Evaluation of Information Retrieval Algorithms Within an Energy Documents Repository

  • Diego Márquez
  • Yasmín HernándezEmail author
  • Alberto Ochoa-Ortiz
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10633)


The development of energy and electricity sectors have result in a cumulus of technical and scientific documents related with several topics. The large activity in these sectors results in a growing repository, where the search for information based on keywords is not sufficient. We need a way to find relevant documents given a need of information. Information retrieval is the process of finding unstructured documents to satisfy an information need from within large collections. Several information retrieval has been proposed, we have analyzed them. Base on this analysis, we are working on an information retrieval model according to specific needs of energy and electricity sectors. We have evaluated the vector Space algorithm, probabilistic algorithm and our proposal. Here, we present the results of the evaluation and our preliminary proposal.


Information retrieval Natural language processing Artificial intelligence Algorithms Text retrieval Energy documents 



Authors would like to thank to Publication Department of the Instituto Nacional de Electricidad y Energías Limpias for its support in the development of this research.


  1. 1.
    Manning, C.D., Raghavan, P., Schütze, H.: Introduction to Information Retrieval. Cambridge UP, Cambridge (2009). Online EditionGoogle Scholar
  2. 2.
    Ponte, J.M.: A language modeling approach to information retrieval (1998)Google Scholar
  3. 3.
    Hawking, D., Moffat, A., Trotman, A.: Inf. Retr. 20, 169 (2017)CrossRefGoogle Scholar
  4. 4.
    Abadal, E., Codina, L.: Information retrieval, documented databases: characteristics, function and method, Chap. 2, pp. 29–92 (2005)Google Scholar
  5. 5.
    Van Rijsbergen, C.J.: Information Retrieval, 2nd edn. Butterworth & Co (Publishers) Ltd., London (1979)zbMATHGoogle Scholar
  6. 6.
    Vallez, M., Pedraza-Jimenez, R.: Natural language processing in textual information retrieval and related topics, no. 5 (2007). Online versionGoogle Scholar
  7. 7.
    Nunes, S.: State of the art in web information retrieval (2006)Google Scholar
  8. 8.
    Khan, A., Salim, N.: A review on abstractive summarization methods. J. Theoret. Appl. Inf. Technol. 59(1), 64–72 (2014)Google Scholar
  9. 9.
    Rahman, K.M., Khamparia, A.: Techniques, applications and challenges of opinion mining. IJCTA 9(41), 455–461 (2016)Google Scholar
  10. 10.
    Hui, K., Yates, A., Berberich, K., De Melo, G.: Position-aware representations for relevance matching in neural information retrieval (2017)Google Scholar
  11. 11.
    Craswell, N., Croft, W.B., Guo, J., Mitra, B., De Rijke, M.: Report on the SIGIR 2016 Workshop on Neural Information Retrieval (Neu-IR) (2016)Google Scholar
  12. 12.
    Steven, W.: Boolean operations, Information Retrieval Data Structures and Algorithms. Prentice-Hall, Upper Saddle River (1992)Google Scholar
  13. 13.
    Méndez, F.J.M.: Recuperación de información: modelos, sistemas y evaluación. KIOSKO JMC, Murcia (2004)Google Scholar
  14. 14.
    Chen, H.: Machine learning for information retrieval: neural networks, symbolic learning, and genetic algorithms (1995)CrossRefGoogle Scholar
  15. 15.
    Porter, M. F.: Snowball: a language for stemming algorithms (2001)Google Scholar
  16. 16.
    Greenwood, M.A.: Implementing a vector space document retrieval system (2002)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Diego Márquez
    • 1
  • Yasmín Hernández
    • 1
    Email author
  • Alberto Ochoa-Ortiz
    • 2
  1. 1.Instituto Nacional de Electricidad y Energías Limpias, Gerencia de Tecnologías de la InformaciónCuernavacaMexico
  2. 2.Maestría en Cómputo Aplicado, Universidad Autónoma de Ciudad JuárezCiudad JuárezMexico

Personalised recommendations