Advertisement

Courses Select Textbooks: Comparison of Two Methods

  • Dmitry Stefanovskiy
  • Mikhail AlexandrovEmail author
  • Angels Catena
  • Vera Danilova
  • Javier Tejada
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10633)

Abstract

Let one need to select appropriate textbooks for a given course or different parts of a course presented by their limited lists of keywords. When such a selection is based only on correspondence between the contents of textbooks and course description then the problem solution reduces to procedures of Information Retrieval. Here, the former can be considered as a database of documents and the latter as a query. In the paper we show the possibilities of two IR methods: (1) a spreading activation method (SAM) using semantic network related to textbooks, and (2) a coverage-based method (CBM) using a simple formal comparison of vocabularies. Unlike the usual applications of SAM and CBM we use: the criterion of term specificity for building the vocabulary of textbooks and the normalized measure of network activation. The experimental data includes two examples from technical and humantitarian sciences: the course of “Database Management” in the Catholic University of San Pablo in Peru, and the course of “Spanish Lexicology” in the Autonomous University of Barcelona in Spain. The results of the application of both methods are compared to the manual assessments of experts. The presented research is a Pilot study.

Keywords

Education Information Retrieval Spreading activation method Term specificity 

Notes

Acknowledgement

Authors thank the reviewers from the MICAI-2017 Program Committee for their attention to this research and their valuable recommendations.

References

  1. 1.
    Alexandrov, M., Danilova, V., Blanco, X.: A modified tripartite model for document representation in internet sociology. In: Chen, Q., Hameurlain, A., Toumani, F., Wagner, R., Decker, H. (eds.) DEXA 2015. LNCS, vol. 9262, pp. 323–330. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-22852-5_27CrossRefGoogle Scholar
  2. 2.
    Baeza-Yates, R., Ribero-Neto, B.: Modern Information Retrieval. Addison Wesley, Boston (1999)Google Scholar
  3. 3.
    Bourek, A., Alexandrov, M, Lopez, R.: Folksonomy - supplementing Riche expert based taxonomy by terms from online documents. In: Business and Engineering Applications of Intelligence and Information Systems, vol. 23, pp. 115–123. ITHEA Publication, Sofia-Rzeszov (2011)Google Scholar
  4. 4.
    Chantaca, C.: Apuntes de morfología y sintaxis del español. UNAM, Mexico (2008)Google Scholar
  5. 5.
    Crestani, F.: Application of spreading activation techniques in information retrieval. Artif. Intell. Rev. 11(6), 453–482 (1995)CrossRefGoogle Scholar
  6. 6.
    Gelbukh, A., Sidorov, G.: Procesamiento Automático del Español con Enfoque en Recursos Léxicos Grandes. Instituto Politécnico Nacional, Mexico (2006)Google Scholar
  7. 7.
    Lara, L.F.: Curso de lexicología, Colegio de Mexico (2006)Google Scholar
  8. 8.
    Lopez, R., Alexandrov, M., Barreda, D., Tejada J.: Lexisterm - the program for term selection by the criterion of specificity. In: Artificial Intelligence Applications to Business and Engineering Domain, vol. 24, pp. 8–15. ITHEA Publication, Sofia-Rzeszov (2011)Google Scholar
  9. 9.
    Manning, C., Raghavan, P., Schutze, H.: Introduction to Information Retrieval. Cambridge University Press, Cambridge (2008)CrossRefGoogle Scholar
  10. 10.
    Olinger, D.: Selecting Textbooks and Other Curriculum Support Materials for Christian Schools, 7 p. Bju Press, Greenville (2005). http://www.bjupress.com/pdfs/ed-issues-whitepapers/selecting-textbooks.pdf
  11. 11.
    Silberschatz, A.: Fundamentos de Bases de Datos, 5th edn. Interamericana de España, McGrow Hill (2006)Google Scholar
  12. 12.
    Stefanovskiy, D., Alexandrov, M., Bourek, A., Hala, T.: Concept identification in document with network activation method. In: Transaction on Business and Engineering Intelligent Applications, vol. 29, pp. 93–97. ITHEA Publication, Sofia-Rzeszov (2014)Google Scholar
  13. 13.
    Troussov, A., Sogrin, A., Judge, J., Botvich, D.: Mining socio-semantic networks using spreading activation technique. In: Proceedings of I-KNOW-2008 and I-MEDIA, Graz, Austria, pp. 405–412 (2008)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Dmitry Stefanovskiy
    • 1
  • Mikhail Alexandrov
    • 1
    • 2
    Email author
  • Angels Catena
    • 2
  • Vera Danilova
    • 1
  • Javier Tejada
    • 3
  1. 1.Russian Presidential Academy of National Economy and Public AdministrationMoscowRussia
  2. 2.Autonomous University of BarcelonaBarcelonaSpain
  3. 3.Catholic University of San PabloArequipaPeru

Personalised recommendations