Advertisement

Introduction

  • Ulrich Wilbrandt
Chapter
Part of the Advances in Mathematical Fluid Mechanics book series (AMFM)

Abstract

Flows in domains which are partly occupied by a porous medium are of great interest and importance, noticeable examples include groundwater—surface water flow, as well as air and oil filters, blood filtration through vessel walls, and fuel cells.

References

  1. [Ang11]
    Philippe Angot. On the well-posed coupling between free fluid and porous viscous flows. Appl. Math. Lett., 24(6):803–810, 2011.MathSciNetCrossRefGoogle Scholar
  2. [CGH+10]
    Yanzhao Cao, Max Gunzburger, Xiaolong Hu, Fei Hua, Xiaoming Wang, and Weidong Zhao. Finite element approximations for Stokes-Darcy flow with Beavers-Joseph interface conditions. SIAM J. Numer. Anal., 47(6):4239–4256, 2010.MathSciNetCrossRefGoogle Scholar
  3. [CGHW10]
    Yanzhao Cao, Max Gunzburger, Fei Hua, and Xiaoming Wang. Coupled Stokes-Darcy model with Beavers-Joseph interface boundary condition. Commun. Math. Sci., 8(1):1–25, 2010.MathSciNetCrossRefGoogle Scholar
  4. [CGHW11]
    Wenbin Chen, Max Gunzburger, Fei Hua, and Xiaoming Wang. A parallel robin-robin domain decomposition method for the Stokes-Darcy system. SIAM J. Numerical Analysis, 49(3):1064–1084, 2011.MathSciNetCrossRefGoogle Scholar
  5. [DQ09]
    M. Discacciati and A. Quarteroni. Navier-Stokes/Darcy coupling: modeling, analysis and numerical approximation. Revista Matematica Complutense, 22(2):315–426, 2009.MathSciNetzbMATHGoogle Scholar
  6. [DQV07]
    Marco Discacciati, Alfio Quarteroni, and Alberto Valli. Robin-Robin domain decomposition methods for the Stokes-Darcy coupling. SIAM J. Numer. Anal., 45(3):1246–1268, 2007.MathSciNetCrossRefGoogle Scholar
  7. [GOS11a]
    Gabriel N. Gatica, Ricardo Oyarzúa, and Francisco-Javier Sayas. Analysis of fully-mixed finite element methods for the Stokes-Darcy coupled problem. Math. Comp., 80(276):1911–1948, 2011.MathSciNetCrossRefGoogle Scholar
  8. [JM00]
    Willi Jäger and Andro Mikelić. On the interface boundary condition of Beavers, Joseph, and Saffman. SIAM J. Appl. Math., 60(4):1111–1127, 2000.MathSciNetCrossRefGoogle Scholar
  9. [LSY02]
    William J. Layton, Friedhelm Schieweck, and Ivan Yotov. Coupling fluid flow with porous media flow. SIAM J. Numer. Anal., 40(6):2195–2218 (2003), 2002.MathSciNetCrossRefGoogle Scholar
  10. [RY05]
    Béatrice Rivière and Ivan Yotov. Locally conservative coupling of Stokes and Darcy flows. SIAM J. Numer. Anal., 42(5):1959–1977, 2005.MathSciNetCrossRefGoogle Scholar
  11. [Saf71]
    P.G. Saffman. On the boundary condition at the interface of a porous medium. Stud. Appl. Math., 50:93–101, 1971.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Ulrich Wilbrandt
    • 1
  1. 1.Weierstrass Institute for Applied Analysis and StochasticsBerlinGermany

Personalised recommendations