Advertisement

Pairing-Based Cryptography on the Internet of Things: A Feasibility Study

  • Ioanna KarantaidouEmail author
  • Spyros T. Halkidis
  • Sophia Petridou
  • Lefteris Mamatas
  • George Stephanides
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10866)

Abstract

Pairing-based cryptography (PBC) has recently received much attention, since the mathematical building block of pairings paved the ground for devising efficient cryptographic protocols exploiting an old inspiration, i.e., to produce the public key of an entity based on its identity. The so-called Identity-Based Cryptography (IBC) simplifies key management procedures, since it does not require certificate-based infrastructures. Moreover, it is an elliptic curve cryptosystem which entails that it offers the same security levels as other public key systems with much smaller key lengths. The above characteristics make it an attractive solution for resource-constrained environments such as the Internet of Things (IoT), where strong confidentiality and signature schemes are necessary. In this article, we conducted feasibility tests of pairing-based cryptography for middle-class IoT devices, such as the Raspberry Pi 3 platform.

Keywords

Pairing-based cryptography Identity-based encryption Short signatures Internet of things 

References

  1. 1.
    Atzori, L., Iera, A., Morabito, G.: The Internet of things: a survey. Comput. Netw. 54(15), 2787–2805 (2010)CrossRefGoogle Scholar
  2. 2.
    Sicari, S., Rizzardi, A., Grieco, L.A., Coen-Porisoni, A.: Security, privacy and trust in the Internet of things: the road ahead. Comput. Netw. 76, 146–164 (2015)CrossRefGoogle Scholar
  3. 3.
    Moody, D., Peralta, R., Perlner, R., Regenscheid, A., Roginsky, A., Chen, L.: Report on pairing-based cryptography. J. Res. Natl. Inst. Stand. Technol. 120, 11–27 (2015)CrossRefGoogle Scholar
  4. 4.
    Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakley, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg (1985).  https://doi.org/10.1007/3-540-39568-7_5CrossRefGoogle Scholar
  5. 5.
    Boneh, D., Franklin, M.: Identity-based encryption from the weil pairing. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001).  https://doi.org/10.1007/3-540-44647-8_13CrossRefGoogle Scholar
  6. 6.
    Boneh, D., Lynn, B., Shacham, H.: Short signatures from the weil pairing. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 514–532. Springer, Heidelberg (2001).  https://doi.org/10.1007/3-540-45682-1_30CrossRefGoogle Scholar
  7. 7.
    Aranha, D.F., Gouvêa, C.P.L.: RELIC is an Efficient Library for Cryptography (2013)Google Scholar
  8. 8.
    Johnson, D., Menezes, A., Vanstone, S.: The elliptic curve digital signature algorithm (ECDSA). Int. J. Inf. Secur. 1(1), 36–63 (2001)CrossRefGoogle Scholar
  9. 9.
    Galbraith, S.D., Kenneth, K.G., Smart, N.P.: Pairings for cryptographers. Discret. Appl. Math. 156(6), 3113–3121 (2008)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Fujisaki, E., Okamoto, T.: Secure integration of asymmetric and symmetric encryption schemes. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 537–554. Springer, Heidelberg (1999).  https://doi.org/10.1007/3-540-48405-1_34CrossRefGoogle Scholar
  11. 11.
    Galindo, D.: Boneh-Franklin identity based encryption revisited. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 791–802. Springer, Heidelberg (2005).  https://doi.org/10.1007/11523468_64CrossRefGoogle Scholar
  12. 12.
    Barreto, P.S.L.M., Costello, C., Misoczki, R., Naehrig, M., Pereira, G.C.C.F., Zanon, G.: Subgroup security in pairing-based cryptography. In: Lauter, K., Rodríguez-Henríquez, F. (eds.) LATINCRYPT 2015. LNCS, vol. 9230, pp. 245–265. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-22174-8_14CrossRefzbMATHGoogle Scholar
  13. 13.
    Szczechowiak, P., Kargl, A., Scott, A., Collier, M.: On the application of pairing based cryptography to wireless sensor networks. In: Proceedings of the 2nd ACM Conference on Wireless network security, pp. 1–12 (2009)Google Scholar
  14. 14.
    Mandal, M., Sharma, G., Bala, S., Verma, A.K.: Feasibility of public key cryptography in wireless sensor networks. J. Theor. Phys. Cryptogr. 7, 20–24 (2014)Google Scholar
  15. 15.
    Jacobsen, R.H., Mikkelsen, S.A., Rasmussen, N.H.: Towards the use of pairing-based cryptography for resource-constrained home area networks. In: Proceedings of the 2015 Euromicro Conference on Digital System Design. IEEE, Portugal (2015)Google Scholar
  16. 16.
    Oliveira, L.B., Scott, M., López, J., Dahab, R.: TinyPBC: pairings for authenticated identity-based non-interactive key distribution in sensor networks. Comput. Commun. 34(3), 485–493 (2011)CrossRefGoogle Scholar
  17. 17.
    Wu, D.J., Taly, A., Shankar, A., Boneh, D.: Privacy, discovery, and authentication for the Internet of things. In: Askoxylakis, I., Ioannidis, S., Katsikas, S., Meadows, C. (eds.) ESORICS 2016. LNCS, vol. 9879, pp. 301–319. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-45741-3_16CrossRefGoogle Scholar
  18. 18.
    Ambrosin, M., et al.: On the feasibility of attribute based encryption on Internet of things devices. IEEE Micro 36(6), 25–35 (2016)CrossRefGoogle Scholar

Copyright information

© IFIP International Federation for Information Processing 2018

Authors and Affiliations

  1. 1.Department of Applied InformaticsUniversity of MacedoniaThessalonikiGreece

Personalised recommendations