Advertisement

Wireless Nanosensor Network with Flying Gateway

  • Rustam Pirmagomedov
  • Mikhail Blinnikov
  • Ruslan Kirichek
  • Andrey Koucheryavy
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10866)

Abstract

The use of unmanned aerial vehicles (UAVs) with a nano communication networks can significantly expand the network’s capabilities. In addition, UAVs can automate the process of data collection and reduce its cost. This article expands the application that uses UAV to collect data from passive nanosensor devices. The article considers the specifics of the THz frequency range for the energy supply of nanodevices, as well as for communication with them. The paper presents a mathematical model of these processes and simulation results.

Keywords

Nanonetworks Nanosensors UAV 

Notes

Acknowledgment

The publication has been prepared with the support of the “RUDN University Program 5-100”.

References

  1. 1.
    Akyildiz, I.F., Jornet, J.M.: Graphene-based plasmonic nano-antenna for terahertz band communication. U.S. Patent No. 9,643,841, 9 May 2017Google Scholar
  2. 2.
    Aznakayeva, D.E., Yakovenko, I.A., Aznakayev, E.G.: Passive acoustic graphene nanosensor modeling. In: Radar Methods and Systems Workshop (RMSW). IEEE (2016)Google Scholar
  3. 3.
    Aznakayeva, D.E., Yakovenko, I.A., Aznakayev, E.G.: Numerical calculation of passive acoustic graphene nanosensor parameters. In: Radar Methods and Systems Workshop (RMSW). IEEE (2016)Google Scholar
  4. 4.
    Blinnikov, M., Pirmagomedov, R.: Wireless identifying system based on nano-tags. In: Proceedings of 18th International Conference on Advanced Communication Technology (ICACT) 2018. — Phoenix Park, Korea – in publishingGoogle Scholar
  5. 5.
    Rusci, M., Rossi, D., Lecca, M., Gottardi, M., Farella, E., Benini, L.: An event-driven ultra-low-power smart visual sensor. IEEE Sens. J. 16(13), 5344–5353 (2016)CrossRefGoogle Scholar
  6. 6.
    Jornet, J.M., Akyildiz, I.F.: Joint energy harvesting and communication analysis for perpetual wireless nanosensor networks in the terahertz band. IEEE Trans. Nanotechnol. 11(3), 570–580 (2012)CrossRefGoogle Scholar
  7. 7.
    Boronin, P., et al.: Capacity and throughput analysis of nanoscale machine communication through transparency windows in the terahertz band. Nano Commun. Netw. 5(3), C72–C82 (2014)CrossRefGoogle Scholar
  8. 8.
    Jornet, J., Akyildiz, I.: Channel modeling and capacity analysis for electromagnetic wireless nanonetworks in the terahertz band. IEEE Trans. Wirel. Commun. 10(10), 3211–3221 (2011)CrossRefGoogle Scholar
  9. 9.
    Kokkoniemi, J., Lehtomäki, J., Umebayashi, K., Juntti, M.: Frequency and time domain channel models for nanonetworks in terahertz band. IEEE Trans. Antennas Propag. 63(2), 678–691 (2015)CrossRefGoogle Scholar
  10. 10.
    Tsujimura, K., Umebayashi, K., Kokkoniemi, J., Lethomäki, J.: A study on channel model for THz band. In: 2016 International Symposium on Antennas and Propagation (ISAP) (2016)Google Scholar
  11. 11.
    Rothman, L.S.: The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition. J. Quant. Spectrosc. Radiat. Transfer 60(5), 665–710 (1998)CrossRefGoogle Scholar
  12. 12.
  13. 13.
    Jornet, J.M., Akyildiz, I.F.: Low-weight channel coding for interference mitigation in electromagnetic nanonetworks in the terahertz band. In: Proceedings of IEEE International Conference on Communication, pp. 1–6 (2011)Google Scholar
  14. 14.
    Jornet, J.M., Akyildiz, I.F.: Information capacity of pulse-based wireless nanosensor networks. In: Proceedings of 8th Annual IEEE Communications Society Conference on Sensor, Mesh and Ad Hoc Communications and Networks, pp. 80–88 (2011)Google Scholar
  15. 15.
    Pirmagomedov, R., Hudoev, I., Shangina, D.: Simulation of medical sensor nanonetwork applications traffic. In: Vishnevskiy, Vladimir M., Samouylov, Konstantin E., Kozyrev, Dmitry V. (eds.) DCCN 2016. CCIS, vol. 678, pp. 430–441. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-51917-3_38CrossRefGoogle Scholar
  16. 16.
    Weisstein, EW.: Circle line picking. From MathWorld–A Wolfram Web Resource (2004)Google Scholar
  17. 17.
    Pirmagomedov, R., Blinnikov, M., Glushakov, R., Muthanna, A., Kirichek, R., Koucheryavy, A.: Dynamic data packaging protocol for real-time medical applications of nanonetworks. In: Galinina, O., Andreev, S., Balandin, S., Koucheryavy, Y. (eds.) NEW2AN/ruSMART/NsCC -2017. LNCS, vol. 10531, pp. 196–205. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-67380-6_18CrossRefGoogle Scholar

Copyright information

© IFIP International Federation for Information Processing 2018

Authors and Affiliations

  • Rustam Pirmagomedov
    • 1
  • Mikhail Blinnikov
    • 2
  • Ruslan Kirichek
    • 2
  • Andrey Koucheryavy
    • 2
  1. 1.Peoples’ Friendship University of RussiaMoscowRussian Federation
  2. 2.St. Petersburg State University of TelecommunicationSt. PetersburgRussian Federation

Personalised recommendations