Advertisement

Preliminaries

  • Sang-hyun Kim
  • Thomas Koberda
  • Mahan Mj
Chapter
Part of the Lecture Notes in Mathematics book series (LNM, volume 2231)

Abstract

In this chapter, we briefly review well-known facts on circle actions and on (discrete or indiscrete) subgroups of \( \operatorname {\mathrm {PSL}}_2(\mathbb {R})\).

References

  1. 6.
    A.F. Beardon, The Geometry of Discrete Groups, 1st edn. Graduate Texts in Mathematics, vol. 91 (Springer, New York, 1983)CrossRefGoogle Scholar
  2. 21.
    M. Bucher, R. Frigerio, T. Hartnick, A note on semi-conjugacy for circle actions. Enseign. Math. 62(3–4), 317–360 (2016). MR 3692890MathSciNetCrossRefGoogle Scholar
  3. 26.
    D. Calegari, Foliations and the Geometry of 3-Manifolds. Oxford Mathematical Monographs (Oxford University Press, Oxford, 2007). MR 2327361 (2008k:57048)Google Scholar
  4. 28.
    D. Calegari, A. Walker, Ziggurats and rotation numbers. J. Mod. Dyn. 5(4), 711–746 (2011). MR 2903755Google Scholar
  5. 47.
    É. Ghys, Actions de réseaux sur le cercle. Invent. Math. 137(1), 199–231 (1999). MR 1703323 (2000j:22014)MathSciNetCrossRefGoogle Scholar
  6. 48.
    É. Ghys, Groups acting on the circle. Enseign. Math. (2) 47(3–4), 329–407 (2001). MR 1876932 (2003a:37032)Google Scholar
  7. 60.
    M. Jankins, W.D. Neumann, Rotation numbers of products of circle homeomorphisms. Math. Ann. 271(3), 381–400 (1985). MR 787188MathSciNetCrossRefGoogle Scholar
  8. 78.
    K. Mann, Rigidity and flexibility of group actions on the circle, in Handbook of Group Actions (2015, to appear)Google Scholar
  9. 79.
    K. Mann, Spaces of surface group representations. Invent. Math. 201(2), 669–710 (2015). MR 3370623MathSciNetCrossRefGoogle Scholar
  10. 88.
    R. Naimi, Foliations transverse to fibers of Seifert manifolds. Comment. Math. Helv. 69(1), 155–162 (1994). MR 1259611MathSciNetCrossRefGoogle Scholar
  11. 89.
    A. Navas, Groups of Circle Diffeomorphisms, Spanish edn. Chicago Lectures in Mathematics (University of Chicago Press, Chicago, 2011). MR 2809110Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Sang-hyun Kim
    • 1
  • Thomas Koberda
    • 2
  • Mahan Mj
    • 3
  1. 1.School of MathematicsKorea Institute for Advanced StudySeoulRepublic of Korea
  2. 2.Department of MathematicsUniversity of VirginiaCharlottesvilleUSA
  3. 3.School of MathematicsTata Institute of Fundamental ResearchMumbaiIndia

Personalised recommendations