Advertisement

Implications of Placebos and Nocebos in Clinical Research

  • Luana CollocaEmail author
  • Nathaniel Haycock
Chapter
Part of the Headache book series (HEAD)

Abstract

While studies on physiological bases of placebo and nocebo effects have contributed to elucidating their underlying mechanisms, little progress has been made in translating placebo and nocebo knowledge into improved clinical research. Here, we discuss the importance of considering specific mechanisms of placebo and nocebo effects to improve clinical research and outcomes. In order to apply this knowledge to clinical research, it must be coupled with a person-level assessment of patients’ expectations, understanding of genetic variations among patients, and consideration of both framing effects and treatment history. We suggest some elements for how, when, and why to apply knowledge of placebo and nocebo effects to clinical research.

Keywords

Expectations Clinical trial designs Placebo responders Placebo nonresponders Phenotypes Framing effects 

Notes

Acknowledgments

Work reported here was supported by grants of the National Institute of Dental and Craniofacial Research (R01DE025946 to LC) of the National Institutes of Health. This work was supported also by the MPowering the State, a grant from the State of Maryland (LC). The content is solely the responsibility of the authors and does not necessarily represent the official views of the funding agencies. The authors report no conflict of interest. The funding sources had no role in study design; the collection, analysis, and interpretation of data; the writing of the report; or the decision to submit the chapter for publication.

References

  1. 1.
    Amanzio M, Benedetti F. Neuropharmacological dissection of placebo analgesia: expectation-activated opioid systems versus conditioning-activated specific subsystems. J Neurosci. 1999;19(1):484–94.PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Andre-Obadia N, Magnin M, Garcia-Larrea L. On the importance of placebo timing in rTMS studies for pain relief. Pain. 2011;152(6):1233–7.PubMedCrossRefGoogle Scholar
  3. 3.
    Apkarian AV, Bushnell MC, Treede R-D, Zubieta J-K. Human brain mechanisms of pain perception and regulation in health and disease. Eur J Pain. 2005;9(4):463.PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Arias AJ, Gelernter J, Gueorguieva R, Ralevski E, Petrakis IL. Pharmacogenetics of naltrexone and disulfiram in alcohol dependent, dually diagnosed veterans. Am J Addict. 2014;23(3):288–93.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Atlas LY, Wager TD. A meta-analysis of brain mechanisms of placebo analgesia: consistent findings and unanswered questions. In: Benedetti F, Enck P, Frisaldi E, Schedlowski M, editors. Placebo. Berlin: Springer; 2014. p. 37–69.Google Scholar
  6. 6.
    Atlas LY, Whittington RA, Lindquist MA, Wielgosz J, Sonty N, Wager TD. Dissociable influences of opiates and expectations on pain. J Neurosci. 2012;32(23):8053–64.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Auer CJ, Glombiewski JA, Doering BK, Winkler A, Laferton JA, Broadbent E, Rief W. Patients’ expectations predict surgery outcomes: a meta-analysis. Int J Behav Med. 2016;23(1):49–62.PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Barefoot JC, Brummett BH, Williams RB, Siegler IC, Helms MJ, Boyle SH, Clapp-Channing NE, Mark DB. Recovery expectations and long-term prognosis of patients with coronary heart disease. Arch Intern Med. 2011;171(10):929–35.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Benedetti F. Mechanisms of placebo and placebo-related effects across diseases and treatments. Annu Rev Pharmacol Toxicol. 2008;48:33–60.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Benedetti F, Amanzio M, Maggi G. Potentiation of placebo analgesia by proglumide. Lancet. 1995;346(8984):1231.PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Benedetti F, Amanzio M, Rosato R, Blanchard C. Nonopioid placebo analgesia is mediated by CB1 cannabinoid receptors. Nat Med. 2011;17(10):1228–30.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Benedetti F, Amanzio M, Vighetti S, Asteggiano G. The biochemical and neuroendocrine bases of the hyperalgesic nocebo effect. J Neurosci. 2006;26(46):12014–22.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Benedetti F, Arduino C, Costa S, Vighetti S, Tarenzi L, Rainero I, Asteggiano G. Loss of expectation-related mechanisms in Alzheimer’s disease makes analgesic therapies less effective. Pain. 2006;121(1–2):133–44.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Bingel U, Wanigasekera V, Wiech K, Ni Mhuircheartaigh R, Lee MC, Ploner M, Tracey I. The effect of treatment expectation on drug efficacy: imaging the analgesic benefit of the opioid remifentanil. Sci Transl Med. 2011;3(70):70ra14.PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Blasini M, Corsi N, Klinger R, Colloca L. Nocebo and pain: an overview of the psychoneurobiological mechanisms. Pain Rep. 2017;2(2):e585.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Buchter RB, Fechtelpeter D, Knelangen M, Ehrlich M, Waltering A. Words or numbers? Communicating risk of adverse effects in written consumer health information: a systematic review and meta-analysis. BMC Med Inform Decis Mak. 2014;14:76.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Colagiuri B. Participant expectancies in double-blind randomized placebo-controlled trials: potential limitations to trial validity. Clin Trials. 2010;7:246–55.PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Colagiuri B, Schenk LA, Kessler MD, Dorsey SG, Colloca L. The placebo effect: from concepts to genes. Neuroscience. 2015;307:171–90.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Colloca L. Nocebo effects can make you feel pain. Science. 2017;358(6359):44.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Colloca L. Tell me the truth and I will not be harmed: informed consents and Nocebo effects. Am J Bioeth. 2017;17(6):46–8.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Colloca L. Treatment of pediatric migraine. N Engl J Med. 2017;376(14):1387–8.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Colloca L, Benedetti F. How prior experience shapes placebo analgesia. Pain. 2006;124(1–2):126–33.PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Colloca L, Benedetti F, Porro CA. Experimental designs and brain mapping approaches for studying the placebo analgesic effect. Eur J Appl Physiol. 2008;102(4):371–80.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Colloca L, Finniss D. Nocebo effects, patient-clinician communication, and therapeutic outcomes. JAMA. 2012;307(6):567–8.PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Colloca L, Lopiano L, Lanotte M, Benedetti F. Overt versus covert treatment for pain, anxiety, and Parkinson’s disease. Lancet Neurol. 2004;3(11):679–84.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Colloca L, Petrovic P, Wager TD, Ingvar M, Benedetti F. How the number of learning trials affects placebo and nocebo responses. Pain. 2010;151(2):430–9.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Colloca L, Pine DS, Ernst M, Miller FG, Grillon C. Vasopressin boosts placebo analgesic effects in women: a randomized trial. Biol Psychiatry. 2016;79(10):794–802.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Covey J. The role of dispositional factors in moderating message framing effects. Health Psychol. 2014;33(1):52–65.PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Devilly GJ, Borkovec TD. Psychometric properties of the credibility/expectancy questionnaire. J Behav Ther Exp Psychiatry. 2000;31(2):73–86.PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Edwards A, Elwyn G, Covey J, Matthews E, Pill R. Presenting risk information—a review of the effects of “framing” and other manipulations on patient outcomes. J Health Commun. 2001;6(1):61–82.PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Egorova N, Yu R, Kaur N, Vangel M, Gollub RL, Dougherty DD, Kong J, Camprodon JA. Neuromodulation of conditioned placebo/nocebo in heat pain: anodal vs cathodal transcranial direct current stimulation to the right dorsolateral prefrontal cortex. Pain. 2015;156(7):1342–7.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Eippert F, Bingel U, Schoell ED, Yacubian J, Klinger R, Lorenz J, Buchel C. Activation of the opioidergic descending pain control system underlies placebo analgesia. Neuron. 2009;63(4):533–43.PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Faria V, Appel L, Ahs F, Linnman C, Pissiota A, Frans O, Bani M, Bettica P, Pich EM, Jacobsson E, Wahlstedt K, Fredrikson M, Furmark T. Amygdala subregions tied to SSRI and placebo response in patients with social anxiety disorder. Neuropsychopharmacology. 2012;37(10):2222–32.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Fava M, Evins AE, Dorer DJ, Schoenfeld DA. The problem of the placebo response in clinical trials for psychiatric disorders: culprits, possible remedies, and a novel study design approach. Psychother Psychosom. 2003;72(3):115–27.PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Feng C, Hackett PD, DeMarco AC, Chen X, Stair S, Haroon E, Ditzen B, Pagnoni G, Rilling JK. Oxytocin and vasopressin effects on the neural response to social cooperation are modulated by sex in humans. Brain Imaging Behav. 2015;9(4):754–64.PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Furmark T, Appel L, Henningsson S, Ahs F, Faria V, Linnman C, Pissiota A, Frans O, Bani M, Bettica P, Pich EM, Jacobsson E, Wahlstedt K, Oreland L, Langstrom B, Eriksson E, Fredrikson M. A link between serotonin-related gene polymorphisms, amygdala activity, and placebo-induced relief from social anxiety. J Neurosci Off J Soc Neurosci. 2008;28(49):13066–74.CrossRefGoogle Scholar
  37. 37.
    Gramling R, Epstein R. Optimism amid serious disease: clinical panacea or ethical conundrum?: comment on “Recovery expectations and long-term prognosis of patients with coronary heart disease”. Arch Intern Med. 2011;171(10):935–6.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Gupta A, Thompson D, Whitehouse A, Collier T, Dahlof B, Poulter N, Collins R, Sever P, Investigators A. Adverse events associated with unblinded, but not with blinded, statin therapy in the Anglo-Scandinavian cardiac outcomes trial-lipid-lowering arm (ASCOT-LLA): a randomised double-blind placebo-controlled trial and its non-randomised non-blind extension phase. Lancet. 2017;389(10088):2473–81.PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Hall KT, Lembo AJ, Kirsch I, Ziogas DC, Douaiher J, Jensen KB, Conboy LA, Kelley JM, Kokkotou E, Kaptchuk TJ. Catechol-O-Methyltransferase val158met polymorphism predicts placebo effect in irritable bowel syndrome. PLoS One. 2012;7(10):e48135.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Hall KT, Loscalzo J, Kaptchuk TJ. Genetics and the placebo effect: the placebome. Trends Mol Med. 2015;21(5):285–94.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Jarcho JM, Feier NA, Labus JS, Naliboff B, Smith SR, Hong JY, Colloca L, Tillisch K, Mandelkern MA, Mayer EA, London ED. Placebo analgesia: self-report measures and preliminary evidence of cortical dopamine release associated with placebo response. Neuroimage Clin. 2016;10:107–14.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Keltner JR, Furst A, Fan C, Redfern R, Inglis B, Fields HL. Isolating the modulatory effect of expectation on pain transmission: a functional magnetic resonance imaging study. J Neurosci. 2006;26(16):4437–43.PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Kessner S, Sprenger C, Wrobel N, Wiech K, Bingel U. Effect of oxytocin on placebo analgesia: a randomized study. JAMA. 2013;310(16):1733–5.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Kessner S, Wiech K, Forkmann K, Ploner M, Bingel U. The effect of treatment history on therapeutic outcome: an experimental approach. JAMA Intern Med. 2013;173(15):1468–9.PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Klinger R, Blasini M, Schmitz J, Colloca L. Nocebo effects in clinical studies: hints for pain therapy. Pain Rep. 2017;2(2):586.CrossRefGoogle Scholar
  46. 46.
    Kong J, Gollub RL, Rosman IS, Webb JM, Vangel MG, Kirsch I, Kaptchuk TJ. Brain activity associated with expectancy-enhanced placebo analgesia as measured by functional magnetic resonance imaging. J Neurosci. 2006;26(2):381–8.PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Kong J, Kaptchuk TJ, Polich G, Kirsch I, Vangel M, Zyloney C, Rosen B, Gollub RL. An fMRI study on the interaction and dissociation between expectation of pain relief and acupuncture treatment. NeuroImage. 2009;47(3):1066–76.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Krummenacher P, Candia V, Folkers G, Schedlowski M, Schonbachler G. Prefrontal cortex modulates placebo analgesia. Pain. 2010;148(3):368–74.PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Leuchter AF, McCracken JT, Hunter AM, Cook IA, Alpert JE. Monoamine oxidase a and catechol-o-methyltransferase functional polymorphisms and the placebo response in major depressive disorder. J Clin Psychopharmacol. 2009;29(4):372–7.PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Levine JD, Gordon NC, Fields HL. The mechanism of placebo analgesia. Lancet. 1978;2(8091):654–7.PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Linde K, Witt CM, Streng A, Weidenhammer W, Wagenpfeil S, Brinkhaus B, Willich SN, Melchart D. The impact of patient expectations on outcomes in four randomized controlled trials of acupuncture in patients with chronic pain. Pain. 2007;128(3):264–71.PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Lui F, Colloca L, Duzzi D, Anchisi D, Benedetti F, Porro CA. Neural bases of conditioned placebo analgesia. Pain. 2010;151(3):816–24.PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Mahomed NN, Liang MH, Cook EF, Daltroy LH, Fortin PR, Fossel AH, Katz JN. The importance of patient expectations in predicting functional outcomes after total joint arthroplasty. J Rheumatol. 2002;29(6):1273–9.PubMedPubMedCentralGoogle Scholar
  54. 54.
    Miller EK, Cohen JD. An integrative theory of prefrontal cortex function. Annu Rev Neurosci. 2001;24(1):167–202.PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Myers MG, Cairns JA, Singer J. The consent form as a possible cause of side effects. Clin Pharmacol Ther. 1987;42(3):250–3.PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Ochsner KN, Gross JJ. The cognitive control of emotion. Trends Cogn Sci. 2005;9(5):242–9.PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Pecina M, Azhar H, Love TM, Lu T, Fredrickson BL, Stohler CS, Zubieta JK. Personality trait predictors of placebo analgesia and neurobiological correlates. Neuropsychopharmacology. 2013;38(4):639–46.PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Pecina M, Love T, Stohler CS, Goldman D, Zubieta JK. Effects of the mu opioid receptor polymorphism (OPRM1 A118G) on pain regulation, placebo effects and associated personality trait measures. Neuropsychopharmacology. 2015;40(4):957–65.PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Pecina M, Martinez-Jauand M, Hodgkinson C, Stohler CS, Goldman D, Zubieta JK. FAAH selectively influences placebo effects. Mol Psychiatry. 2014;19(3):385–91.PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Peciña M, Martínez-Jauand M, Love T, Heffernan J, Montoya P, Hodgkinson C, Stohler CS, Goldman D, Zubieta J-K. Valence-specific effects of BDNF Val66Met polymorphism on dopaminergic stress and reward processing in humans. J Neurosci. 2014;34(17):5874–81.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Pecina M, Stohler CS, Zubieta JK. Role of mu-opioid system in the formation of memory of placebo responses. Mol Psychiatry. 2013;18(2):135–7.PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Petersen GL, Finnerup NB, Grosen K, Pilegaard HK, Tracey I, Benedetti F, Price DD, Jensen TS, Vase L. Expectations and positive emotional feelings accompany reductions in ongoing and evoked neuropathic pain following placebo interventions. Pain. 2014;155(12):2687–98.PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Petrides M. The role of the mid-dorsolateral prefrontal cortex in working memory. In: Schneider WX, Owen AM, Duncan J, editors. Executive control and the frontal lobe: current issues. Berlin: Springer; 2000. p. 44–54.CrossRefGoogle Scholar
  64. 64.
    Peyron R, Laurent B, Garcia-Larrea L. Functional imaging of brain responses to pain. A review and meta-analysis (2000). Neurophysiol Clin. 2000;30(5):263–88.PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Price DD, Barrell JJ. Mechanisms of analgesia produced by hypnosis and placebo suggestions. Prog Brain Res. 2000;122:255–71.PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Price DD, Craggs J, Nicholas Verne G, Perlstein WM, Robinson ME. Placebo analgesia is accompanied by large reductions in pain-related brain activity in irritable bowel syndrome patients. Pain. 2007;127(1–2):63–72.PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Rief W, Avorn J, Barsky AJ. Medication-attributed adverse effects in placebo groups: implications for assessment of adverse effects. Arch Intern Med. 2006;166(2):155–60.PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Rilling JK, Demarco AC, Hackett PD, Chen X, Gautam P, Stair S, Haroon E, Thompson R, Ditzen B, Patel R, Pagnoni G. Sex differences in the neural and behavioral response to intranasal oxytocin and vasopressin during human social interaction. Psychoneuroendocrinology. 2014;39:237–48.PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Schenk LA, Sprenger C, Geuter S, Büchel C. Expectation requires treatment to boost pain relief: an fMRI study. Pain. 2014;155(1):150–7.PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Scott DJ, Stohler CS, Egnatuk CM, Wang H, Koeppe RA, Zubieta JK. Placebo and nocebo effects are defined by opposite opioid and dopaminergic responses. Arch Gen Psychiatry. 2008;65(2):220–31.PubMedCrossRefGoogle Scholar
  71. 71.
    Skyt I, Moslemi K, Baastrup C, Grosen K, Benedetti F, Petersen GL, Price DD, Hall KT, Kaptchuk TJ, Svensson P, Jensen TS, Vase L. Dopaminergic tone does not influence pain levels during placebo interventions in patients with chronic neuropathic pain. Pain. 2018;159(2):261–72.PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Thompson R, Gupta S, Miller K, Mills S, Orr S. The effects of vasopressin on human facial responses related to social communication. Psychoneuroendocrinology. 2004;29(1):35–48.PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Thompson RR, George K, Walton JC, Orr SP, Benson J. Sex-specific influences of vasopressin on human social communication. Proc Natl Acad Sci U S A. 2006;103(20):7889–94.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    van den Akker-Scheek I, Stevens M, Groothoff JW, Bulstra SK, Zijlstra W. Preoperative or postoperative self-efficacy: which is a better predictor of outcome after total hip or knee arthroplasty? Patient Educ Couns. 2007;66(1):92–9.PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Vase L, Robinson ME, Verne GN, Price DD. The contributions of suggestion, desire, and expectation to placebo effects in irritable bowel syndrome patients. An empirical investigation. Pain. 2003;105(1–2):17–25.PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Volkow ND, Wang G-J, Ma Y, Fowler JS, Wong C, Jayne M, Telang F, Swanson JM. Effects of expectation on the brain metabolic responses to methylphenidate and to its placebo in non-drug abusing subjects. NeuroImage. 2006;32(4):1782–92.PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Volkow ND, Wang GJ, Ma Y, Fowler JS, Zhu W, Maynard L, Telang F, Vaska P, Ding YS, Wong C, Swanson JM. Expectation enhances the regional brain metabolic and the reinforcing effects of stimulants in cocaine abusers. J Neurosci. 2003;23(36):11461–8.PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Wager TD, Rilling JK, Smith EE, Sokolik A, Casey KL, Davidson RJ, Kosslyn SM, Rose RM, Cohen JD. Placebo-induced changes in FMRI in the anticipation and experience of pain. Science. 2004;303(5661):1162–7.PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Wager TD, Scott DJ, Zubieta J-K. Placebo effects on human μ-opioid activity during pain. PNAS. 2007;104(26):11056–61.PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Watson A, El-Deredy W, Iannetti GD, Lloyd D, Tracey I, Vogt BA, Nadeau V, Jones AKP. Placebo conditioning and placebo analgesia modulate a common brain network during pain anticipation and perception. Pain. 2009;145(1–2):24–30.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Yu R, Gollub RL, Vangel M, Kaptchuk T, Smoller JW, Kong J. Placebo analgesia and reward processing: integrating genetics, personality, and intrinsic brain activity. Hum Brain Mapp. 2014;35(9):4583–93.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Zubieta J-K, Bueller JA, Jackson LR, Scott DJ, Xu Y, Koeppe RA, Nichols TE, Stohler CS. Placebo effects mediated by endogenous opioid activity on μ-opioid receptors. J Neurosci. 2005;25(34):7754–62.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Pain and Translational Symptom ScienceUniversity of Maryland School of NursingBaltimoreUSA
  2. 2.Departments of Anesthesiology and PsychiatryUniversity of Maryland School of MedicineBaltimoreUSA
  3. 3.Center to Advance Chronic Pain ResearchUniversity of MarylandBaltimoreUSA
  4. 4.Program in NeuroscienceUniversity of Maryland School of MedicineBaltimoreUSA

Personalised recommendations