Advertisement

Combination Theorem for Flexible Groups

  • Sang-hyun Kim
  • Thomas Koberda
  • Mahan Mj
Chapter
Part of the Lecture Notes in Mathematics book series (LNM, volume 2231)

Abstract

In this chapter, we establish a combination theorem (Theorem 5.1) for the class of flexible and liftable-flexible groups. This generalizes the arguments in Chap.  4 that most Fuchsian groups are flexible. Implications of flexibility and liftability for limit groups and quasimorphisms are discussed here.

References

  1. 4.
    J. Barlev, T. Gelander, Compactifications and algebraic completions of limit groups. J. Anal. Math. 112, 261–287 (2010). MR 2763002MathSciNetCrossRefGoogle Scholar
  2. 7.
    M. Bestvina, M. Feighn, Notes on Sela’s work: limit groups and Makanin-Razborov diagrams, in Geometric and Cohomological Methods in Group Theory. London Mathematical Society Lecture Note Series, vol. 358 (Cambridge University Press, Cambridge, 2009), pp. 1–29. MR 2605174Google Scholar
  3. 9.
    M. Bestvina, K. Bromberg, K. Fujiwara, Constructing group actions on quasi-trees and applications to mapping class groups. Publ. Math. Inst. Hautes Études Sci. 122, 1–64 (2015). MR 3415065MathSciNetCrossRefGoogle Scholar
  4. 20.
    R. Brooks, Some Remarks on Bounded Cohomology. Riemann Surfaces and Related Topics: Proceedings of the 1978 Stony Brook Conference (State Univ. New York, Stony Brook, N.Y., 1978). Annals of Mathematics Studies, vol. 97 (Princeton University Press, Princeton, 1981), pp. 53–63. MR 624804Google Scholar
  5. 31.
    C. Champetier, V. Guirardel, Limit groups as limits of free groups. Israel J. Math. 146, 1–75 (2005). MR 2151593MathSciNetCrossRefGoogle Scholar
  6. 38.
    D.B.A. Epstein, K. Fujiwara, The second bounded cohomology of word-hyperbolic groups. Topology 36(6), 1275–1289 (1997). MR 1452851MathSciNetCrossRefGoogle Scholar
  7. 96.
    Z. Sela, Diophantine geometry over groups. I. Makanin-Razborov diagrams. Publ. Math. Inst. Hautes Études Sci. 93, 31–105 (2001). MR 1863735MathSciNetCrossRefGoogle Scholar
  8. 105.
    H. Wilton, Solutions to Bestvina & Feighn’s exercises on limit groups, in Geometric and Cohomological Methods in Group Theory. London Mathematical Society Lecture Note Series, vol. 358 (Cambridge University Press, Cambridge, 2009), pp. 30–62. MR 2605175 (2011g:20037)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Sang-hyun Kim
    • 1
  • Thomas Koberda
    • 2
  • Mahan Mj
    • 3
  1. 1.School of MathematicsKorea Institute for Advanced StudySeoulRepublic of Korea
  2. 2.Department of MathematicsUniversity of VirginiaCharlottesvilleUSA
  3. 3.School of MathematicsTata Institute of Fundamental ResearchMumbaiIndia

Personalised recommendations