumpos, P., Lumg, B., Hyun, Y.T., Weck, M.: Research contributions to the modelling and design of intelligent manufacturing systems. In: Proceedings of the Second International Workshop on Intelligent Manufacturing Systems (2000)Google Scholar
  3. 3.
    Leitão, P., Restivo, F.: ADACOR: a holonic architecture for agile and adaptive manufacturing control. Comput. Ind. 57(2), 121–130 (2006)CrossRefGoogle Scholar
  4. 4.
    Giret, A.: ANEMONA: Una Metodología Multi Agente para Sistemas Holónicos de Fabricación. Tesis de Doctorado, Departamento de Sistemas Informáticos y Computación, Universitat Politécnica de Valéncia (2005)Google Scholar
  5. 5.
    Antsaklis, P.J.: Defining intelligent control: Report of the task force on intelligent control. IEEE Control Syst. Mag., 14(3), 4–5 & 58–66 (1994)Google Scholar
  6. 6.
    Colombo, A.W., Schoop, R., Neubert, R.: An agent-based intelligent control platform for industrial holonic manufacturing systems. IEEE Trans. Ind. Electron. 53(1), 322–337 (2006)CrossRefGoogle Scholar
  7. 7.
    Johansson, B., Williams E.J., Alenljung, T.: Using autonomous modular material handling equipment for manufacturing flexibility. In: Proceedings of the 2004 Winter Simulation Conference, vol. 2, pp. 1115–1121 (2004)Google Scholar
  8. 8.
    Cruz Salazar, L.A., Rojas Alvarado, O.A.: Comparación de enfoques de sistemas de control tradicionales y el paradigma de los Sistemas Holónicos de Manufactura. In: II International Congress of Engineering Mechatronics and Automation (CIIMA), pp. 211–218 (2013)Google Scholar
  9. 9.
    ElMaraghy, H., Monostori, L.: Variety management in manufacturing cyber-physical production systems: roots, expectations and R&D challenges. Proc. CIRP 17, 9–13 (2014)CrossRefGoogle Scholar
  10. 10.
    Monostori, L., Kádar, B., Bauernhansl, T., Kondoh, S., Kumara, S., Reinhart, G., Sauer, O., Schuh, G., Sihn, W., Ueda, K.: Cyber-physical systems in manufacturing. CIRP Ann. Manuf. Technol. 65(2), 621–641 (2016)CrossRefGoogle Scholar
  11. 11.
    Mourtzis, D., Vlachou, E., Milas, N., Xanthopoulos, N.: A cloud-based approach for maintenance of machine tools and equipment based on shop-floor monitoring. Procedia CIRP 41, 655–660 (2016)CrossRefGoogle Scholar
  12. 12.
    Cruz Salazar, L.A., Rojas Alvarado, O.A.: The future of industrial automation and IEC 614993 standard. In: Proceedings of the 2014 3rd International Congress of Engineering Mechatronics and Automation, CIIMA 2014, pp. 1–5 (2014)Google Scholar
  13. 13.
    Galán, R., Jiménez, A., Sanz, R., Martía, F.: Control inteligente. Intel. Artif. 4(10), 43–48 (2000)Google Scholar
  14. 14.
    Cruz Salazar, L.A., Vogel-Heuser, B.: Comparison of agent oriented software methodologies to apply in cyber physical production systems. In: IEEE 15th International Conference on Industrial Informatics (INDIN), pp. 65–71 (2017)Google Scholar
  15. 15.
    Dumitrache, I., Caramihai, S.: Intelligent manufacturing: a new paradigm. IFAC Proc. Vol. 43(22), 1–7 (2010)CrossRefGoogle Scholar
  16. 16.
    Cruz Salazar, L.A., Li, H.: Proportional reliability of agent-oriented software engineering for the application of cyber physical production systems. In: Borangiu T., Trentesaux D., Thomas A., Cardin, O. (eds.) Service Orientation in Holonic and Multi-agent Manufacturing: Proceedings of SOHOMA 2017. Springer, Cham, pp. 139–156 (2017)Google Scholar
  17. 17.
    Simón-Marmolejo, I., López-Ortega, O., Ramos-Velasco, L.E., Ortiz-Domínguez, M.: Unified ontology for a holonic manufacturing system, Rev. Iberoam. Automática e Informática Ind. 15, 217–230 (2018)CrossRefGoogle Scholar
  18. 18.
    Indriago, C., Cardin, O., Rakoto, N., Castagna, P., Chacòn, E.: H2CM: a holonic architecture for flexible hybrid control systems. Comput. Ind. 77, 15–28 (2016)CrossRefGoogle Scholar
  19. 19.
    Palacio Betancur, J.E.: Una Propuesta para Distribuir el Coordinador de una Unidad de Producción Holónica a partir de la Teoría de Control Supervisorio. Tesis de Maestría, Universidad Nacional de Colombia, Manizales (2013)Google Scholar
  20. 20.
    Ciro, A., Santiago, A.: Transformación automática de requisitos representados en esquemas preconceptuales a modelos de interacción de sistemas holónicos. Tesis de Maestría en Ingeniería de Sistemas, Facultad de Minas Escuela de Sistemas, Universidad Nacional de Colombia, Medellín (2011)Google Scholar
  21. 21.
    Zapata Madrigal, G.: Propuesta Para la Planificación, Programación, Supervisión y Control de la Producción en Procesos Continuos Desde la Teoría del Control Supervisorio y el Enfoque Holónico. Ph.D. thesis, Facultad de Ingeniería, Universidad de Los Andes (2011)Google Scholar
  22. 22.
    Vasquez Salazar, R.D.: Modelo De Holones Recurso En Sistemas Holónicos De Manufactura. Tesis de Maestría en Automatización Industrial, Facultad de Ingeniería y Arquitectura, Universidad Nacional de Colombia-Sede Manizales (2009)Google Scholar
  23. 23.
    Barbosa, J.: Self-organized and evolvable holonic architecture for manufacturing control. Ph.D. thesis, Université de Valenciennes et du Hainaut-Cambresis (2015)Google Scholar
  24. 24.
    Christensen, J.H.: Holonic manufacturing systems: initial architecture and standards directions. In: Proceedings of the 1st European Workshop on Holonic Manufacturing Systems (1994)Google Scholar
  25. 25.
    Van Brussel, H., Wyns, J., Valckenaers, P., Bongaerts, L., Peeters, P.: Reference architecture for holonic manufacturing systems: PROSA. Comput. Ind. 37(3), 255–274 (1998)CrossRefGoogle Scholar
  26. 26.
    Wyns, J.: Reference architecture for holonic manufacturing systems-the key to support to evolution and reconfiguration. Ph.D. thesis, Faculteit Toegepaste Wetenschappen, Katholieke Universiteit Leuven (1999)Google Scholar
  27. 27.
    Brückner, S., Wyns, J., Peeters, P., Kollingbaum, M.: Designing agents for manufacturing control. In: Proceedings of the 2nd AI & Manufacturing Research Planning Workshop, pp. 40–46 (1998)Google Scholar
  28. 28.
    Valckenaers, P., Bonneville, F., Van Brussel, H., Bongaerts, L., Wyns, J.: Results of the holonic control system benchmark at KU Leuven. In: Proceedings of the Fourth International Conference on Computer Integrated Manufacturing and Automation Technology, pp. 128–133 (1994)Google Scholar
  29. 29.
    Leitão, P., ADACOR: An agile and adaptive holonic architecture for manufacturing control. Facultad de Ingeniería de la Universidad de Porto, Tesis de doctorado en Electrotecnia e Ingeniería de la Computación. Portugal (2004)Google Scholar
  30. 30.
    Chacón, E.: A way to implement supervisors for holonic production units. In: 15th Triennial World Congress. Barcelona, Spain, pp. 1–7 (2002)Google Scholar
  31. 31.
    Chacón, E., Besembel, I., Rivero, D.M., Cardillo, J.: The holonic production unit: an approach for an architecture of embedded production process. In: Aramburo, J., Trevino, A.R. (eds.) Advances in Robotics Automation and Control, pp. 301–315. InTech, Rijeka, Croatia (2008)Google Scholar
  32. 32.
    Chacón, E., Indriago, M.: Implementación de Supervisores en una Arquitectura de Referencia Basadas en Sistemas de Manufactura Holónicos. Rev. Iberoam. Automática e Informática Ind. RIAI 7(3), 72–82 (2010)CrossRefGoogle Scholar
  33. 33.
    Checa Rojas, D.A.: Formalización de un modelo de referencia para Integración empresarial desde el enfoque de los Sistemas Holónicos de Manufactura. Tesis de Maestría, Facultad de Ingeniería Electrónica y Telecomunicaciones, Universidad del Cauca (2014)Google Scholar
  34. 34.
    Devia Medina, J.J.: Automatización integrada de procesos de producción continua bajo arquitectura holarquica. Tesis de Maestría en Automatizacion e Instrumentacion, Facultad de Ingeniería, Universidad de los Andes, Mérida Venezuela (2004)Google Scholar
  35. 35.
    Jimenez, J.F., Bekrar, A., Zambrano-Rey, G., Trentesaux, D., Leitão, P.: Pollux: a dynamic hybrid control architecture for flexible job shop systems. Int. J. Prod. Res. 55(15), 4229–4247 (2017)CrossRefGoogle Scholar
  36. 36.
    Holvoet, T., Weyns, D., Valckenaers, P.: Patterns of delegate MAS. In: SASO 2009 – 3rd IEEE International Conference on Self-Adaptive and Self-Organizing Systems, pp. 1–9 (2009)Google Scholar
  37. 37.
    Raileanu, S., Parlea, M., Borangiu, T., Stocklosa, O.: A JADE environment for product driven automation of holonic manufacturing. In: Borangiu, T., Thomas, A., Trentesaux, D. (eds.) Service Orientation in Holonic and Multi-agent Manufacturing Control, pp. 265–277. Springer, Berlin (2012)CrossRefGoogle Scholar
  38. 38.
    Borangiu, T., Răileanu, S., Berger, T., Trentesaux, D.: Switching mode control strategy in manufacturing execution systems. Int. J. Prod. Res. 53(7), 1950–1963 (2015)CrossRefGoogle Scholar
  39. 39.
    Novas, J.M., Van Belle, J., Germain, B.S., Valckenaers, P.: A collaborative framework between a scheduling system and a holonic manufacturing execution system. In: Borangiu, T., Thomas, A., Trentesaux, D. (eds.) Service Orientation in Holonic and Multi agent Manufacturing and Robotics, pp. 3–17. Springer, Berlin (2013)CrossRefGoogle Scholar
  40. 40.
    Quintero Henao, L.F.: Un Modelo de control inteligente para sistemas de manufactura basado en los paradigmas Holónico y Multi-Agente. Tesis de Maestría en Ingeniería de Sistemas, Facultad de Minas Escuela de Sistemas, Universidad Nacional de Colombia (2009)Google Scholar
  41. 41.
    Burbano, D.A., López, J.D.: Definición de un método para la programación de la producción desde el paradigma de los sistemas holónicos de manufactura. Tesis de Pregrado, Universidad del Cauca, Popayán, Colombia (2015)Google Scholar
  42. 42.
    Rojas Alvarado, O.A.: Principios de un Modelo Dinámico para Integración de Empresas de Manufactura, Merida, p. 27 (2010)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Luis Alberto Cruz Salazar
    • 1
    Email author
  • Oscar Amaury Rojas Alvarado
    • 2
  • Edgar Chacón
    • 3
  1. 1.Institute of Automation and Information SystemsTechnical University of MunichMunichGermany
  2. 2.Departamento de Electrónica, Instrumentación y ControlUniversidad del CaucaPopayánColombia
  3. 3.Departamento de Computación, Escuela de SistemasUniversidad de Los AndesMéridaVenezuela

Personalised recommendations