Recent Advances in Computer Vision pp 401-424 | Cite as
Hyperspectral Image: Fundamentals and Advances
Abstract
Hyperspectral remote sensing has received considerable interest in recent years for a variety of industrial applications including urban mapping, precision agriculture, environmental monitoring, and military surveillance as well as computer vision applications. It can capture hyperspectral image (HSI) with a lager number of land-cover information. With the increasing industrial demand in using HSI, there is a must for more efficient and effective methods and data analysis techniques that can deal with the vast data volume of hyperspectral imagery. The main goal of this chapter is to provide the overview of fundamentals and advances in hyperspectral images. The hyperspectral image enhancement, denoising and restoration, classical classification techniques and the most recently popular classification algorithm are discussed with more details. Besides, the standard hyperspectral datasets used for the research purposes are covered in this chapter.
References
- 1.Thenkabail, P.S., Lyon, J.G.: Hyperspectral Remote Sensing of Vegetation. CRC Press (2016)Google Scholar
- 2.Manolakis, D., Shaw, G.: Detection algorithms for hyperspectral imaging applications. IEEE Signal Process. Mag. 19(1), 29–43 (2002)CrossRefGoogle Scholar
- 3.Pohl, C., van Genderen, J.: Remote Sensing Image Fusion: A Practical Guide. CRC Press (2016)Google Scholar
- 4.Deng, Y.J., Li, H.C., Pan, L., Shao, L.Y., Du, Q., Emery, W.J.: Modified tensor locality preserving projection for dimensionality reduction of hyperspectral images. IEEE Geosci. Remote Sens. Lett. (2018)Google Scholar
- 5.Du, Q., Fowler, J.E.: Low-complexity principal component analysis for hyperspectral image compression. Int. J. High Perform. Comput. Appl. 22(4), 438–448 (2008)CrossRefGoogle Scholar
- 6.Wang, J., Chang, C.I.: Independent component analysis-based dimensionality reduction with applications in hyperspectral image analysis. IEEE Trans. Geosci. Remote Sens. 44(6), 1586–1600 (2006)Google Scholar
- 7.Vakalopoulou, M., Platias, C., Papadomanolaki, M., Paragios, N., Karantzalos, K.: Simultaneous registration, segmentation and change detection from multisensor, multitemporal satellite image pairs. In: IEEE International Conference on Geoscience and Remote Sensing Symposium (IGARSS), pp. 1827–1830. IEEE (2016)Google Scholar
- 8.Ferraris, V., Dobigeon, N., Wei, Q., Chabert, M.: Detecting changes between optical images of different spatial and spectral resolutions: a fusion-based approach. IEEE Trans. Geosci. Remote Sens. 56(3), 1566–1578 (2018)CrossRefGoogle Scholar
- 9.ElMasry, G., Kamruzzaman, M., Sun, D.W., Allen, P.: Principles and applications of hyperspectral imaging in quality evaluation of agro-food products: a review. Crit. Rev. Food Sci. Nutr. 52(11), 999–1023 (2012)CrossRefGoogle Scholar
- 10.Lorente, D., Aleixos, N., Gómez-Sanchis, J., Cubero, S., García-Navarrete, O.L., Blasco, J.: Recent advances and applications of hyperspectral imaging for fruit and vegetable quality assessment. Food Bioprocess Technol. 5(4), 1121–1142 (2012)CrossRefGoogle Scholar
- 11.Xiong, Z., Sun, D.W., Zeng, X.A., Xie, A.: Recent developments of hyperspectral imaging systems and their applications in detecting quality attributes of red meats: a review. J. Food Eng. 132, 1–13 (2014)CrossRefGoogle Scholar
- 12.Kerekes, J.P., Schott, J.R.: Hyperspectral imaging systems. Hyperspectral Data Exploit. Theory Appl. 19–45 (2007)Google Scholar
- 13.Liang, H.: Advances in multispectral and hyperspectral imaging for archaeology and art conservation. Appl. Phys. A 106(2), 309–323 (2012)CrossRefGoogle Scholar
- 14.Fischer, C., Kakoulli, I.: Multispectral and hyperspectral imaging technologies in conservation: current research and potential applications. Stud. Conserv. 51, 3–16 (2006)CrossRefGoogle Scholar
- 15.Du, Q., Yang, H.: Similarity-based unsupervised band selection for hyperspectral image analysis. IEEE Geosci. Remote Sens. Lett. 5(4), 564–568 (2008)CrossRefGoogle Scholar
- 16.Chang, N.B., Vannah, B., Yang, Y.J.: Comparative sensor fusion between hyperspectral and multispectral satellite sensors for monitoring microcystin distribution in lake erie. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 7(6), 2426–2442 (2014)CrossRefGoogle Scholar
- 17.Bioucas-Dias, J.M., Plaza, A., Camps-Valls, G., Scheunders, P., Nasrabadi, N., Chanussot, J.: Hyperspectral remote sensing data analysis and future challenges. IEEE Geosci. Remote Sens. Mag. 1(2), 6–36 (2013)CrossRefGoogle Scholar
- 18.Plaza, A., Benediktsson, J.A., Boardman, J.W., Brazile, J., Bruzzone, L., Camps-Valls, G., Chanussot, J., Fauvel, M., Gamba, P., Gualtieri, A.: Recent advances in techniques for hyperspectral image processing. Remote Sens. Environ. 113, S110–S122 (2009)CrossRefGoogle Scholar
- 19.Bhabatosh, C., et al.: Digital Image Processing and Analysis. PHI Learning Pvt, Ltd (2011)Google Scholar
- 20.Bankman, I.: Handbook of Medical Image Processing and Analysis. Elsevier (2008)Google Scholar
- 21.Bendoumi, M.A., He, M., Mei, S.: Hyperspectral image resolution enhancement using high-resolution multispectral image based on spectral unmixing. IEEE Trans. Geosci. Remote Sens. 52(10), 6574–6583 (2014)CrossRefGoogle Scholar
- 22.Akgun, T., Altunbasak, Y., Mersereau, R.M.: Super-resolution reconstruction of hyperspectral images. IEEE Trans. Image Process. 14(11), 1860–1875 (2005)CrossRefGoogle Scholar
- 23.Amro, I., Mateos, J., Vega, M., Molina, R., Katsaggelos, A.K.: A survey of classical methods and new trends in pansharpening of multispectral images. EURASIP J. Adv. Signal Process. 2011(1), 79 (2011)CrossRefGoogle Scholar
- 24.Eismann, M.T., Hardie, R.C.: Hyperspectral resolution enhancement using high-resolution multispectral imagery with arbitrary response functions. IEEE Trans. Geosci. Remote Sens. 43(3), 455–465 (2005)CrossRefGoogle Scholar
- 25.Yokoya, N., Grohnfeldt, C., Chanussot, J.: Hyperspectral and multispectral data fusion: a comparative review of the recent literature. IEEE Geosci. Remote Sens. Mag. 5(2), 29–56 (2017)CrossRefGoogle Scholar
- 26.Ghasrodashti, E.K., Karami, A., Heylen, R., Scheunders, P.: Spatial resolution enhancement of hyperspectral images using spectral unmixing and Bayesian sparse representation. Remote Sens. 9(6), 541 (2017)CrossRefGoogle Scholar
- 27.Sun, X., Zhang, L., Yang, H., Wu, T., Cen, Y., Guo, Y.: Enhancement of spectral resolution for remotely sensed multispectral image. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 8(5), 2198–2211 (2015)CrossRefGoogle Scholar
- 28.Zhang, Y.: Spatial resolution enhancement of hyperspectral image based on the combination of spectral mixing model and observation model. In: Image and Signal Processing for Remote Sensing XX, vol. 9244, p. 924405. International Society for Optics and Photonics (2014)Google Scholar
- 29.Vivone, G., Alparone, L., Chanussot, J., Dalla Mura, M., Garzelli, A., Licciardi, G.A., Restaino, R., Wald, L.: A critical comparison among pansharpening algorithms. IEEE Trans. Geosci. Remote Sens. 53(5), 2565–2586 (2015)CrossRefGoogle Scholar
- 30.Loncan, L., de Almeida, L.B., Bioucas-Dias, J.M., Briottet, X., Chanussot, J., Dobigeon, N., Fabre, S., Liao, W., Licciardi, G.A., Simoes, M.: Hyperspectral pansharpening: a review. IEEE Geosci. Remote Sens. Mag. 3(3), 27–46 (2015)CrossRefGoogle Scholar
- 31.Amolins, K., Zhang, Y., Dare, P.: Wavelet based image fusion techniques: an introduction, review and comparison. ISPRS J. Photogramm. Remote Sens. 62(4), 249–263 (2007)CrossRefGoogle Scholar
- 32.Fechner, T., Godlewski, G.: Optimal fusion of TV and infrared images using artificial neural networks. In: Applications and Science of Artificial Neural Networks, vol. 2492, pp. 919–926. International Society for Optics and Photonics (1995)Google Scholar
- 33.Gross, H.N., Schott, J.R.: Application of spectral mixture analysis and image fusion techniques for image sharpening. Remote Sens. Environ. 63(2), 85–94 (1998)CrossRefGoogle Scholar
- 34.Khan, M.M., Chanussot, J., Alparone, L.: Pansharpening of hyperspectral images using spatial distortion optimization. In: 16th IEEE International Conference on Image Processing (ICIP), pp. 2853–2856. IEEE (2009)Google Scholar
- 35.Mianji, F.A., Zhang, Y., Gu, Y., Babakhani, A.: Spatial-spectral data fusion for resolution enhancement of hyperspectral imagery. In: IEEE International Conference on Geoscience and Remote Sensing Symposium (IGARSS), vol. 3, pp. III–1011. IEEE (2009)Google Scholar
- 36.Peng, H., Rao, R.: Hyperspectral image enhancement with vector bilateral filtering. In: 16th IEEE International Conference on Image Processing (ICIP), pp. 3713–3716. IEEE (2009)Google Scholar
- 37.Karoui, M.S., Deville, Y., Benhalouche, F.Z., Boukerch, I.: Hypersharpening by joint-criterion nonnegative matrix factorization. IEEE Trans. Geosci. Remote Sens. 55(3), 1660–1670 (2017)CrossRefGoogle Scholar
- 38.Qu, J., Li, Y., Dong, W.: Guided filter and principal component analysis hybrid method for hyperspectral pansharpening. J. Appl. Remote Sens. 12(1), 015003 (2018)CrossRefGoogle Scholar
- 39.Vivone, G., Restaino, R., Chanussot, J.: A regression-based high-pass modulation pansharpening approach. IEEE Trans. Geosci. Remote Sens. 56(2), 984–996 (2018)zbMATHCrossRefGoogle Scholar
- 40.Wang, M., Zhang, K., Pan, X., Yang, S.: Sparse tensor neighbor embedding based pan-sharpening via N-way block pursuit. Knowl.-Based Syst. 149, 18–33 (2018)CrossRefGoogle Scholar
- 41.Yuan, Q., Wei, Y., Meng, X., Shen, H., Zhang, L.: A multiscale and multidepth convolutional neural network for remote sensing imagery pan-sharpening. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 11(3), 978–989 (2018)CrossRefGoogle Scholar
- 42.Yang, J., Zhao, Y.Q., Chan, J.C.W.: Hyperspectral and multispectral image fusion via deep two-branches convolutional neural network. Remote Sens. 10(5), 800 (2018)CrossRefGoogle Scholar
- 43.Xing, Y., Wang, M., Yang, S., Jiao, L.: Pan-sharpening via deep metric learning. ISPRS J. Photogramm. Remote Sens. (2018)Google Scholar
- 44.Chen, G., Qian, S.E.: Denoising of hyperspectral imagery using principal component analysis and wavelet shrinkage. IEEE Trans. Geosci. Remote Sens. 49(3), 973–980 (2011)CrossRefGoogle Scholar
- 45.Rasti, B., Sveinsson, J.R., Ulfarsson, M.O.: Wavelet-based sparse reduced-rank regression for hyperspectral image restoration. IEEE Trans. Geosci. Remote Sens. 52(10), 6688–6698 (2014)CrossRefGoogle Scholar
- 46.Zelinski, A., Goyal, V.: Denoising hyperspectral imagery and recovering junk bands using wavelets and sparse approximation. In: IEEE International Conference on Geoscience and Remote Sensing Symposium, pp. 387–390. IEEE (2006)Google Scholar
- 47.Yuan, Q., Zhang, L., Shen, H.: Hyperspectral image denoising employing a spectral–spatial adaptive total variation model. IEEE Trans. Geosc. Remote Sens. 50(10), 3660–3677 (2012)CrossRefGoogle Scholar
- 48.Santhosh, S., Abinaya, N., Rashmi, G., Sowmya, V., Soman, K.: A novel approach for denoising coloured remote sensing image using Legendre Fenchel transformation. In: International Conference on Recent Trends in Information Technology (ICRTIT), pp. 1–6. IEEE (2014)Google Scholar
- 49.Reshma, R., Sowmya, V., Soman, K.: Effect of Legendre-Fenchel denoising and SVD-based dimensionality reduction algorithm on hyperspectral image classification. Neural Comput. Appl. 29(8), 301–310 (2018)CrossRefGoogle Scholar
- 50.Srivatsa, S., Ajay, A., Chandni, C., Sowmya, V., Soman, K.: Application of least square denoising to improve ADMM based hyperspectral image classification. Procedia Comput. Sci. 93, 416–423 (2016)CrossRefGoogle Scholar
- 51.Zhong, P., Wang, R.: Multiple-spectral-band CRFs for denoising junk bands of hyperspectral imagery. IEEE Trans. Geosci. Remote Sens. 51(4), 2260–2275 (2013)CrossRefGoogle Scholar
- 52.Li, Q., Li, H., Lu, Z., Lu, Q., Li, W.: Denoising of hyperspectral images employing two-phase matrix decomposition. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 7(9), 3742–3754 (2014)CrossRefGoogle Scholar
- 53.He, W., Zhang, H., Zhang, L., Shen, H.: Total-variation-regularized low-rank matrix factorization for hyperspectral image restoration. IEEE Trans. Geosci. Remote Sens. 54(1), 178–188 (2016)CrossRefGoogle Scholar
- 54.Ma, J., Li, C., Ma, Y., Wang, Z.: Hyperspectral image denoising based on low-rank representation and superpixel segmentation. In: IEEE International Conference on Image Processing (ICIP), pp. 3086–3090. IEEE (2016)Google Scholar
- 55.Bai, X., Xu, F., Zhou, L., Xing, Y., Bai, L., Zhou, J.: Nonlocal similarity based nonnegative tucker decomposition for hyperspectral image denoising. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 11(3), 701–712 (2018)CrossRefGoogle Scholar
- 56.Zhuang, L., Bioucas-Dias, J.M.: Fast hyperspectral image denoising and inpainting based on low-rank and sparse representations. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 11(3), 730–742 (2018)CrossRefGoogle Scholar
- 57.Camps-Valls, G., Bruzzone, L.: Kernel Methods for Remote Sensing Data Analysis. Wiley Online Library (2009)Google Scholar
- 58.Ang, J.C., Mirzal, A., Haron, H., Hamed, H.: Supervised, unsupervised and semi-supervised feature selection: A review on gene selection. IEEE/ACM Trans. Comput. Biol. Bioinform. 13(5), 971–989 (2016)CrossRefGoogle Scholar
- 59.Li, J., Bioucas-Dias, J.M., Plaza, A.: Semisupervised hyperspectral image classification using soft sparse multinomial logistic regression. IEEE Geosci. Remote Sens. Lett. 10(2), 318–322 (2013)CrossRefGoogle Scholar
- 60.Foody, G.M., Mathur, A.: A relative evaluation of multiclass image classification by support vector machines. IEEE Trans. Geosci. Remote Sens. 42(6), 1335–1343 (2004)CrossRefGoogle Scholar
- 61.Ghamisi, P., Yokoya, N., Li, J., Liao, W., Liu, S., Plaza, J., Rasti, B., Plaza, A.: Advances in hyperspectral image and signal processing: a comprehensive overview of the state of the art. IEEE Geosci. Remote Sens. Mag. 5(4), 37–78 (2017)CrossRefGoogle Scholar
- 62.Wang, M., Wan, Y., Ye, Z., Lai, X.: Remote sensing image classification based on the optimal support vector machine and modified binary coded ant colony optimization algorithm. Inf. Sci. 402, 50–68 (2017)CrossRefGoogle Scholar
- 63.Chen, Y., Nasrabadi, N.M., Tran, T.D.: Sparse representation for target detection in hyperspectral imagery. IEEE J. Sel. Top. Signal Process. 5(3), 629–640 (2011)CrossRefGoogle Scholar
- 64.Camps-Valls, G., Bruzzone, L.: Kernel-based methods for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 43(6), 1351–1362 (2005)CrossRefGoogle Scholar
- 65.Li, J., Bioucas-Dias, Jose, M., Plaza, A.: Semisupervised hyperspectral image segmentation using multinomial logistic regression with active learning. IEEE Trans. Geosci. Remote Sens. 48(11), 4085–4098 (2010)Google Scholar
- 66.Cai, T.T., Wang, L.: Orthogonal matching pursuit for sparse signal recovery with noise. IEEE Trans. Inf. Theory 57(7), 4680–4688 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
- 67.Davenport, M.A., Wakin, M.B.: Analysis of orthogonal matching pursuit using the restricted isometry property. IEEE Trans. Inf. Theory 56(9), 4395–4401 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
- 68.Tropp, J.A., Gilbert, A.C.: Signal recovery from random measurements via orthogonal matching pursuit. IEEE Trans. Inf. Theory 53(12), 4655–4666 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
- 69.Chen, Y., Nasrabadi, N.M., Tran, T.D.: Hyperspectral image classification using dictionary-based sparse representation. IEEE Trans. Geosci. Remote Sens. 49(10), 3973–3985 (2011)CrossRefGoogle Scholar
- 70.Nikhila, H., Sowmya, V., Soman, K.: Gurls vs libsvm: performance comparison of kernel methods for hyperspectral image classification. Indian J. Sci. Technol. 8(24), 1–10 (2015)Google Scholar
- 71.Tacchetti, A., Mallapragada, P.S., Santoro, M., Rosasco, L.: GURLS: A Toolbox for Regularized Least Squares Learning (2012)Google Scholar
- 72.Soman, K., Loganathan, R., Ajay, V.: Machine Learning with SVM and Other Kernel Methods. PHI Learning Pvt. Ltd. (2009)Google Scholar
- 73.Soman, K., Diwakar, S., Ajay, V.: Data Mining: Theory and Practice. PHI Learning Pvt. Ltd. (2006)Google Scholar
- 74.Gualtieri, J., Chettri, S.R., Cromp, R., Johnson, L.: Support vector machine classifiers as applied to AVIRIS data. In: Proceedings of Eighth JPL Airborne Geoscience Workshop (1999)Google Scholar
- 75.Steinwart, I., Christmann, A.: Support Vector Machines. Springer Science & Business Media (2008)Google Scholar
- 76.Hsu, C.W., Lin, C.J.: A comparison of methods for multiclass support vector machines. IEEE Trans. Neural Netw. 13(2), 415–425 (2002)CrossRefGoogle Scholar
- 77.Chang, C.C., Lin, C.J.: LIBSVM: A library for support vector machines. ACM Trans. Intell. Syst. Technol. (TIST) 2(3), 27 (2011)CrossRefGoogle Scholar
- 78.Slavkovikj, V., Verstockt, S., De Neve, W., Van Hoecke, S., van de Walle, R.: Hyperspectral image classification with convolutional neural networks. The 23rd ACM International Conference on Multimedia, pp. 1159–1162 (2015)Google Scholar
- 79.Ham, J., Chen, Y., Crawford, M.M., Ghosh, J.: Investigation of the random forest framework for classification of hyperspectral data. IEEE Trans. Geosci. Remote Sens. 43(3), 492–501 (2005)CrossRefGoogle Scholar
- 80.Rajan, S., Ghosh, J., Crawford, M.M.: Exploiting class hierarchies for knowledge transfer in hyperspectral data. IEEE Trans. Geosci. Remote Sens. 44(11), 3408–3417 (2006)CrossRefGoogle Scholar
- 81.Jun, G., Ghosh, J.: Spatially adaptive semi-supervised learning with Gaussian processes for hyperspectral data analysis. Stat. Anal. Data Min. 4(4), 358–371 (2011)MathSciNetCrossRefGoogle Scholar
- 82.Dópido, I., Li, J., Marpu, P.R., Plaza, A., Bioucas Dias, J.M., Benediktsson, J.A.: Semisupervised self-learning for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 51(7), 4032–4044 (2013)CrossRefGoogle Scholar
- 83.Fauvel, M., Benediktsson, J.A., Chanussot, J., Sveinsson, J.R.: Spectral and spatial classification of hyperspectral data using svms and morphological profiles. IEEE Trans. Geosci. Remote Sens. 46(11), 3804–3814 (2008)CrossRefGoogle Scholar
- 84.Li, J., Bioucas-Dias, J.M., Plaza, A.: Semisupervised hyperspectral image segmentation using multinomial logistic regression with active learning. IEEE Trans. Geosci. Remote Sens. 48(11), 4085–4098 (2010)Google Scholar