Advertisement

Testbed Evaluation of Optimized REACT over Multi-hop Paths

  • Matthew J. Mellott
  • Charles J. Colbourn
  • Violet R. Syrotiuk
  • Ilenia Tinnirello
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10866)

Abstract

REACT is a distributed resource allocation protocol that computes a max-min allocation of airtime for mesh networks. The allocation adapts automatically to changes in local traffic load and in local network views. SALT, a new contention window tuning algorithm, ensures that each node secures the airtime allocated to it by REACT. REACT and SALT are extended to the multi-hop flow scenario with the introduction of a new airtime reservation algorithm. With a reservation in place, multi-hop TCP flows show increased throughput when running over SALT and REACT compared to running over 802.11 DCF. All results are obtained from experimentation on the w-iLab.t wireless network testbed in Belgium.

Notes

Acknowledgements

This work is supported in part by the U.S. National Science Foundation under Grant No. 1421058.

References

  1. 1.
    Bharghavan, V., Demers, A., Shenker, S., Zhang, L.: MACAW: a media access protocol for wireless LANs. In: ACM SIGCOMM (1994)Google Scholar
  2. 2.
    Bianchi, G., Tinnirello, I.: Remarks on IEEE 802.11 DCF performance analysis. IEEE Commun. Lett. 9(8), 765–767 (2005)CrossRefGoogle Scholar
  3. 3.
    Bicket, J., Aguayo, D., Biswas, S., Morris, R.: Architecture and evaluation of an unplanned 802.11b mesh network. In: Proceedings of the 11th Annual ACM MobiCom, pp. 31–42 (2005).  https://doi.org/10.1145/1080829.1080833
  4. 4.
    Blefari-Melazzi, N., Detti, A., Habib, I., Ordine, A., Salsano, S.: TCP fairness issues in IEEE 802.11 networks: problem analysis and solutions based on rate control. IEEE Trans. Wirel. Commun. 6(4), 1346–1355 (2007)CrossRefGoogle Scholar
  5. 5.
    Bouckaert, S., Vandenberghe, W., Jooris, B., Moerman, I., Demeester, P.: The w-iLab.t testbed. In: Magedanz, T., Gavras, A., Thanh, N.H., Chase, J.S. (eds.) TridentCom 2010. LNICST, vol. 46, pp. 145–154. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-17851-1_11CrossRefGoogle Scholar
  6. 6.
    Cali, F., Conti, M., Gregori, E.: Dynamic tuning of the IEEE 802.11 protocol to achieve a theoretical throughput limit. IEEE/ACM Trans. Netw. 8(6), 785–799 (2000)CrossRefGoogle Scholar
  7. 7.
    Camp, J., Robinson, J., Steger, C., Knightly, E.: Measurement driven deployment of a two-tier urban mesh access network. In: Proceedings of the 4th ACM Mobisys, pp. 96–109 (2006)Google Scholar
  8. 8.
    Carlson, E., Prehofer, C., Bettstetter, C., Karl, H., Wolisz, A.: A distributed end-to-end reservation protocol for IEEE 802.11-based wireless mesh networks. IEEE J. Sel. Areas Commun. 24(11), 2018–2027 (2006)CrossRefGoogle Scholar
  9. 9.
    Carrano, R., Magalhaes, L., Saade, D., Albuquerque, C.: IEEE 802.11s multihop MAC: a tutorial. IEEE Commun. Surv. Tutor. 13(1), 52–67 (2011)CrossRefGoogle Scholar
  10. 10.
    Ergin, M.A., Ramachandran, K., Gruteser, M.: An experimental study of inter-cell interference effects on system performance in unplanned wireless LAN deployments. Comput. Netw. 52(14), 2728–2744 (2008)CrossRefGoogle Scholar
  11. 11.
    Fu, Z., Zerfos, P., Luo, H., Lu, S., Zhang, L., Gerla, M.: The impact of multi-hop wireless channel on TCP throughput and loss. In: Proceedings of IEEE INFOCOM, April 2003Google Scholar
  12. 12.
    Garetto, M., Salonidis, T., Knightly, E.: Modeling per-flow throughput and capturing starvation in CSMA multi-hop wireless networks. IEEE/ACM Trans. Netw. 16(4), 864–877 (2008)CrossRefGoogle Scholar
  13. 13.
    Garlisi, D., Giuliano, F., Lo Valvo, A., Lutz, J., Syrotiuk, V.R., Tinnirello, I.: Making Wi-Fi work in multi-hop topologies: automatic negotiation and allocation of airtime. In: Proceedings of IEEE CNERT, pp. 48–55 (2015)Google Scholar
  14. 14.
    Gupta, A., Wormsbecker, I., Williamson, C.: Experimental evaluation of TCP performance in multi-hop wireless ad hoc networks. In: Proceedings of the 12th Annual IEEE International Symposium on MASCOTS, pp. 3–11 (2004)Google Scholar
  15. 15.
    IEEE standard 802.11: W-LAN medium access control & physical layer specifications, December 1999Google Scholar
  16. 16.
    Imboden, T., Akkaya, K., Moore, Z.: Performance evaluation of wireless mesh networks using IEEE 802.11s and IEEE 802.11n. In: Proceedings of the IEEE ICC, pp. 5675–5679, June 2012Google Scholar
  17. 17.
    Jardosh, A.P., Mittal, K., Ramachandran, K.N., Belding, E.M., Almeroth, K.C.: IQU: practical queue-based user association management for WLANs. In: Proceedings of the 12th ACM MobiCom, pp. 158–169 (2006)Google Scholar
  18. 18.
    Kosek-Szott, K., et al.: What’s new for QoS in IEEE 802.11? IEEE Netw. 27(6), 95–104 (2013)CrossRefGoogle Scholar
  19. 19.
    Lutz, J., Colbourn, C.J., Syrotiuk, V.R.: ATLAS: adaptive topology-and load-aware scheduling. IEEE Trans. Mob. Comput. 13(10), 2255–2268 (2014)CrossRefGoogle Scholar
  20. 20.
    Mellott, M.J.: Smoothed airtime linear tuning and optimized REACT with multi-hop extensions. Master’s thesis, Arizona State University (2018)Google Scholar
  21. 21.
    Papagiannaki, K., Yarvis, M., Conner, W.: Experimental characterization of home wireless networks and design implications. In: Proceedings of the 25th IEEE INFOCOM, pp. 1–13, April 2006Google Scholar
  22. 22.
    Shen, Q., Fang, X., Li, P., Fang, Y.: Admission control based on available bandwidth estimation for wireless mesh networks. IEEE Trans. Veh. Technol. 58(5), 2519–2528 (2009)CrossRefGoogle Scholar

Copyright information

© IFIP International Federation for Information Processing 2018

Authors and Affiliations

  • Matthew J. Mellott
    • 1
  • Charles J. Colbourn
    • 1
  • Violet R. Syrotiuk
    • 1
  • Ilenia Tinnirello
    • 2
  1. 1.School of Computing, Informatics, and Decision Systems EngineeringArizona State UniversityTempeUSA
  2. 2.Department of Electrical EngineeringUniversity of PalermoPalermoItaly

Personalised recommendations