Advertisement

Molecular Characterization of Salivary Gland Carcinomas

  • André FehrEmail author
  • Jörn Bullerdiek
  • Thorsten Jaekel
  • Thomas Löning
Chapter

Abstract

The recently updated WHO classification of head and neck tumors has listed more than 20 (sub-)types of salivary gland cancers. Although there was a consensus of the Board that diagnosis on histological criteria alone may be inaccurate, the editors finally reasoned that the necessary setup for molecular analyses is not globally available, as yet, or the data are either not convincing or robust enough to supplement the histological and immunohistochemical diagnostic tools. Nevertheless, the increasing knowledge about tumor-type-specific translocations, point mutations, and amplifications in salivary gland cancers needs more explanatory comments than the new WHO fascicle could afford, particularly taking into account the already established molecular support of diagnostic and predictive pathology in specialized clinical centers. In the German Salivary Gland Expert Network (www.hansepathnet.de), we advocate the application of molecular analyses for clinicopathological purposes in mucoepidermoid, adenoid cystic, and secretory carcinomas, while more translational research is necessary before molecular tools can be applied in other neoplasias covered in this chapter, in routine clinical practice.

Keywords

Biomarker CRTC1-MAML2 ERBB2 ETV6-NTRK3 EWSR1-ATF1 Fusion oncogene HMGA2 Mutation MYB-NFIB PRKD1 Salivary gland cancer 

Abbreviations

a.k.a.

Also known as

ACC

Acinic cell carcinoma

AdCC

Adenoid cystic carcinoma

AR

Androgen receptor

CAMSG

Cribriform adenocarcinoma of minor salivary glands

CREB

cAMP response element-binding protein

CXPA

Carcinoma ex pleomorphic adenoma

FGF-IGF-PI3K

Fibroblast growth factor-insulin-like growth factor-phosphatidylinositol 3-kinase pathway

FISH

Fluorescence in situ hybridization

HCCC

Hyalinizing clear-cell carcinoma

IDC

Low-grade intraductal carcinoma

MAPK

Mitogen-activated protein kinase

MASC

Mammary analogue secretory carcinoma

MEC

Mucoepidermoid carcinoma

NOS

Not otherwise specified

PA

Pleomorphic adenoma

PAC

Polymorphous adenocarcinoma

PI3K

Phosphatidylinositol 3-kinase

RT-PCR

Reverse transcription polymerase chain reaction

SC

Secretory breast carcinoma

SDC

Salivary duct carcinoma

SGC

Salivary gland carcinomas

References

  1. 1.
    El-Naggar AK, Chan JKC, Grandis JR, Takata T, Slootweg PJ, editors. Pathology and genetics of head and neck tumours. World Health Organization Classification of Tumours. 4th ed. Lyon: IARC Press; 2017.Google Scholar
  2. 2.
    Nordkvist A, Gustafsson H, Juberg-Ode M, Stenman G. Recurrent rearrangements of 11q14-22 in mucoepidermoid carcinoma. Cancer Genet Cytogenet. 1994;74(2):77–83.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Komiya T, Park Y, Modi S, Coxon AB, Oh H, Kaye FJ. Sustained expression of Mect1-Maml2 is essential for tumor cell growth in salivary gland cancers carrying the t(11;19) translocation. Oncogene. 2006;25(45):6128–32.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Behboudi A, Enlund F, Winnes M, Andren Y, Nordkvist A, Leivo I, et al. Molecular classification of mucoepidermoid carcinomas-prognostic significance of the MECT1-MAML2 fusion oncogene. Genes Chromosomes Cancer. 2006;45(5):470–81.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Tonon G, Modi S, Wu L, Kubo A, Coxon AB, Komiya T, et al. t(11;19)(q21;p13) translocation in mucoepidermoid carcinoma creates a novel fusion product that disrupts a Notch signaling pathway. Nat Genet. 2003;33(2):208–13.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Fehr A, Meyer A, Heidorn K, Röser K, Löning T, Bullerdiek J. A link between the expression of the stem cell marker HMGA2, grading, and the fusion CRTC1-MAML2 in mucoepidermoid carcinoma. Genes Chromosomes Cancer. 2009;48(9):777–85.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Verdorfer I, Fehr A, Bullerdiek J, Scholz N, Brunner A, Krugmann J, et al. Chromosomal imbalances, 11q21 rearrangement and MECT1-MAML2 fusion transcript in mucoepidermoid carcinomas of the salivary gland. Oncol Rep. 2009;22(2):305–11.PubMedPubMedCentralGoogle Scholar
  8. 8.
    Möller E, Stenman G, Mandahl N, Hamberg H, Molne L, van den Oord JJ, et al. POU5F1, encoding a key regulator of stem cell pluripotency, is fused to EWSR1 in hidradenoma of the skin and mucoepidermoid carcinoma of the salivary glands. J Pathol. 2008;215(1):78–86.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Di Renzo F, Doneda L, Menegola E, Sardella M, De Vecchi G, Collini P, et al. The murine Pou6f2 gene is temporally and spatially regulated during kidney embryogenesis and its human homolog is overexpressed in a subset of Wilms tumors. J Pediatr Hematol Oncol. 2006;28(12):791–7.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Nakano T, Yamamoto H, Hashimoto K, Tamiya S, Shiratsuchi H, Nakashima T, et al. HER2 and EGFR gene copy number alterations are predominant in high-grade salivary mucoepidermoid carcinoma irrespective of MAML2 fusion status. Histopathology. 2013;63(3):378–92.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Rao PH, Roberts D, Zhao Y-J, Bell D, Harris CP, Weber RS, et al. Deletion of 1p32-p36 is the most frequent genetic change and poor prognostic marker in adenoid cystic carcinoma of the salivary glands. Clin Cancer Res. 2008;14(16):5181–7.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Stephens PJ, Davies HR, Mitani Y, Van Loo P, Shlien A, Tarpey PS, et al. Whole exome sequencing of adenoid cystic carcinoma. J Clin Invest. 2013;123(7):2965–8.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Mitani Y, Liu B, Rao PH, Borra VJ, Zafereo M, Weber RS, et al. Novel MYBL1 gene rearrangements with recurrent MYBL1-NFIB fusions in salivary adenoid cystic carcinomas lacking t(6;9) translocations. Clin Cancer Res. 2015;22(3):725–33.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Stenman G, Persson F, Andersson MK. Diagnostic and therapeutic implications of new molecular biomarkers in salivary gland cancers. Oral Oncol. 2014;50(8):683–90.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Lannon CL, Sorensen PH. ETV6-NTRK3: a chimeric protein tyrosine kinase with transformation activity in multiple cell lineages. Semin Cancer Biol. 2005;15(3):215–23.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Ito Y, Ishibashi K, Masaki A, Fujii K, Fujiyoshi Y, Hattori H, et al. Mammary analogue secretory carcinoma of salivary glands: a clinicopathologic and molecular study including 2 cases harboring ETV6-X fusion. Am J Surg Pathol. 2015;39(5):602–10.CrossRefGoogle Scholar
  17. 17.
    Weinreb I. Hyalinizing clear cell carcinoma of salivary gland: a review and update. Head Neck Pathol. 2013;7(Suppl 1):S20–9.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Shah AA, LeGallo RD, van Zante A, Frierson HF Jr, Mills SE, Berean KW, et al. EWSR1 genetic rearrangements in salivary gland tumors: a specific and very common feature of hyalinizing clear cell carcinoma. Am J Surg Pathol. 2013;37(4):571–8.CrossRefGoogle Scholar
  19. 19.
    Dooley AL, Winslow MM, Chiang DY, Banerji S, Stransky N, Dayton TL, et al. Nuclear factor I/B is an oncogene in small cell lung cancer. Genes Dev. 2011;25(14):1470–5.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Lewis JE, Olsen KD, Sebo TJ. Carcinoma ex pleomorphic adenoma: pathologic analysis of 73 cases. Hum Pathol. 2001;32(6):596–604.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Sharon E, Kelly R, Szabo E. Sustained response of carcinoma ex pleomorphic adenoma treated with trastuzumab and capecitabine. Head Neck Oncol. 2010;2(1):12.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Skalova A, Sima R, Kaspirkova-Nemcova J, Simpson RH, Elmberger G, Leivo I, et al. Cribriform adenocarcinoma of minor salivary gland origin principally affecting the tongue: characterization of new entity. Am J Surg Pathol. 2011;35(8):1168–76.CrossRefGoogle Scholar
  23. 23.
    Ihrler S, Weiler C, Hirschmann A, Sendelhofert A, Lang S, Guntinas-Lichius O, et al. Intraductal carcinoma is the precursor of carcinoma ex pleomorphic adenoma and is often associated with dysfunctional p53. Histopathology. 2007;51(3):362–71.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Jordan R, Dardick I, Lui E, Birek C. Demonstration of c-erbB-2 oncogene overexpression in salivary gland neoplasms by in situ hybridization. J Oral Pathol Med. 1994;23(5):226–31.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Diegel CR, Cho KR, El-Naggar AK, Williams BO, Lindvall C. Mammalian target of rapamycin-dependent acinar cell neoplasia after inactivation of Apc and Pten in the mouse salivary gland: implications for human acinic cell carcinoma. Cancer Res. 2010;70(22):9143–52.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Chan RC, Chan JY. Head and neck mucoepidermoid carcinoma: a curious association with second primary malignancy. Otolaryngol Head Neck Surg. 2014;151(5):797–801.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Wolfish EB, Nelson BL, Thompson LD. Sinonasal tract mucoepidermoid carcinoma: a clinicopathologic and immunophenotypic study of 19 cases combined with a comprehensive review of the literature. Head Neck Pathol. 2012;6(2):191–207.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Fonseca FP, de Andrade BA, Lopes MA, Pontes HA, Vargas PA, de Almeida OP. P63 expression in papillary cystadenoma and mucoepidermoid carcinoma of minor salivary glands. Oral Surg Oral Med Oral Pathol Oral Radiol. 2013;115(1):79–86.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Lennerz JK, Perry A, Mills JC, Huettner PC, Pfeifer JD. Mucoepidermoid carcinoma of the cervix: another tumor with the t(11;19)-associated CRTC1-MAML2 gene fusion. Am J Surg Pathol. 2009;33(6):835–43.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Pires FR, de Almeida OP, de Araujo VC, Kowalski LP. Prognostic factors in head and neck mucoepidermoid carcinoma. Arch Otolaryngol Head Neck Surg. 2004;130(2):174–80.CrossRefGoogle Scholar
  31. 31.
    Fehr A, Röser K, Heidorn K, Hallas C, Löning T, Bullerdiek J. A new type of MAML2 fusion in mucoepidermoid carcinoma. Genes Chromosomes Cancer. 2008;47(3):203–6.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Enlund F, Behboudi A, Andren Y, Oberg C, Lendahl U, Mark J, et al. Altered Notch signaling resulting from expression of a WAMTP1-MAML2 gene fusion in mucoepidermoid carcinomas and benign Warthin’s tumors. Exp Cell Res. 2004;292(1):21–8.CrossRefGoogle Scholar
  33. 33.
    Coxon A, Rozenblum E, Park YS, Joshi N, Tsurutani J, Dennis PA, et al. Mect1-Maml2 fusion oncogene linked to the aberrant activation of cyclic AMP/CREB regulated genes. Cancer Res. 2005;65(16):7137–44.CrossRefGoogle Scholar
  34. 34.
    Wu L, Liu J, Gao P, Nakamura M, Cao Y, Shen H, et al. Transforming activity of MECT1-MAML2 fusion oncoprotein is mediated by constitutive CREB activation. EMBO J. 2005;24(13):2391–402.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Seethala RR, Dacic S, Cieply K, Kelly LM, Nikiforova MN. A reappraisal of the MECT1/MAML2 translocation in salivary mucoepidermoid carcinomas. Am J Surg Pathol. 2010;34(8):1106–21.CrossRefGoogle Scholar
  36. 36.
    Jee KJ, Persson M, Heikinheimo K, Passador-Santos F, Aro K, Knuutila S, et al. Genomic profiles and CRTC1-MAML2 fusion distinguish different subtypes of mucoepidermoid carcinoma. Mod Pathol. 2013;26(2):213–22.CrossRefGoogle Scholar
  37. 37.
    Nakayama T, Miyabe S, Okabe M, Sakuma H, Ijichi K, Hasegawa Y, et al. Clinicopathological significance of the CRTC3-MAML2 fusion transcript in mucoepidermoid carcinoma. Mod Pathol. 2009;22(12):1575–81.CrossRefGoogle Scholar
  38. 38.
    Seethala RR, Chiosea SI. MAML2 status in mucoepidermoid carcinoma can no longer be considered a prognostic marker. Am J Surg Pathol. 2016;40(8):1151–3.CrossRefGoogle Scholar
  39. 39.
    Behboudi A, Winnes M, Gorunova L, van den Oord JJ, Mertens F, Enlund F, et al. Clear cell hidradenoma of the skin-a third tumor type with a t(11;19)-associated TORC1-MAML2 gene fusion. Genes Chromosomes Cancer. 2005;43(2):202–5.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Tirado Y, Williams MD, Hanna EY, Kaye FJ, Batsakis JG, El-Naggar AK. CRTC1/MAML2 fusion transcript in high grade mucoepidermoid carcinomas of salivary and thyroid glands and Warthin’s tumors: implications for histogenesis and biologic behavior. Genes Chromosomes Cancer. 2007;46(7):708–15.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Fehr A, Röser K, Belge G, Löning T, Bullerdiek J. A closer look at Warthin tumors and the t(11;19). Cancer Genet Cytogenet. 2008;180(2):135–9.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Anzick SL, Chen WD, Park Y, Meltzer P, Bell D, El-Naggar AK, et al. Unfavorable prognosis of CRTC1-MAML2 positive mucoepidermoid tumors with CDKN2A deletions. Genes Chromosomes Cancer. 2009;49(1):59–69.CrossRefGoogle Scholar
  43. 43.
    Kang H, Tan M, Bishop JA, Jones S, Sausen M, Ha PK, Agrawal N, et al. Whole-exome sequencing of salivary gland mucoepidermoid carcinoma. Clin Cancer Res. 2017;23(1):283–8.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Besch R, Berking C. POU transcription factors in melanocytes and melanoma. Eur J Cell Biol. 2014;93(1–2):55–60.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Perotti D, De Vecchi G, Testi MA, Lualdi E, Modena P, Mondini P, et al. Germline mutations of the POU6F2 gene in Wilms tumors with loss of heterozygosity on chromosome 7p14. Hum Mutat. 2004;24(5):400–7.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Yoo J, Robinson RA. H-ras gene mutations in salivary gland mucoepidermoid carcinomas. Cancer. 2000;88(3):518–23.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Laurie SA, Ho AL, Fury MG, Sherman E, Pfister DG. Systemic therapy in the management of metastatic or locally recurrent adenoid cystic carcinoma of the salivary glands: a systematic review. Lancet Oncol. 2011;12(8):815–24.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Persson M, Andren Y, Moskaluk CA, Frierson HF Jr, Cooke SL, Futreal PA, et al. Clinically significant copy number alterations and complex rearrangements of MYB and NFIB in head and neck adenoid cystic carcinoma. Genes Chromosomes Cancer. 2012;51(8):805–17.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Persson M, Andren Y, Mark J, Horlings HM, Persson F, Stenman G. Recurrent fusion of MYB and NFIB transcription factor genes in carcinomas of the breast and head and neck. Proc Natl Acad Sci U S A. 2009;106(44):18740–4.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Ramsay RG, Gonda TJ. MYB function in normal and cancer cells. Nat Rev Cancer. 2008;8(7):523–34.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    von Holstein SL, Fehr A, Persson M, Nickelsen M, Therkildsen MH, Prause JU, et al. Lacrimal gland pleomorphic adenoma and carcinoma ex pleomorphic adenoma: genomic profiles, gene fusions, and clinical characteristics. Ophthalmology. 2014;121(5):1125–33.CrossRefGoogle Scholar
  52. 52.
    Drier Y, Cotton MJ, Williamson KE, Gillespie SM, Ryan RJ, Kluk MJ, et al. An oncogenic MYB feedback loop drives alternate cell fates in adenoid cystic carcinoma. Nat Genet. 2016;48(3):265–72.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Ho AS, Kannan K, Roy DM, Morris LG, Ganly I, Katabi N, et al. The mutational landscape of adenoid cystic carcinoma. Nat Genet. 2013;45(7):791–8.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Brayer KJ, Frerich CA, Kang H, Ness SA. Recurrent fusions in MYB and MYBL1 define a common, transcription factor-driven oncogenic pathway in salivary gland adenoid cystic carcinoma. Cancer Discov. 2016;6(2):176–87.CrossRefGoogle Scholar
  55. 55.
    Brill LB 2nd, Kanner WA, Fehr A, Andrén Y, Moskaluk CA, Löning T, et al. Analysis of MYB expression and MYB-NFIB gene fusions in adenoid cystic carcinoma and other salivary neoplasms. Mod Pathol. 2011;24(9):1169–76.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Skálová A, Vanecek T, Sima R, Laco J, Weinreb I, Perez-Ordonez B, et al. Mammary analogue secretory carcinoma of salivary glands, containing the ETV6-NTRK3 fusion gene: a hitherto undescribed salivary gland tumor entity. Am J Surg Pathol. 2010;34(5):599–608.PubMedPubMedCentralGoogle Scholar
  57. 57.
    Fehr A, Löning T, Stenman G. Mammary analogue secretory carcinoma of the salivary glands with ETV6-NTRK3 gene fusion. Am J Surg Pathol. 2011;35(10):1600–2.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Tognon C, Knezevich SR, Huntsman D, Roskelley CD, Melnyk N, Mathers JA, et al. Expression of the ETV6-NTRK3 gene fusion as a primary event in human secretory breast carcinoma. Cancer Cell. 2002;2(5):367–76.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Skalova A, Vanecek T, Majewska H, Laco J, Grossmann P, Simpson RH, et al. Mammary analogue secretory carcinoma of salivary glands with high-grade transformation: report of 3 cases with the ETV6-NTRK3 gene fusion and analysis of TP53, beta-catenin, EGFR, and CCND1 genes. Am J Surg Pathol. 2014;38(1):23–33.CrossRefGoogle Scholar
  60. 60.
    Skalova A, Vanecek T, Simpson RH, Laco J, Majewska H, Baneckova M, et al. Mammary analogue secretory carcinoma of salivary glands: molecular analysis of 25 ETV6 gene rearranged tumors with lack of detection of classical ETV6-NTRK3 fusion transcript by standard RT-PCR: report of 4 cases harboring ETV6-X gene fusion. Am J Surg Pathol. 2016;40(1):3–13.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Rubin BP, Chen CJ, Morgan TW, Xiao S, Grier HE, Kozakewich HP, et al. Congenital mesoblastic nephroma t(12;15) is associated with ETV6-NTRK3 gene fusion: cytogenetic and molecular relationship to congenital (infantile) fibrosarcoma. Am J Pathol. 1998;153(5):1451–8.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Knezevich SR, McFadden DE, Tao W, Lim JF, Sorensen PH. A novel ETV6-NTRK3 gene fusion in congenital fibrosarcoma. Nat Genet. 1998;18(2):184–7.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Kralik JM, Kranewitter W, Boesmueller H, Marschon R, Tschurtschenthaler G, Rumpold H, et al. Characterization of a newly identified ETV6-NTRK3 fusion transcript in acute myeloid leukemia. Diagn Pathol. 2011;6:19.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Griffith C, Seethala R, Chiosea SI. Mammary analogue secretory carcinoma: a new twist to the diagnostic dilemma of zymogen granule poor acinic cell carcinoma. Virchows Arch. 2011;459(1):117–8.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Connor A, Perez-Ordonez B, Shago M, Skalova A, Weinreb I. Mammary analog secretory carcinoma of salivary gland origin with the ETV6 gene rearrangement by FISH: expanded morphologic and immunohistochemical spectrum of a recently described entity. Am J Surg Pathol. 2012;36(1):27–34.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Chiosea SI, Griffith C, Assaad A, Seethala RR. Clinicopathological characterization of mammary analogue secretory carcinoma of salivary glands. Histopathology. 2012;61(3):387–94.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Pinto A, Nose V, Rojas C, Fan YS, Gomez-Fernandez C. Searching for mammary analogue secretory carcinoma of salivary gland among its mimics. Mod Pathol. 2014;27(1):30–7.CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Bishop JA, Yonescu R, Batista D, Eisele DW, Westra WH. Most nonparotid “acinic cell carcinomas” represent mammary analog secretory carcinomas. Am J Surg Pathol. 2013;37(7):1053–7.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Solar AA, Schmidt BL, Jordan RC. Hyalinizing clear cell carcinoma: case series and comprehensive review of the literature. Cancer. 2009;115(1):75–83.CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Antonescu CR, Katabi N, Zhang L, Sung YS, Seethala RR, Jordan RC, et al. EWSR1-ATF1 fusion is a novel and consistent finding in hyalinizing clear-cell carcinoma of salivary gland. Genes Chromosomes Cancer. 2011;50(7):559–7.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Bilodeau EA, Weinreb I, Antonescu CR, Zhang L, Dacic S, Muller S, et al. Clear cell odontogenic carcinomas show EWSR1 rearrangements: a novel finding and a biological link to salivary clear cell carcinomas. Am J Surg Pathol. 2013;37(7):1001–5.CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Jin R, Craddock KJ, Irish JC, Perez-Ordonez B, Weinreb I. Recurrent hyalinizing clear cell carcinoma of the base of tongue with high-grade transformation and EWSR1 gene rearrangement by FISH. Head Neck Pathol. 2012;6(3):389–94.CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Persson F, Andrén Y, Winnes M, Wedell B, Nordkvist A, Gudnadottir G, et al. High-resolution genomic profiling of adenomas and carcinomas of the salivary glands reveals amplification, rearrangement, and fusion of HMGA2. Genes Chromosomes Cancer. 2009;48(1):69–82.CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Queimado L, Lopes CS, Reis AM. WIF1, an inhibitor of the Wnt pathway, is rearranged in salivary gland tumors. Genes Chromosomes Cancer. 2007;46(3):215–25.CrossRefGoogle Scholar
  75. 75.
    Roijer E, Nordkvist A, Strom AK, Ryd W, Behrendt M, Bullerdiek J, et al. Translocation, deletion/amplification, and expression of HMGIC and MDM2 in a carcinoma ex pleomorphic adenoma. Am J Pathol. 2002;160(2):433–40.CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Stenman G. Fusion oncogenes in salivary gland tumors: molecular and clinical consequences. Head Neck Pathol. 2013;7(Suppl 1):S12–9.CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Nordkvist A, Roijer E, Bang G, Gustafsson H, Behrendt M, Ryd W, et al. Expression and mutation patterns of p53 in benign and malignant salivary gland tumors. Int J Oncol. 2000;16(3):477–83.PubMedGoogle Scholar
  78. 78.
    Jaehne M, Roeser K, Jaekel T, Schepers JD, Albert N, Loning T. Clinical and immunohistologic typing of salivary duct carcinoma: a report of 50 cases. Cancer. 2005;103(12):2526–33.CrossRefGoogle Scholar
  79. 79.
    Jaspers HC, Verbist BM, Schoffelen R, Mattijssen V, Slootweg PJ, van der Graaf WT, et al. Androgen receptor-positive salivary duct carcinoma: a disease entity with promising new treatment options. J Clin Oncol. 2011;29(16):e473–6.CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Dalin MG, Desrichard A, Katabi N, Makarov V, Walsh LA, Lee KW, et al. Comprehensive molecular characterization of salivary duct carcinoma reveals actionable targets and similarity to apocrine breast cancer. Clin Cancer Res. 2016;22(18):4623–33.CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Andersson MK, Stenman G. The landscape of gene fusions and somatic mutations in salivary gland neoplasms - implications for diagnosis and therapy. Oral Oncol. 2016;57:63–9.CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Simpson RH. Salivary duct carcinoma: new developments--morphological variants including pure in situ high grade lesions; proposed molecular classification. Head Neck Pathol. 2013;7(Suppl 1):S48–58.CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Mitani Y, Rao PH, Maity SN, Lee YC, Ferrarotto R, Post JC, et al. Alterations associated with androgen receptor gene activation in salivary duct carcinoma of both sexes: potential therapeutic ramifications. Clin Cancer Res. 2014;20(24):6570–81.CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Kuo YJ, Weinreb I, Perez-Ordonez B. Low-grade salivary duct carcinoma or low-grade intraductal carcinoma? Review of the literature. Head Neck Pathol. 2013;7(Suppl 1):S59–67.CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Delgado R, Klimstra D, Albores-Saavedra J. Low grade salivary duct carcinoma. A distinctive variant with a low grade histology and a predominant intraductal growth pattern. Cancer. 1996;78(5):958–67.CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Brandwein-Gensler M, Hille J, Wang BY, Urken M, Gordon R, Wang LJ, et al. Low-grade salivary duct carcinoma: description of 16 cases. Am J Surg Pathol. 2004;28(8):1040–4.CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Stevens TM, Kovalovsky AO, Velosa C, Shi Q, Dai Q, Owen RP, et al. Mammary analog secretory carcinoma, low-grade salivary duct carcinoma, and mimickers: a comparative study. Mod Pathol. 2015;28(8):1084–100.CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Weinreb I, Tabanda-Lichauco R, Van der Kwast T, Perez-Ordonez B. Low-grade intraductal carcinoma of salivary gland: report of 3 cases with marked apocrine differentiation. Am J Surg Pathol. 2006;30(8):1014–21.CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Abrams AM, Cornyn J, Scofield HH, Hansen LS. Acinic cell adenocarcinoma of the major salivary glands. A clinicopathologic study of 77 cases. Cancer. 1965;18:1145–62.CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Ellis GL, Auclair PL. Tumors of the salivary glands, AFIP atlas of tumor pathology. 4th ed. Washington, D.C.: American Registry of Pathology; 2008.Google Scholar
  91. 91.
    Chiosea SI, Griffith C, Assaad A, Seethala RR. The profile of acinic cell carcinoma after recognition of mammary analog secretory carcinoma. Am J Surg Pathol. 2012;36(3):343–50.CrossRefGoogle Scholar
  92. 92.
    Mitelmann F, Johansson B, Mertens F, editors. Mitelman database of chromosome aberrations and gene fusions in cancer; 2016. Available from: http://cgap.nci.nih.gov/Chromosomes/Mitelman.
  93. 93.
    Clauditz TS, Gontarewicz A, Lebok P, Tsourlakis MC, Grob TJ, Munscher A, et al. Epidermal growth factor receptor (EGFR) in salivary gland carcinomas: potentials as therapeutic target. Oral Oncol. 2012;48(10):991–6.CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Clauditz TS, Reiff M, Gravert L, Gnoss A, Tsourlakis MC, Munscher A, et al. Human epidermal growth factor receptor 2 (HER2) in salivary gland carcinomas. Pathology. 2011;43(5):459–64.CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Ettl T, Schwarz-Furlan S, Haubner F, Muller S, Zenk J, Gosau M, et al. The PI3K/AKT/mTOR signalling pathway is active in salivary gland cancer and implies different functions and prognoses depending on cell localisation. Oral Oncol. 2012;48(9):822–30.CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    Weinreb I, Piscuoglio S, Martelotto LG, Waggott D, Ng CK, Perez-Ordonez B, et al. Hotspot activating PRKD1 somatic mutations in polymorphous low-grade adenocarcinomas of the salivary glands. Nat Genet. 2014;46(11):1166–9.CrossRefPubMedPubMedCentralGoogle Scholar
  97. 97.
    Weinreb I, Zhang L, Tirunagari LM, Sung YS, Chen CL, Perez-Ordonez B, et al. Novel PRKD gene rearrangements and variant fusions in cribriform adenocarcinoma of salivary gland origin. Genes Chromosomes Cancer. 2014;53(10):845–56.CrossRefPubMedPubMedCentralGoogle Scholar
  98. 98.
    Majewska H, Skalova A, Weinreb I, Stodulski D, Hyrcza M, Stankiewicz C, et al. Giant cribriform adenocarcinoma of the tongue showing PRKD3 rearrangement. Pol J Pathol. 2016;67(1):84–90.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • André Fehr
    • 1
    Email author
  • Jörn Bullerdiek
    • 2
  • Thorsten Jaekel
    • 3
  • Thomas Löning
    • 4
  1. 1.Sahlgrenska Cancer Center, University of GothenburgGothenburgSweden
  2. 2.Institut für Medizinische GenetikUniversitätsmedizin RostockRostockGermany
  3. 3.Pathologie BremenBremenGermany
  4. 4.Gerhard-Seifert-ReferenzzentrumHamburgGermany

Personalised recommendations