Mathematical Techniques

  • Edgar Brunner
  • Arne C. Bathke
  • Frank Konietschke
Part of the Springer Series in Statistics book series (SSS)


In this chapter, some basic definitions and results from matrix algebra, analysis, and probability theory are provided. These results were used throughout the previous chapters. It is our aim to provide unique notations when referring to elementary results and using some well-known mathematical techniques. Regarding more detailed explanations and derivations, we refer to the literature listed in the subsequent sections.


  1. Atiqullah M (1962) The estimation of residual variance in quadratically balanced least-squares problems and the robustness of the F-test. Biometrika 49:83–91MathSciNetCrossRefGoogle Scholar
  2. Basilevsky A (1983) Applied matrix algebra in the statistical sciences. North-Holland, AmsterdamzbMATHGoogle Scholar
  3. Dehling H, Haupt B (2004) Einführung in Die Wahrscheinlichkeitstheorie und Statistik, 2. Auflage. Springer, HeidelbergzbMATHGoogle Scholar
  4. Klenke A (2008) Wahrscheinlichkeitstheorie, 2. korrigierte Auflage. Springer, HeidelbergzbMATHGoogle Scholar
  5. Mathai AM, Provost SB (1992) Quadratic forms in random variables. Marcel Dekker, New YorkzbMATHGoogle Scholar
  6. Ogasawara T, Takahashi M (1951) Independence of quadratic forms in normal system. J Sci Hiroshima Univ 15:1–9CrossRefGoogle Scholar
  7. Rao CR, Mitra SK (1971) Generalized inverse of matrices and its applications. Wiley, New YorkzbMATHGoogle Scholar
  8. Rao CR, Rao MB (1998) Matrix algebra and its applications to statistics and econometrics. World Scientific, SingaporeCrossRefGoogle Scholar
  9. Ravishanker N, Dey DK (2002) A first course in linear model theory. Chapman & Hall/CRC Press, Boca RatonzbMATHGoogle Scholar
  10. Schlittgen R (1996) Statistische Inferenz. Oldenbourg, München, WienGoogle Scholar
  11. Schott JR (2005) Matrix analysis for statistics. Chapman & Hall/CRC Press, Boca RatonzbMATHGoogle Scholar
  12. Van der Vaart, AW (1998) Asymptotic statistics. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  13. Van der Vaart, AW (2000) Asymptotic statistics. Paperback edition. Cambridge University Press, CambridgeGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Edgar Brunner
    • 1
  • Arne C. Bathke
    • 2
  • Frank Konietschke
    • 3
  1. 1.Department of Medical StatisticsUniversity of G¨ottingen, University Medical CenterGöttingenGermany
  2. 2.Department of MathematicsUniversity of SalzburgSalzburgAustria
  3. 3.Institute of Biometry and Clinical EpidemiologyCharité – University Medical SchoolBerlinGermany

Personalised recommendations