Advertisement

Social Stream Data: Formalism, Properties and Queries

  • Chengcheng Yu
  • Fan Xia
  • Weining QianEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11242)

Abstract

A social stream, which refers to the data stream that records a series of social stream entities and the dynamic relations between entities, and each entity created by one producer. It is not only can used to model user generate content in online social network services, but also a multitude of systems in which records are combined by graph and stream data. Thus, the research efforts in the area about social stream is one of the hot spots recently. Although the term of “social stream” have appeared frequently, we note there are rarely formal definitions and lacks a unified view on the data. In this paper, we formally define the social stream data model trying to explain the graph stream generating mechanism from the perspective of producers. Then several properties describing social stream data are introduced. Furthermore, we summarize a set of basic operators that are essential to analytic queries based on social stream data, describe their semantics in detail. A classification scheme based on query time window is provided and difficulties lies behind each type are discussed. Finally, three real life datasets are used for the experiment of calculating properties to reveal differences between different datasets and analyze how they may exacerbate hardness of queries.

Keywords

Social stream Formalism Properties Social stream queries 

References

  1. 1.
    Tapiador, A., Carrera, D., Salvachua, J.: Social stream, a social network framework. In: First International Conference on Future Generation Communication Technologies (FGST 2012), pp. 52–57 (2012)Google Scholar
  2. 2.
    Sasahara, K., Hirata, Y., Toyoda, M., Kitsuregawa, M., Aihara, K.: Quantifying collective attention from tweet stream. PLoS ONE 8(4), 61823 (2013)CrossRefGoogle Scholar
  3. 3.
    Nishida, K., Hoshide, T., Fujimura, K.: Improving tweet stream classification by detecting changes in word probability. In: Proceedings of the 35th International ACM SIGIR Conference, pp. 971–980. ACM (2012)Google Scholar
  4. 4.
    Casteigts, A., Flocchini, P., Quattrociocchi, W., Santoro, N.: Time-varying graphs and dynamic networks. Int. J. Parallel Emerg. Distrib. Syst. 6811(5), 346–359 (2010)Google Scholar
  5. 5.
    Santoro, N., Quattrociocchi, W., Flocchini, P., Casteigts, A., Amblard, F.: Time-varying graphs and social network analysis: temporal indicators and metrics. In: Artificial Intelligence and Simulation of Behaviour, pp. 32–38 (2011)Google Scholar
  6. 6.
    Ferreira, A.: Building a reference combinatorial model for manets. IEEE Netw. Mag. Glob. Internetw. 18(5), 24–29 (2004)CrossRefGoogle Scholar
  7. 7.
    Holme, P., Saramki, J.: Temporal networks. Phys. Rep. 519(3), 97–125 (2012)CrossRefGoogle Scholar
  8. 8.
    Krapivsky, P.L., Redner, S., Leyvraz, F.: Connectivity of growing random networks. Physics 85(21), 4629–4632 (2000)Google Scholar
  9. 9.
    Wei, J., Xia, F., Sha, C., Xu, C., He, X., Zhou, A.: Web Technologies and Applications. Lecture Notes in Computer Science, vol. 7808, pp. 662–673. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  10. 10.
    Gionis, A., Junqueira, F., Leroy, V., Serafini, M., Weber, I.: Social piggybacking: leveraging common friends to generate event streams. In: Proceedings of the Fifth Workshop on Social Network Systems (2012)Google Scholar
  11. 11.
    Pujol, J.M., et al.: The little engine(s) that could: scaling online social networks. In: Proceedings of the ACM SIGCOMM. pp. 375–386 (2010)Google Scholar
  12. 12.
    Chen, H., Jin, H., Jin, N., Gu, T.: Minimizing inter-server communications by exploiting self-similarity in online social networks. In: 20th IEEE International Conference on Network Protocols, ICNP (2012)Google Scholar
  13. 13.
    Angel, A., Koudas, N., Sarkas, N., Srivastava, D., Svendsen, M., Tirthapura, S.: Dense subgraph maintenance under streaming edge weight updates for real-time story identification. VLDB J. 23(2), 175–199 (2014)CrossRefGoogle Scholar
  14. 14.
    Kwak, H., Lee, C., Park, H., Moon, S.B.: What is twitter, a social network or a news media? In: WWW, pp. 591–600 (2010)Google Scholar
  15. 15.
    Holger, E., Lutz-Ingo, M., Stefan, B.: Scale-free topology of e-mail networks. Phys. Rev. E: Stat. Nonlinear Soft Matter Phys. 66(3), 035103 (2002)Google Scholar
  16. 16.
    Tauro, S.L., Palmer, C., Siganos, G., Faloutsos, M.: A simple conceptual model for the internet topology. In: Global Telecommunications Conference, 2001. GLOBECOM 2001. IEEE, vol. 3, pp. 1667–1671 (2001)Google Scholar
  17. 17.
    Faloutsos, M., Faloutsos, P., Faloutsos, C.: On power-law relationships of the internet topology. In: SIGCOMM, pp. 251–262 (1999)Google Scholar
  18. 18.
    Newman, M.E.J.: The structure and function of complex networks. In: SIAM Rev, pp. 167–256 (2006)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Watts, D.: Collective dynamics of ‘small-world’ networks. Nature 393, 440–442 (1998)CrossRefGoogle Scholar
  20. 20.
    Quattrociocchi, W., Amblard, F., Galeota, E.: Selection in scientific networks. Soc. Netw. Anal. Min. 2(3), 1–9 (2010)Google Scholar
  21. 21.
    Leskovec, J., Kleinberg, J., Faloutsos, C.: Graph evolution: densification and shrinking diameters. Physics 1(1), 2 (2006)Google Scholar
  22. 22.
    Redner, S.: How popular is your paper? an empirical study of the citation distribution. Phys. Condens. Matter 4(2), 131–134 (1998)Google Scholar
  23. 23.
    Welch, M.J., Schonfeld, U., He, D., Cho, J.: Topical semantics of twitter links. In: WSDM, pp. 327–336 (2011)Google Scholar
  24. 24.
    Martin, T., Ball, B., Karrer, B., Newman, M.E.J.: Coauthorship and citation in scientific publishing. CoRR, abs/1304.0473 (2013)Google Scholar
  25. 25.
    Xie, J., Zhang, C., Wu, M.: Modeling microblogging communication based on human dynamics. In: FSKD, pp. 2290–2294 (2011)Google Scholar
  26. 26.
    Bollen, J., Pepe, A., Mao, H.: Modeling public mood and emotion: twitter sentiment and socio-economic phenomena. CoRR, arXiv:0911.1583 (2009)Google Scholar
  27. 27.
    Gruhl, D., Guha, R.V., Liben-Nowell, D., Tomkins, A.: Information diffusion through blogspace. In: WWW, pp. 491–501 (2004)Google Scholar
  28. 28.
    Mondal, J., Deshpande, A.: Managing large dynamic graphs efficiently. In: Proceedings of the ACM SIGMOD International Conference on Management of Data, SIGMOD pp. 145–156 (2012)Google Scholar
  29. 29.
    Ma, H., Qian, W., Xia, F., He, X., Xu, J., Zhou, A.: Towards modeling popularity of microblogs. Front. Comput. Sci. 7(2), 171–184 (2013)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.College of Computer and Information EngineeringShanghai Polytechnic UniversityShanghaiChina
  2. 2.School of Data Science and EngineeringEast China Normal UniversityShanghaiChina

Personalised recommendations