Advertisement

Introduction

  • Zipeng Li
  • Krishnendu Chakrabarty
  • Tsung-Yi Ho
  • Chen-Yi Lee
Chapter

Abstract

The digital microfluidic biochip has become a promising platform for various biomedical and biochemistry applications because of its specific advantages. However, conventional digital microfluidic biochips are still with several drawbacks. In order to overcome those drawbacks, a new digital microfluidic-based architecture, referred as micro-electrode-dot-array (MEDA), has been proposed and experimentally validated. This chapter introduces basic working principles and applications of digital microfluidics, details of MEDA technology, and motivation for developing design automation and test techniques for MEDA biochips.

References

  1. 1.
    Schulte, T. H., Bardell, R. L., & Weigl, B. H. (2002). Microfluidic technologies in clinical diagnostics. Clinica Chimica Acta, 321(1), 1–10.CrossRefGoogle Scholar
  2. 2.
    Guiseppi-Elie, A., Brahim, S., Slaughter, G., & Ward, K. R. (2005). Design of a subcutaneous implantable biochip for monitoring of glucose and lactate. IEEE Sensors Journal, 5(3), 345–355.CrossRefGoogle Scholar
  3. 3.
    Fair, R. B. (2007). Digital microfluidics: Is a true lab-on-a-chip possible? Microfluidics and Nanofluidics, 3(3), 245–281.CrossRefGoogle Scholar
  4. 4.
    Samiei, E., Tabrizian, M., & Hoorfar, M. (2016). A review of digital microfluidics as portable platforms for lab-on a-chip applications. Lab on a Chip, 16(13), 2376–2396.CrossRefGoogle Scholar
  5. 5.
    Millington, D., Norton, S., Singh, R., Sista, R., Srinivasan, V., & Pamula, V. (2018). Digital microfluidics comes of age: High-throughput screening to bedside diagnostic testing for genetic disorders in newborns. Expert Review of Molecular Diagnostics, 18, 701–712.CrossRefGoogle Scholar
  6. 6.
    Luo, Y., Chakrabarty, K., & Ho, T.-Y. (2015). Hardware/Software co-design and optimization for cyberphysical integration in digital microfluidic biochips. Cham: Springer.CrossRefGoogle Scholar
  7. 7.
    Zhao, Y., & Chakrabarty, K. (2012). Design and testing of digital microfluidic biochips. New York: Springer Science and Business Media.Google Scholar
  8. 8.
    Chakrabarty, K. (2010). Design automation and test solutions for digital microfluidic biochips. IEEE Transactions on Circuits and Systems I: Regular Papers, 57(1), 4–17.MathSciNetCrossRefGoogle Scholar
  9. 9.
    Berthier, J. (2012). Micro-Drops and Digital Microfluidics. Waltham: William Andrew.Google Scholar
  10. 10.
    Hu, K., Ibrahim, M., Chen, L., Li, Z., Chakrabarty, K., & Fair, R. (2015). Experimental demonstration of error recovery in an integrated cyberphysical digital-microfluidic platform. In IEEE Biomedical Circuits and Systems Conference, pp. 1–4.Google Scholar
  11. 11.
    Srinivasan, V., Pamula, V. K., & Fair, R. B. (2004). Droplet-based microfluidic lab-on-a-chip for glucose detection. Analytica Chimica Acta, 507(1), 145–150.CrossRefGoogle Scholar
  12. 12.
    Chen, X., Cui, D., Liu, C., Li, H., & Chen, J. (2007). Continuous flow microfluidic device for cell separation, cell lysis and DNA purification. Analytica Chimica Acta, 584(2), 237–243.CrossRefGoogle Scholar
  13. 13.
    Chang, Y.-H., Lee, G.-B., Huang, F.-C., Chen, Y.-Y., Lin, J.-L. (2006). Integrated polymerase chain reaction chips utilizing digital microfluidics. Biomedical Microdevices, 8(3), 215–225.CrossRefGoogle Scholar
  14. 14.
    Luan, L., Evans, R. D., Jokerst, N. M., & Fair, R. B. (2008). Integrated optical sensor in a digital microfluidic platform. IEEE Sensors Journal, 8(5), 628–635.CrossRefGoogle Scholar
  15. 15.
    Hu, K., Hsu, B.-N., Madison, A., Chakrabarty, K., & Fair, R. (2013). Fault detection, real-time error recovery, and experimental demonstration for digital microfluidic biochips. In Proceedings of IEEE/ACM Design, Automation and Test Conference in Europe, pp. 559–564.Google Scholar
  16. 16.
    Pollack, M., Shenderov, A., & Fair, R. (2002). Electrowetting-based actuation of droplets for integrated microfluidics. Lab on a Chip, 2(2), 96–101.CrossRefGoogle Scholar
  17. 17.
    Choi, K., Ng, A. H., Fobel, R., & Wheeler, A. R. (2012). Digital microfluidics. Annual Review of Analytical Chemistry, 5, 413–440.CrossRefGoogle Scholar
  18. 18.
    Cho, S. K., Moon, H., & Kim, C.-J. (2003). Creating, transporting, cutting, and merging liquid droplets by electrowetting-based actuation for digital microfluidic circuits. Journal of Microelectromechanical Systems, 12(1), 70–80.CrossRefGoogle Scholar
  19. 19.
    Mugele, F., & Baret, J.-C. (2005). Electrowetting: From basics to applications. Journal of Physics: Condensed Matter, 17(28), R705.Google Scholar
  20. 20.
    Berthier, J., Clementz, P., Raccurt, O., Jary, D., Claustre, P., Peponnet, C., et al. (2006). Computer aided design of an EWOD microdevice. Sensors and Actuators A: Physical, 127(2), 283–294.CrossRefGoogle Scholar
  21. 21.
    Wulff-Burchfield, E., Schell, W. A., Eckhardt, A. E., Pollack, M. G., Hua, Z., Rouse, J. L., et al. (2010). Microfluidic platform versus conventional real-time polymerase chain reaction for the detection of Mycoplasma pneumoniae in respiratory specimens. Diagnostic Microbiology and Infectious Disease, 67(1), 22–29.CrossRefGoogle Scholar
  22. 22.
    Jebrail, M. J., & Wheeler, A. R. (2008). Digital microfluidic method for protein extraction by precipitation. Analytical Chemistry, 81(1), 330–335.CrossRefGoogle Scholar
  23. 23.
    Sista, R. S., Eckhardt, A. E., Srinivasan, V., Pollack, M. G., Palanki, S., & Pamula, V. K. (2008). Heterogeneous immunoassays using magnetic beads on a digital microfluidic platform. Lab on a Chip, 8(12), 2188–2196.CrossRefGoogle Scholar
  24. 24.
    Wang, G., Teng, D., & Fan, S.-K. (2011). Digital microfluidic operations on micro-electrode dot array architecture. IET Nanobiotechnology, 5(4), 152–160.CrossRefGoogle Scholar
  25. 25.
    Lai, K. Y.-T., Shiu, M.-F., Lu, Y.-W., Ho, Y.-C., Kao, Y.-C., Yang, Y.-T., et al. (2015). A field-programmable lab-on-a-chip with built-in self-test circuit and low-power sensor-fusion solution in 0.35 μm standard CMOS process. In Proceedings of IEEE Asian Solid-State Circuits Conference, pp. 1–4.Google Scholar
  26. 26.
    Wang, G., Teng, D., Lai, Y.-T., Lu, Y.-W., Ho, Y., & Lee, C.-Y. (2013). Field-programmable lab-on-a-chip based on microelectrode dot array architecture. IET Nanobiotechnology, 8(3), 163–171.CrossRefGoogle Scholar
  27. 27.
    Lai, K. Y.-T., Yang, Y.-T., & Lee, C.-Y. (2015). An intelligent digital microfluidic processor for biomedical detection. Journal of Signal Processing Systems, 78(1), 85–93.CrossRefGoogle Scholar
  28. 28.
    Li, Z., Lai, K. Y.-T., Yu, P.-H., Chakrabarty, K., Ho, T.-Y., & Lee, C.-Y. (2017). Droplet size-aware high-level synthesis for micro-electrode-dot-array digital microfluidic biochips. IEEE Transactions on Biomedical Circuits and Systems, 11(3), 612–626.CrossRefGoogle Scholar
  29. 29.
    Li, Z., Lai, K. Y.-T., McCrone, J., Yu, P.-H., Chakrabarty, K., Pajic, M., et al. (2018). Efficient and adaptive error recovery in a micro-electrode-dot-array digital microfluidic biochip. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 37(3), 601–614.CrossRefGoogle Scholar
  30. 30.
    Chen, Z., Teng, D. H.-Y., Wang, G. C.-J., & Fan, S.-K. (2011). Droplet routing in high-level synthesis of configurable digital microfluidic biochips based on microelectrode dot array architecture. Biochip Journal, 5(4), 343–352.CrossRefGoogle Scholar
  31. 31.
    Ho, T.-Y., Zeng, J., & Chakrabarty, K. (2010). Digital microfluidic biochips: A vision for functional diversity and more than moore. In Proceedings of IEEE/ACM International Conference on Computer-Aided Design, pp. 578–585.Google Scholar
  32. 32.
    Su, F., & Chakrabarty, K. (2004). Architectural-level synthesis of digital microfluidics-based biochips. In Proceedings of IEEE/ACM International Conference on Computer-Aided Design, pp. 223–228.Google Scholar
  33. 33.
    Su, F., Chakrabarty, K., & Fair, R. B. (2006). Microfluidics-based biochips: Technology issues, implementation platforms, and design-automation challenges. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 25(2), 211–223.CrossRefGoogle Scholar
  34. 34.
    Huang, T.-W., Yeh, S.-Y., & Ho, T.-Y. (2011). A network-flow based pin-count aware routing algorithm for broadcast-addressing EWOD chips. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 30(12), 1786–1799.CrossRefGoogle Scholar
  35. 35.
    Zhao, Y., Xu, T., & Chakrabarty, K. (2011). Broadcast electrode-addressing and scheduling methods for pin-constrained digital microfluidic biochips. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 30(7), 986–999.CrossRefGoogle Scholar
  36. 36.
    Xu, T., & Chakrabarty, K. (2008). Broadcast electrode-addressing for pin-constrained multi-functional digital microfluidic biochips. In Proceedings of ACM/IEEE Design Automation Conference, pp. 173–178.Google Scholar
  37. 37.
    Shukla, V., Hussin, F. A., Hamid, N. H., & Zain Ali, N. B. (2017). Advances in testing techniques for digital microfluidic biochips. Sensors, 17(8), 1719.CrossRefGoogle Scholar
  38. 38.
    Mitra, D., Ghoshal, S., Rahaman, H., Chakrabarty, K., & Bhattacharya, B. B. (2011). Test planning in digital microfluidic biochips using efficient eulerization techniques. Journal of Electronic Testing Theory and Application, 27, 657–671.CrossRefGoogle Scholar
  39. 39.
    Li, Z., Dinh, T. A., Ho, T.-Y., & Chakrabarty, K. (2014). Reliability-driven pipelined scan-like testing of digital microfluidic biochips. In Proceedings of IEEE Asian Test Symposium, pp. 57–62.Google Scholar
  40. 40.
    Dinh, T. A., Yamashita, S., Ho, T.-Y., & Chakrabarty, K. (2015). A general testing method for digital microfluidic biochips under physical constraints. In Proceedings of IEEE International Test Conference, pp. 1–8.Google Scholar
  41. 41.
    Mukherjee, S., & Samanta, T. (2015). Distributed scan like fault detection and test optimization for digital microfluidic biochips. Journal of Electronic Testing, 31(3), 311–319.CrossRefGoogle Scholar
  42. 42.
    Bhattacharjee, S., Mitra, D., & Bhattacharya, B. B. (2017). Robust in-field testing of digital microfluidic biochips. ACM Journal on Emerging Technologies in Computing Systems, 14(1), 5.CrossRefGoogle Scholar
  43. 43.
    Xu, T., & Chakrabarty, K. (2007). Functional testing of digital microfluidic biochips. In Proceedings of IEEE International Test Conference, pp. 1–10.Google Scholar
  44. 44.
    Mitra, D., Ghoshal, S., Rahaman, H., Bhattacharya, B. B., Majumder, D. D., & Chakrabarty, K. (2008). Accelerated functional testing of digital microfluidic biochips. In IEEE Asian Test Symposium, pp. 295–300.Google Scholar
  45. 45.
    Xu, T., & Chakrabarty, K. (2009). Fault modeling and functional test methods for digital microfluidic biochips. IEEE Transactions on Biomedical Circuits and Systems, 3, 241–253.CrossRefGoogle Scholar
  46. 46.
    Maftei, E., Pop, P., & Madsen, J. (2009). Tabu search-based synthesis of dynamically reconfigurable digital microfluidic biochips. In Proceedings of International Conference on Compilers, Architecture, and Synthesis for Embedded Systems, pp. 195–204.Google Scholar
  47. 47.
    Grissom, D., & Brisk, P. (2012). Path scheduling on digital microfluidic biochips. In Proceedings of ACM/IEEE Design Automation Conference, pp. 26–35.Google Scholar
  48. 48.
    Zhao, Y., & Chakrabarty, K. (2012). Cross-contamination avoidance for droplet routing in digital microfluidic biochips. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 31(6), 817–830.CrossRefGoogle Scholar
  49. 49.
    Grissom, D., & Brisk, P. (2012). Fast online synthesis of generally programmable digital microfluidic biochips. In Proceedings of IEEE/ACM/IFIP International Conference on Hardware/Software Codesign and System Synthesis, pp. 413–422.Google Scholar
  50. 50.
    Roy, S., Chakrabarti, P. P., Kumar, S., Chakrabarty, K., & Bhattacharya, B. B. (2015). Layout-aware mixture preparation of biochemical fluids on application-specific digital microfluidic biochips. ACM Transactions on Design Automation of Electronic Systems, 20(3), 45.CrossRefGoogle Scholar
  51. 51.
    Yu, S.-T., Yeh, S.-H., & Ho, T.-Y. (2015). Reliability-driven chip-level design for high-frequency digital microfluidic biochips. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 34(4), pp. 529–539.CrossRefGoogle Scholar
  52. 52.
    Keszocze, O., Wille, R., Ho, T.-Y., & Drechsler, R. (2014). Exact one-pass synthesis of digital microfluidic biochips. In Proceedings of ACM/IEEE Design Automation Conference, pp. 1–6.Google Scholar
  53. 53.
    Grissom, D., Curtis, C., Windh, S., Phung, C., Kumar, N., Zimmerman, Z., et al. (2015). An open-source compiler and PCB synthesis tool for digital microfluidic biochips. Integration, the VLSI Journal, 51, 169–193.CrossRefGoogle Scholar
  54. 54.
    Jaress, C., Brisk, P., & Grissom, D. (2015). Rapid online fault recovery for cyber-physical digital microfluidic biochips. In Proceedings of IEEE VLSI Test Symposium, pp. 1–6.Google Scholar
  55. 55.
    Xu, T., & Chakrabarty, K. (2007). Integrated droplet routing in the synthesis of microfluidic biochips. In ACM/IEEE Design Automation Conference, pp. 948–953.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Zipeng Li
    • 1
  • Krishnendu Chakrabarty
    • 2
  • Tsung-Yi Ho
    • 3
  • Chen-Yi Lee
    • 4
  1. 1.Intel (United States)Santa ClaraUSA
  2. 2.Department of ECEDuke UniversityDurhamUSA
  3. 3.National Tsing Hua UniversityHsinchuTaiwan
  4. 4.National Chiao Tung UniversityHsinchuTaiwan

Personalised recommendations