Jitter Approximation and Confidence Masks in Simulated SCNA Using AEP Distribution

  • Jorge Ulises Muñoz–Minjares
  • Yuriy S. ShmaliyEmail author
  • Luis Javier Morales–Mendoza
  • Osbaldo Vite–Chavez
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10633)


Jitter is inherent to the breakpoints of measured genome somatic copy number alterations (SCNAs). Therefore, an analysis of jitter is required to reduce errors in the SCNA estimation. The SCNA measurements are accompanied with intensive noise that may cause errors and ambiguities in the breakpoint detection with low signal-to-noise ratios (SNRs). We show that the asymmetric exponential power distribution (AEPD) provides much better approximation to the jitter distribution than the earlier proposed discrete skew Laplace distribution. Furthermore, we confirm that (AEP) distribution its suitable for computing the confidence upper and lower boundary limits used to guarantee an existence of genomic changes with a required probability. We test some simulated SCNAs measurements by the upper and lower confidence bound masks with several probabilities.


  1. 1.
    Hsin-Ta, W., Iman, H., Raphael, J.R.: Detecting independent and recurrent copy number aberrations using interval graphs. Bioinformatics 30(12), i195–i203 (2014)CrossRefGoogle Scholar
  2. 2.
    Hastings, P.J., Lupski, J.R., Rosenberg, S.M., Ira, G.: Mechanisms of change in gene copy number. Nat. Rev. Genet. 10(8), 551–564 (2009)CrossRefGoogle Scholar
  3. 3.
    Popova, T., Boeva, V., Manie, E., Rozenholc, Y., Barillot, E., Stern, M.H.: Analysis of somatic alterations in cancer genome: from SNP arrays to next generation sequencing. In: Sequence and Genome Analysis I Humans, Animals and Plants. iConcept Press Ltd., August 2013. Ed. by Ltd iPGoogle Scholar
  4. 4.
    Shmaliy, Y.S.: On the multivariate conditional probability density of a signal perturbed by Gaussian noise. IEEE Trans. Inf. Theory 53, 4792–4797 (2007)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Munoz-Minjares, J.U., Shmaliy Y.S., Cabal, A.J.: Noise studies in measurements and estimates of stepwise changes in genome DNA chromosomal structures. In: Proceedings of International Conference on Pure Mathematics, Applied Mathematics, Computational Methods (PMAMCM 2014), Santorini Island, Greece, pp. 212–221 (2014)Google Scholar
  6. 6.
    Pique-Regi, R., Ortega, A., Tewfik, A., Asgharzadeh, S.: Detection changes in the DNA copy number. IEEE Signal Process. Mag. 29, 98–107 (2012)CrossRefGoogle Scholar
  7. 7.
    Shmaliy, Y.S.: Limiting phase errors of passive wireless SAW sensing with differential measurement. IEEE Sens. J. 4, 819–827 (2004)CrossRefGoogle Scholar
  8. 8.
    Joshi, A.: Speech emotion recognition using combined features of HMM & SVM algorithm. Int. J. Adv. Res. Comput. Sci. Softw. Eng. 3(8), 387–393 (2013)Google Scholar
  9. 9.
    Hupe, P., Stransky, N., Thiery, J.P., Radvanyi, F., Barillot, E.: Analysis of array CGH data: from signal ratio to gain and loss of DNA regions. Bioinformatics 20(18), 3413–3422 (2004)CrossRefGoogle Scholar
  10. 10.
    Lemaitre, C., Tannier, E., Gautier, C., Sagot, M.F.: Precise detection of rearrangement breakpoints in mammalian chromosomes. BMC Bioinform. 9(1), 286 (2008)CrossRefGoogle Scholar
  11. 11.
    Wong, K., Keane, T.M., Stalker, J., Adams, D.J.: Enhanced structural variant and breakpoint detection using SVMerge by integration of multiple detection methods and local assembly. Genome Biol. 11(12), 128 (2010)CrossRefGoogle Scholar
  12. 12.
    Donoho, D.L.: De-noising by soft thresholding. IEEE Trans. Inf. Theory 41, 613–627 (1995)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Tukey, J.W.: Exploratory Data Analysis. Addison-Wesley, Menlo Park (1971)zbMATHGoogle Scholar
  14. 14.
    Lepski, O.V., Mammen, E., Spokoiny, V.G.: Optimal spatial adaptation to inhomogenous smoothness: an approach based on kernel estimates with variable bandwidth selectors. Ann. Stat. 25, 929–947 (1997)CrossRefGoogle Scholar
  15. 15.
    Rao B.D., Hari, K.V.S.: Effect of spatial smoothing on the performance of MUSIC and the minimum-norm method. In: Proceedings of IEEE, vol. 137(F), no. 6, pp. 449–458, December 1990MathSciNetCrossRefGoogle Scholar
  16. 16.
    Picard, F., Robin, S., Lavielle, M., Vaisse, C., Daudin, J.J.: A statistical approach for array CGH data analysis. BMC Bioinform. 6(1), 27–37 (2012)CrossRefGoogle Scholar
  17. 17.
    Munoz-Minjares, J.U., Shmaliy, Y.S.: Approximate jitter probability in the breakpoints of genome copy number variations. In: Proceedings of 10th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE), Mexico City, Mexico, pp. 128–131 (2013)Google Scholar
  18. 18.
    Muñoz, J.U., Cabal, J., Shmaliy, Y.S.: Effect of noise on estimate bounds for genome DNA structural changes. WSEAS Trans. Biol. Biomed. 11, 52–61 (2014)Google Scholar
  19. 19.
    Munoz-Minjares, J.U., Shmaliy, Y.S., Cabal-Aragon, J.: Confidence limits for genome DNA copy number variations in HR-CGH array measurements. Biomed. Signal Process. Control 10, 166–173 (2014)CrossRefGoogle Scholar
  20. 20.
    Muñoz-Minjares, J., CabalAragon, J., Shmaliy, Y.S.: Confidence masks for genome DNA copy number variations in applications to HR-CGH array measurements. Biomed. Signal Process. Control. 13, 337–344 (2014)CrossRefGoogle Scholar
  21. 21.
    Muñoz-Minjares, J., CabalAragon, J., Shmaliy, Y.S.: Effect of noise on estimate bounds for genome DNA structural changes. WSEAS Trans. Biol. Biomed. 11, 52–61 (2014)Google Scholar
  22. 22.
    Kozubowski, T.J., Inusah, S.: A skew Laplace distribution on integers. Ann. Inst. Stat. Math. 58, 555–571 (2006)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Ayebo, A., Kozubowski, T.J.: An asymmetric generalization of Gaussian and Laplace laws. J. Probab. Stat. Sci. 1(2), 187–210 (2003)Google Scholar
  24. 24.
    Buldyrev, S.V., Growiec, J., Riccaboni, M., Stanley, H.E.: The growth of business firms: facts and theory. J. Eur. Econ. Assoc. 5(2–3), 574–584 (2007)CrossRefGoogle Scholar
  25. 25.
    Massey, F.J.: The Kolmogorov-Smirnov test for goodness of fit. J. Am. Stat. Assoc. 46(253), 68–78 (1951)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Jorge Ulises Muñoz–Minjares
    • 1
  • Yuriy S. Shmaliy
    • 1
    Email author
  • Luis Javier Morales–Mendoza
    • 2
  • Osbaldo Vite–Chavez
    • 3
  1. 1.Department of Electronics EngineeringUniversidad de GuanajuatoGuanajuatoMexico
  2. 2.Department of Electronics EngineeringUniversidad VeracruzanaXalapaMexico
  3. 3.Department of Electronics EngineeringUniversidad Autonoma de ZacatecasZacatecasMexico

Personalised recommendations